/* em28xx-core.c - driver for Empia EM2800/EM2820/2840 USB video capture devices Copyright (C) 2005 Ludovico Cavedon Markus Rechberger Mauro Carvalho Chehab Sascha Sommer This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */ #include #include #include #include #include #include #include #include "em28xx.h" /* #define ENABLE_DEBUG_ISOC_FRAMES */ static unsigned int core_debug; module_param(core_debug, int, 0644); MODULE_PARM_DESC(core_debug, "enable debug messages [core]"); #define em28xx_coredbg(fmt, arg...) do {\ if (core_debug) \ printk(KERN_INFO "%s %s :"fmt, \ dev->name, __func__ , ##arg); } while (0) static unsigned int reg_debug; module_param(reg_debug, int, 0644); MODULE_PARM_DESC(reg_debug, "enable debug messages [URB reg]"); #define em28xx_regdbg(fmt, arg...) do {\ if (reg_debug) \ printk(KERN_INFO "%s %s :"fmt, \ dev->name, __func__ , ##arg); } while (0) static int alt; module_param(alt, int, 0644); MODULE_PARM_DESC(alt, "alternate setting to use for video endpoint"); static unsigned int disable_vbi; module_param(disable_vbi, int, 0644); MODULE_PARM_DESC(disable_vbi, "disable vbi support"); /* FIXME */ #define em28xx_isocdbg(fmt, arg...) do {\ if (core_debug) \ printk(KERN_INFO "%s %s :"fmt, \ dev->name, __func__ , ##arg); } while (0) /* * em28xx_read_reg_req() * reads data from the usb device specifying bRequest */ int em28xx_read_reg_req_len(struct em28xx *dev, u8 req, u16 reg, char *buf, int len) { int ret; int pipe = usb_rcvctrlpipe(dev->udev, 0); if (dev->state & DEV_DISCONNECTED) return -ENODEV; if (len > URB_MAX_CTRL_SIZE) return -EINVAL; if (reg_debug) { printk(KERN_DEBUG "(pipe 0x%08x): " "IN: %02x %02x %02x %02x %02x %02x %02x %02x ", pipe, USB_DIR_IN | USB_TYPE_VENDOR | USB_RECIP_DEVICE, req, 0, 0, reg & 0xff, reg >> 8, len & 0xff, len >> 8); } mutex_lock(&dev->ctrl_urb_lock); ret = usb_control_msg(dev->udev, pipe, req, USB_DIR_IN | USB_TYPE_VENDOR | USB_RECIP_DEVICE, 0x0000, reg, dev->urb_buf, len, HZ); if (ret < 0) { if (reg_debug) printk(" failed!\n"); mutex_unlock(&dev->ctrl_urb_lock); return ret; } if (len) memcpy(buf, dev->urb_buf, len); mutex_unlock(&dev->ctrl_urb_lock); if (reg_debug) { int byte; printk("<<<"); for (byte = 0; byte < len; byte++) printk(" %02x", (unsigned char)buf[byte]); printk("\n"); } return ret; } /* * em28xx_read_reg_req() * reads data from the usb device specifying bRequest */ int em28xx_read_reg_req(struct em28xx *dev, u8 req, u16 reg) { int ret; u8 val; ret = em28xx_read_reg_req_len(dev, req, reg, &val, 1); if (ret < 0) return ret; return val; } int em28xx_read_reg(struct em28xx *dev, u16 reg) { return em28xx_read_reg_req(dev, USB_REQ_GET_STATUS, reg); } /* * em28xx_write_regs_req() * sends data to the usb device, specifying bRequest */ int em28xx_write_regs_req(struct em28xx *dev, u8 req, u16 reg, char *buf, int len) { int ret; int pipe = usb_sndctrlpipe(dev->udev, 0); if (dev->state & DEV_DISCONNECTED) return -ENODEV; if ((len < 1) || (len > URB_MAX_CTRL_SIZE)) return -EINVAL; if (reg_debug) { int byte; printk(KERN_DEBUG "(pipe 0x%08x): " "OUT: %02x %02x %02x %02x %02x %02x %02x %02x >>>", pipe, USB_DIR_OUT | USB_TYPE_VENDOR | USB_RECIP_DEVICE, req, 0, 0, reg & 0xff, reg >> 8, len & 0xff, len >> 8); for (byte = 0; byte < len; byte++) printk(" %02x", (unsigned char)buf[byte]); printk("\n"); } mutex_lock(&dev->ctrl_urb_lock); memcpy(dev->urb_buf, buf, len); ret = usb_control_msg(dev->udev, pipe, req, USB_DIR_OUT | USB_TYPE_VENDOR | USB_RECIP_DEVICE, 0x0000, reg, dev->urb_buf, len, HZ); mutex_unlock(&dev->ctrl_urb_lock); if (dev->wait_after_write) msleep(dev->wait_after_write); return ret; } int em28xx_write_regs(struct em28xx *dev, u16 reg, char *buf, int len) { int rc; rc = em28xx_write_regs_req(dev, USB_REQ_GET_STATUS, reg, buf, len); /* Stores GPO/GPIO values at the cache, if changed Only write values should be stored, since input on a GPIO register will return the input bits. Not sure what happens on reading GPO register. */ if (rc >= 0) { if (reg == dev->reg_gpo_num) dev->reg_gpo = buf[0]; else if (reg == dev->reg_gpio_num) dev->reg_gpio = buf[0]; } return rc; } /* Write a single register */ int em28xx_write_reg(struct em28xx *dev, u16 reg, u8 val) { return em28xx_write_regs(dev, reg, &val, 1); } EXPORT_SYMBOL_GPL(em28xx_write_reg); /* * em28xx_write_reg_bits() * sets only some bits (specified by bitmask) of a register, by first reading * the actual value */ int em28xx_write_reg_bits(struct em28xx *dev, u16 reg, u8 val, u8 bitmask) { int oldval; u8 newval; /* Uses cache for gpo/gpio registers */ if (reg == dev->reg_gpo_num) oldval = dev->reg_gpo; else if (reg == dev->reg_gpio_num) oldval = dev->reg_gpio; else oldval = em28xx_read_reg(dev, reg); if (oldval < 0) return oldval; newval = (((u8) oldval) & ~bitmask) | (val & bitmask); return em28xx_write_regs(dev, reg, &newval, 1); } /* * em28xx_is_ac97_ready() * Checks if ac97 is ready */ static int em28xx_is_ac97_ready(struct em28xx *dev) { int ret, i; /* Wait up to 50 ms for AC97 command to complete */ for (i = 0; i < 10; i++, msleep(5)) { ret = em28xx_read_reg(dev, EM28XX_R43_AC97BUSY); if (ret < 0) return ret; if (!(ret & 0x01)) return 0; } em28xx_warn("AC97 command still being executed: not handled properly!\n"); return -EBUSY; } /* * em28xx_read_ac97() * write a 16 bit value to the specified AC97 address (LSB first!) */ int em28xx_read_ac97(struct em28xx *dev, u8 reg) { int ret; u8 addr = (reg & 0x7f) | 0x80; u16 val; ret = em28xx_is_ac97_ready(dev); if (ret < 0) return ret; ret = em28xx_write_regs(dev, EM28XX_R42_AC97ADDR, &addr, 1); if (ret < 0) return ret; ret = dev->em28xx_read_reg_req_len(dev, 0, EM28XX_R40_AC97LSB, (u8 *)&val, sizeof(val)); if (ret < 0) return ret; return le16_to_cpu(val); } EXPORT_SYMBOL_GPL(em28xx_read_ac97); /* * em28xx_write_ac97() * write a 16 bit value to the specified AC97 address (LSB first!) */ int em28xx_write_ac97(struct em28xx *dev, u8 reg, u16 val) { int ret; u8 addr = reg & 0x7f; __le16 value; value = cpu_to_le16(val); ret = em28xx_is_ac97_ready(dev); if (ret < 0) return ret; ret = em28xx_write_regs(dev, EM28XX_R40_AC97LSB, (u8 *) &value, 2); if (ret < 0) return ret; ret = em28xx_write_regs(dev, EM28XX_R42_AC97ADDR, &addr, 1); if (ret < 0) return ret; return 0; } EXPORT_SYMBOL_GPL(em28xx_write_ac97); struct em28xx_vol_itable { enum em28xx_amux mux; u8 reg; }; static struct em28xx_vol_itable inputs[] = { { EM28XX_AMUX_VIDEO, AC97_VIDEO_VOL }, { EM28XX_AMUX_LINE_IN, AC97_LINEIN_VOL }, { EM28XX_AMUX_PHONE, AC97_PHONE_VOL }, { EM28XX_AMUX_MIC, AC97_MIC_VOL }, { EM28XX_AMUX_CD, AC97_CD_VOL }, { EM28XX_AMUX_AUX, AC97_AUX_VOL }, { EM28XX_AMUX_PCM_OUT, AC97_PCM_OUT_VOL }, }; static int set_ac97_input(struct em28xx *dev) { int ret, i; enum em28xx_amux amux = dev->ctl_ainput; /* EM28XX_AMUX_VIDEO2 is a special case used to indicate that em28xx should point to LINE IN, while AC97 should use VIDEO */ if (amux == EM28XX_AMUX_VIDEO2) amux = EM28XX_AMUX_VIDEO; /* Mute all entres but the one that were selected */ for (i = 0; i < ARRAY_SIZE(inputs); i++) { if (amux == inputs[i].mux) ret = em28xx_write_ac97(dev, inputs[i].reg, 0x0808); else ret = em28xx_write_ac97(dev, inputs[i].reg, 0x8000); if (ret < 0) em28xx_warn("couldn't setup AC97 register %d\n", inputs[i].reg); } return 0; } static int em28xx_set_audio_source(struct em28xx *dev) { int ret; u8 input; if (dev->board.is_em2800) { if (dev->ctl_ainput == EM28XX_AMUX_VIDEO) input = EM2800_AUDIO_SRC_TUNER; else input = EM2800_AUDIO_SRC_LINE; ret = em28xx_write_regs(dev, EM2800_R08_AUDIOSRC, &input, 1); if (ret < 0) return ret; } if (dev->board.has_msp34xx) input = EM28XX_AUDIO_SRC_TUNER; else { switch (dev->ctl_ainput) { case EM28XX_AMUX_VIDEO: input = EM28XX_AUDIO_SRC_TUNER; break; default: input = EM28XX_AUDIO_SRC_LINE; break; } } if (dev->board.mute_gpio && dev->mute) em28xx_gpio_set(dev, dev->board.mute_gpio); else em28xx_gpio_set(dev, INPUT(dev->ctl_input)->gpio); ret = em28xx_write_reg_bits(dev, EM28XX_R0E_AUDIOSRC, input, 0xc0); if (ret < 0) return ret; msleep(5); switch (dev->audio_mode.ac97) { case EM28XX_NO_AC97: break; default: ret = set_ac97_input(dev); } return ret; } struct em28xx_vol_otable { enum em28xx_aout mux; u8 reg; }; static const struct em28xx_vol_otable outputs[] = { { EM28XX_AOUT_MASTER, AC97_MASTER_VOL }, { EM28XX_AOUT_LINE, AC97_LINE_LEVEL_VOL }, { EM28XX_AOUT_MONO, AC97_MASTER_MONO_VOL }, { EM28XX_AOUT_LFE, AC97_LFE_MASTER_VOL }, { EM28XX_AOUT_SURR, AC97_SURR_MASTER_VOL }, }; int em28xx_audio_analog_set(struct em28xx *dev) { int ret, i; u8 xclk; if (!dev->audio_mode.has_audio) return 0; /* It is assumed that all devices use master volume for output. It would be possible to use also line output. */ if (dev->audio_mode.ac97 != EM28XX_NO_AC97) { /* Mute all outputs */ for (i = 0; i < ARRAY_SIZE(outputs); i++) { ret = em28xx_write_ac97(dev, outputs[i].reg, 0x8000); if (ret < 0) em28xx_warn("couldn't setup AC97 register %d\n", outputs[i].reg); } } xclk = dev->board.xclk & 0x7f; if (!dev->mute) xclk |= EM28XX_XCLK_AUDIO_UNMUTE; ret = em28xx_write_reg(dev, EM28XX_R0F_XCLK, xclk); if (ret < 0) return ret; msleep(10); /* Selects the proper audio input */ ret = em28xx_set_audio_source(dev); /* Sets volume */ if (dev->audio_mode.ac97 != EM28XX_NO_AC97) { int vol; em28xx_write_ac97(dev, AC97_POWER_DOWN_CTRL, 0x4200); em28xx_write_ac97(dev, AC97_EXT_AUD_CTRL, 0x0031); em28xx_write_ac97(dev, AC97_PCM_IN_SRATE, 0xbb80); /* LSB: left channel - both channels with the same level */ vol = (0x1f - dev->volume) | ((0x1f - dev->volume) << 8); /* Mute device, if needed */ if (dev->mute) vol |= 0x8000; /* Sets volume */ for (i = 0; i < ARRAY_SIZE(outputs); i++) { if (dev->ctl_aoutput & outputs[i].mux) ret = em28xx_write_ac97(dev, outputs[i].reg, vol); if (ret < 0) em28xx_warn("couldn't setup AC97 register %d\n", outputs[i].reg); } if (dev->ctl_aoutput & EM28XX_AOUT_PCM_IN) { int sel = ac97_return_record_select(dev->ctl_aoutput); /* Use the same input for both left and right channels */ sel |= (sel << 8); em28xx_write_ac97(dev, AC97_RECORD_SELECT, sel); } } return ret; } EXPORT_SYMBOL_GPL(em28xx_audio_analog_set); int em28xx_audio_setup(struct em28xx *dev) { int vid1, vid2, feat, cfg; u32 vid; if (dev->chip_id == CHIP_ID_EM2870 || dev->chip_id == CHIP_ID_EM2874 || dev->chip_id == CHIP_ID_EM28174) { /* Digital only device - don't load any alsa module */ dev->audio_mode.has_audio = false; dev->has_audio_class = false; dev->has_alsa_audio = false; return 0; } dev->audio_mode.has_audio = true; /* See how this device is configured */ cfg = em28xx_read_reg(dev, EM28XX_R00_CHIPCFG); em28xx_info("Config register raw data: 0x%02x\n", cfg); if (cfg < 0) { /* Register read error? */ cfg = EM28XX_CHIPCFG_AC97; /* Be conservative */ } else if ((cfg & EM28XX_CHIPCFG_AUDIOMASK) == 0x00) { /* The device doesn't have vendor audio at all */ dev->has_alsa_audio = false; dev->audio_mode.has_audio = false; return 0; } else if ((cfg & EM28XX_CHIPCFG_AUDIOMASK) == EM28XX_CHIPCFG_I2S_3_SAMPRATES) { em28xx_info("I2S Audio (3 sample rates)\n"); dev->audio_mode.i2s_3rates = 1; } else if ((cfg & EM28XX_CHIPCFG_AUDIOMASK) == EM28XX_CHIPCFG_I2S_5_SAMPRATES) { em28xx_info("I2S Audio (5 sample rates)\n"); dev->audio_mode.i2s_5rates = 1; } if ((cfg & EM28XX_CHIPCFG_AUDIOMASK) != EM28XX_CHIPCFG_AC97) { /* Skip the code that does AC97 vendor detection */ dev->audio_mode.ac97 = EM28XX_NO_AC97; goto init_audio; } dev->audio_mode.ac97 = EM28XX_AC97_OTHER; vid1 = em28xx_read_ac97(dev, AC97_VENDOR_ID1); if (vid1 < 0) { /* * Device likely doesn't support AC97 * Note: (some) em2800 devices without eeprom reports 0x91 on * CHIPCFG register, even not having an AC97 chip */ em28xx_warn("AC97 chip type couldn't be determined\n"); dev->audio_mode.ac97 = EM28XX_NO_AC97; dev->has_alsa_audio = false; dev->audio_mode.has_audio = false; goto init_audio; } vid2 = em28xx_read_ac97(dev, AC97_VENDOR_ID2); if (vid2 < 0) goto init_audio; vid = vid1 << 16 | vid2; dev->audio_mode.ac97_vendor_id = vid; em28xx_warn("AC97 vendor ID = 0x%08x\n", vid); feat = em28xx_read_ac97(dev, AC97_RESET); if (feat < 0) goto init_audio; dev->audio_mode.ac97_feat = feat; em28xx_warn("AC97 features = 0x%04x\n", feat); /* Try to identify what audio processor we have */ if ((vid == 0xffffffff) && (feat == 0x6a90)) dev->audio_mode.ac97 = EM28XX_AC97_EM202; else if ((vid >> 8) == 0x838476) dev->audio_mode.ac97 = EM28XX_AC97_SIGMATEL; init_audio: /* Reports detected AC97 processor */ switch (dev->audio_mode.ac97) { case EM28XX_NO_AC97: em28xx_info("No AC97 audio processor\n"); break; case EM28XX_AC97_EM202: em28xx_info("Empia 202 AC97 audio processor detected\n"); break; case EM28XX_AC97_SIGMATEL: em28xx_info("Sigmatel audio processor detected(stac 97%02x)\n", dev->audio_mode.ac97_vendor_id & 0xff); break; case EM28XX_AC97_OTHER: em28xx_warn("Unknown AC97 audio processor detected!\n"); break; default: break; } return em28xx_audio_analog_set(dev); } EXPORT_SYMBOL_GPL(em28xx_audio_setup); int em28xx_colorlevels_set_default(struct em28xx *dev) { em28xx_write_reg(dev, EM28XX_R20_YGAIN, 0x10); /* contrast */ em28xx_write_reg(dev, EM28XX_R21_YOFFSET, 0x00); /* brightness */ em28xx_write_reg(dev, EM28XX_R22_UVGAIN, 0x10); /* saturation */ em28xx_write_reg(dev, EM28XX_R23_UOFFSET, 0x00); em28xx_write_reg(dev, EM28XX_R24_VOFFSET, 0x00); em28xx_write_reg(dev, EM28XX_R25_SHARPNESS, 0x00); em28xx_write_reg(dev, EM28XX_R14_GAMMA, 0x20); em28xx_write_reg(dev, EM28XX_R15_RGAIN, 0x20); em28xx_write_reg(dev, EM28XX_R16_GGAIN, 0x20); em28xx_write_reg(dev, EM28XX_R17_BGAIN, 0x20); em28xx_write_reg(dev, EM28XX_R18_ROFFSET, 0x00); em28xx_write_reg(dev, EM28XX_R19_GOFFSET, 0x00); return em28xx_write_reg(dev, EM28XX_R1A_BOFFSET, 0x00); } int em28xx_capture_start(struct em28xx *dev, int start) { int rc; if (dev->chip_id == CHIP_ID_EM2874 || dev->chip_id == CHIP_ID_EM2884 || dev->chip_id == CHIP_ID_EM28174) { /* The Transport Stream Enable Register moved in em2874 */ if (!start) { rc = em28xx_write_reg_bits(dev, EM2874_R5F_TS_ENABLE, 0x00, EM2874_TS1_CAPTURE_ENABLE); return rc; } /* Enable Transport Stream */ rc = em28xx_write_reg_bits(dev, EM2874_R5F_TS_ENABLE, EM2874_TS1_CAPTURE_ENABLE, EM2874_TS1_CAPTURE_ENABLE); return rc; } /* FIXME: which is the best order? */ /* video registers are sampled by VREF */ rc = em28xx_write_reg_bits(dev, EM28XX_R0C_USBSUSP, start ? 0x10 : 0x00, 0x10); if (rc < 0) return rc; if (!start) { /* disable video capture */ rc = em28xx_write_reg(dev, EM28XX_R12_VINENABLE, 0x27); return rc; } if (dev->board.is_webcam) rc = em28xx_write_reg(dev, 0x13, 0x0c); /* enable video capture */ rc = em28xx_write_reg(dev, 0x48, 0x00); if (dev->mode == EM28XX_ANALOG_MODE) rc = em28xx_write_reg(dev, EM28XX_R12_VINENABLE, 0x67); else rc = em28xx_write_reg(dev, EM28XX_R12_VINENABLE, 0x37); msleep(6); return rc; } int em28xx_vbi_supported(struct em28xx *dev) { /* Modprobe option to manually disable */ if (disable_vbi == 1) return 0; if (dev->chip_id == CHIP_ID_EM2860 || dev->chip_id == CHIP_ID_EM2883) return 1; /* Version of em28xx that does not support VBI */ return 0; } int em28xx_set_outfmt(struct em28xx *dev) { int ret; u8 vinctrl; ret = em28xx_write_reg_bits(dev, EM28XX_R27_OUTFMT, dev->format->reg | 0x20, 0xff); if (ret < 0) return ret; ret = em28xx_write_reg(dev, EM28XX_R10_VINMODE, dev->vinmode); if (ret < 0) return ret; vinctrl = dev->vinctl; if (em28xx_vbi_supported(dev) == 1) { vinctrl |= EM28XX_VINCTRL_VBI_RAW; em28xx_write_reg(dev, EM28XX_R34_VBI_START_H, 0x00); em28xx_write_reg(dev, EM28XX_R36_VBI_WIDTH, dev->vbi_width/4); em28xx_write_reg(dev, EM28XX_R37_VBI_HEIGHT, dev->vbi_height); if (dev->norm & V4L2_STD_525_60) { /* NTSC */ em28xx_write_reg(dev, EM28XX_R35_VBI_START_V, 0x09); } else if (dev->norm & V4L2_STD_625_50) { /* PAL */ em28xx_write_reg(dev, EM28XX_R35_VBI_START_V, 0x07); } } return em28xx_write_reg(dev, EM28XX_R11_VINCTRL, vinctrl); } static int em28xx_accumulator_set(struct em28xx *dev, u8 xmin, u8 xmax, u8 ymin, u8 ymax) { em28xx_coredbg("em28xx Scale: (%d,%d)-(%d,%d)\n", xmin, ymin, xmax, ymax); em28xx_write_regs(dev, EM28XX_R28_XMIN, &xmin, 1); em28xx_write_regs(dev, EM28XX_R29_XMAX, &xmax, 1); em28xx_write_regs(dev, EM28XX_R2A_YMIN, &ymin, 1); return em28xx_write_regs(dev, EM28XX_R2B_YMAX, &ymax, 1); } static int em28xx_capture_area_set(struct em28xx *dev, u8 hstart, u8 vstart, u16 width, u16 height) { u8 cwidth = width; u8 cheight = height; u8 overflow = (height >> 7 & 0x02) | (width >> 8 & 0x01); em28xx_coredbg("em28xx Area Set: (%d,%d)\n", (width | (overflow & 2) << 7), (height | (overflow & 1) << 8)); em28xx_write_regs(dev, EM28XX_R1C_HSTART, &hstart, 1); em28xx_write_regs(dev, EM28XX_R1D_VSTART, &vstart, 1); em28xx_write_regs(dev, EM28XX_R1E_CWIDTH, &cwidth, 1); em28xx_write_regs(dev, EM28XX_R1F_CHEIGHT, &cheight, 1); return em28xx_write_regs(dev, EM28XX_R1B_OFLOW, &overflow, 1); } static int em28xx_scaler_set(struct em28xx *dev, u16 h, u16 v) { u8 mode; /* the em2800 scaler only supports scaling down to 50% */ if (dev->board.is_em2800) { mode = (v ? 0x20 : 0x00) | (h ? 0x10 : 0x00); } else { u8 buf[2]; buf[0] = h; buf[1] = h >> 8; em28xx_write_regs(dev, EM28XX_R30_HSCALELOW, (char *)buf, 2); buf[0] = v; buf[1] = v >> 8; em28xx_write_regs(dev, EM28XX_R32_VSCALELOW, (char *)buf, 2); /* it seems that both H and V scalers must be active to work correctly */ mode = (h || v) ? 0x30 : 0x00; } return em28xx_write_reg_bits(dev, EM28XX_R26_COMPR, mode, 0x30); } /* FIXME: this only function read values from dev */ int em28xx_resolution_set(struct em28xx *dev) { int width, height; width = norm_maxw(dev); height = norm_maxh(dev); /* Properly setup VBI */ dev->vbi_width = 720; if (dev->norm & V4L2_STD_525_60) dev->vbi_height = 12; else dev->vbi_height = 18; if (!dev->progressive) height >>= norm_maxh(dev); em28xx_set_outfmt(dev); em28xx_accumulator_set(dev, 1, (width - 4) >> 2, 1, (height - 4) >> 2); /* If we don't set the start position to 2 in VBI mode, we end up with line 20/21 being YUYV encoded instead of being in 8-bit greyscale. The core of the issue is that line 21 (and line 23 for PAL WSS) are inside of active video region, and as a result they get the pixelformatting associated with that area. So by cropping it out, we end up with the same format as the rest of the VBI region */ if (em28xx_vbi_supported(dev) == 1) em28xx_capture_area_set(dev, 0, 2, width >> 2, height >> 2); else em28xx_capture_area_set(dev, 0, 0, width >> 2, height >> 2); return em28xx_scaler_set(dev, dev->hscale, dev->vscale); } int em28xx_set_alternate(struct em28xx *dev) { int errCode, prev_alt = dev->alt; int i; unsigned int min_pkt_size = dev->width * 2 + 4; /* * alt = 0 is used only for control messages, so, only values * greater than 0 can be used for streaming. */ if (alt && alt < dev->num_alt) { em28xx_coredbg("alternate forced to %d\n", dev->alt); dev->alt = alt; goto set_alt; } /* When image size is bigger than a certain value, the frame size should be increased, otherwise, only green screen will be received. */ if (dev->width * 2 * dev->height > 720 * 240 * 2) min_pkt_size *= 2; for (i = 0; i < dev->num_alt; i++) { /* stop when the selected alt setting offers enough bandwidth */ if (dev->alt_max_pkt_size[i] >= min_pkt_size) { dev->alt = i; break; /* otherwise make sure that we end up with the maximum bandwidth because the min_pkt_size equation might be wrong... */ } else if (dev->alt_max_pkt_size[i] > dev->alt_max_pkt_size[dev->alt]) dev->alt = i; } set_alt: if (dev->alt != prev_alt) { em28xx_coredbg("minimum isoc packet size: %u (alt=%d)\n", min_pkt_size, dev->alt); dev->max_pkt_size = dev->alt_max_pkt_size[dev->alt]; em28xx_coredbg("setting alternate %d with wMaxPacketSize=%u\n", dev->alt, dev->max_pkt_size); errCode = usb_set_interface(dev->udev, 0, dev->alt); if (errCode < 0) { em28xx_errdev("cannot change alternate number to %d (error=%i)\n", dev->alt, errCode); return errCode; } } return 0; } int em28xx_gpio_set(struct em28xx *dev, struct em28xx_reg_seq *gpio) { int rc = 0; if (!gpio) return rc; if (dev->mode != EM28XX_SUSPEND) { em28xx_write_reg(dev, 0x48, 0x00); if (dev->mode == EM28XX_ANALOG_MODE) em28xx_write_reg(dev, EM28XX_R12_VINENABLE, 0x67); else em28xx_write_reg(dev, EM28XX_R12_VINENABLE, 0x37); msleep(6); } /* Send GPIO reset sequences specified at board entry */ while (gpio->sleep >= 0) { if (gpio->reg >= 0) { rc = em28xx_write_reg_bits(dev, gpio->reg, gpio->val, gpio->mask); if (rc < 0) return rc; } if (gpio->sleep > 0) msleep(gpio->sleep); gpio++; } return rc; } EXPORT_SYMBOL_GPL(em28xx_gpio_set); int em28xx_set_mode(struct em28xx *dev, enum em28xx_mode set_mode) { if (dev->mode == set_mode) return 0; if (set_mode == EM28XX_SUSPEND) { dev->mode = set_mode; /* FIXME: add suspend support for ac97 */ return em28xx_gpio_set(dev, dev->board.suspend_gpio); } dev->mode = set_mode; if (dev->mode == EM28XX_DIGITAL_MODE) return em28xx_gpio_set(dev, dev->board.dvb_gpio); else return em28xx_gpio_set(dev, INPUT(dev->ctl_input)->gpio); } EXPORT_SYMBOL_GPL(em28xx_set_mode); /* ------------------------------------------------------------------ URB control ------------------------------------------------------------------*/ /* * IRQ callback, called by URB callback */ static void em28xx_irq_callback(struct urb *urb) { struct em28xx *dev = urb->context; int i; switch (urb->status) { case 0: /* success */ case -ETIMEDOUT: /* NAK */ break; case -ECONNRESET: /* kill */ case -ENOENT: case -ESHUTDOWN: return; default: /* error */ em28xx_isocdbg("urb completition error %d.\n", urb->status); break; } /* Copy data from URB */ spin_lock(&dev->slock); dev->isoc_ctl.isoc_copy(dev, urb); spin_unlock(&dev->slock); /* Reset urb buffers */ for (i = 0; i < urb->number_of_packets; i++) { urb->iso_frame_desc[i].status = 0; urb->iso_frame_desc[i].actual_length = 0; } urb->status = 0; urb->status = usb_submit_urb(urb, GFP_ATOMIC); if (urb->status) { em28xx_isocdbg("urb resubmit failed (error=%i)\n", urb->status); } } /* * Stop and Deallocate URBs */ void em28xx_uninit_isoc(struct em28xx *dev) { struct urb *urb; int i; em28xx_isocdbg("em28xx: called em28xx_uninit_isoc\n"); dev->isoc_ctl.nfields = -1; for (i = 0; i < dev->isoc_ctl.num_bufs; i++) { urb = dev->isoc_ctl.urb[i]; if (urb) { if (!irqs_disabled()) usb_kill_urb(urb); else usb_unlink_urb(urb); if (dev->isoc_ctl.transfer_buffer[i]) { usb_free_coherent(dev->udev, urb->transfer_buffer_length, dev->isoc_ctl.transfer_buffer[i], urb->transfer_dma); } usb_free_urb(urb); dev->isoc_ctl.urb[i] = NULL; } dev->isoc_ctl.transfer_buffer[i] = NULL; } kfree(dev->isoc_ctl.urb); kfree(dev->isoc_ctl.transfer_buffer); dev->isoc_ctl.urb = NULL; dev->isoc_ctl.transfer_buffer = NULL; dev->isoc_ctl.num_bufs = 0; em28xx_capture_start(dev, 0); } EXPORT_SYMBOL_GPL(em28xx_uninit_isoc); /* * Allocate URBs and start IRQ */ int em28xx_init_isoc(struct em28xx *dev, int max_packets, int num_bufs, int max_pkt_size, int (*isoc_copy) (struct em28xx *dev, struct urb *urb)) { struct em28xx_dmaqueue *dma_q = &dev->vidq; struct em28xx_dmaqueue *vbi_dma_q = &dev->vbiq; int i; int sb_size, pipe; struct urb *urb; int j, k; int rc; em28xx_isocdbg("em28xx: called em28xx_prepare_isoc\n"); /* De-allocates all pending stuff */ em28xx_uninit_isoc(dev); dev->isoc_ctl.isoc_copy = isoc_copy; dev->isoc_ctl.num_bufs = num_bufs; dev->isoc_ctl.urb = kzalloc(sizeof(void *)*num_bufs, GFP_KERNEL); if (!dev->isoc_ctl.urb) { em28xx_errdev("cannot alloc memory for usb buffers\n"); return -ENOMEM; } dev->isoc_ctl.transfer_buffer = kzalloc(sizeof(void *)*num_bufs, GFP_KERNEL); if (!dev->isoc_ctl.transfer_buffer) { em28xx_errdev("cannot allocate memory for usb transfer\n"); kfree(dev->isoc_ctl.urb); return -ENOMEM; } dev->isoc_ctl.max_pkt_size = max_pkt_size; dev->isoc_ctl.vid_buf = NULL; dev->isoc_ctl.vbi_buf = NULL; sb_size = max_packets * dev->isoc_ctl.max_pkt_size; /* allocate urbs and transfer buffers */ for (i = 0; i < dev->isoc_ctl.num_bufs; i++) { urb = usb_alloc_urb(max_packets, GFP_KERNEL); if (!urb) { em28xx_err("cannot alloc isoc_ctl.urb %i\n", i); em28xx_uninit_isoc(dev); return -ENOMEM; } dev->isoc_ctl.urb[i] = urb; dev->isoc_ctl.transfer_buffer[i] = usb_alloc_coherent(dev->udev, sb_size, GFP_KERNEL, &urb->transfer_dma); if (!dev->isoc_ctl.transfer_buffer[i]) { em28xx_err("unable to allocate %i bytes for transfer" " buffer %i%s\n", sb_size, i, in_interrupt() ? " while in int" : ""); em28xx_uninit_isoc(dev); return -ENOMEM; } memset(dev->isoc_ctl.transfer_buffer[i], 0, sb_size); /* FIXME: this is a hack - should be 'desc.bEndpointAddress & USB_ENDPOINT_NUMBER_MASK' should also be using 'desc.bInterval' */ pipe = usb_rcvisocpipe(dev->udev, dev->mode == EM28XX_ANALOG_MODE ? 0x82 : 0x84); usb_fill_int_urb(urb, dev->udev, pipe, dev->isoc_ctl.transfer_buffer[i], sb_size, em28xx_irq_callback, dev, 1); urb->number_of_packets = max_packets; urb->transfer_flags = URB_ISO_ASAP | URB_NO_TRANSFER_DMA_MAP; k = 0; for (j = 0; j < max_packets; j++) { urb->iso_frame_desc[j].offset = k; urb->iso_frame_desc[j].length = dev->isoc_ctl.max_pkt_size; k += dev->isoc_ctl.max_pkt_size; } } init_waitqueue_head(&dma_q->wq); init_waitqueue_head(&vbi_dma_q->wq); em28xx_capture_start(dev, 1); /* submit urbs and enables IRQ */ for (i = 0; i < dev->isoc_ctl.num_bufs; i++) { rc = usb_submit_urb(dev->isoc_ctl.urb[i], GFP_ATOMIC); if (rc) { em28xx_err("submit of urb %i failed (error=%i)\n", i, rc); em28xx_uninit_isoc(dev); return rc; } } return 0; } EXPORT_SYMBOL_GPL(em28xx_init_isoc); /* Determine the packet size for the DVB stream for the given device (underlying value programmed into the eeprom) */ int em28xx_isoc_dvb_max_packetsize(struct em28xx *dev) { unsigned int chip_cfg2; unsigned int packet_size; switch (dev->chip_id) { case CHIP_ID_EM2710: case CHIP_ID_EM2750: case CHIP_ID_EM2800: case CHIP_ID_EM2820: case CHIP_ID_EM2840: case CHIP_ID_EM2860: /* No DVB support */ return -EINVAL; case CHIP_ID_EM2870: case CHIP_ID_EM2883: /* TS max packet size stored in bits 1-0 of R01 */ chip_cfg2 = em28xx_read_reg(dev, EM28XX_R01_CHIPCFG2); switch (chip_cfg2 & EM28XX_CHIPCFG2_TS_PACKETSIZE_MASK) { case EM28XX_CHIPCFG2_TS_PACKETSIZE_188: packet_size = 188; break; case EM28XX_CHIPCFG2_TS_PACKETSIZE_376: packet_size = 376; break; case EM28XX_CHIPCFG2_TS_PACKETSIZE_564: packet_size = 564; break; case EM28XX_CHIPCFG2_TS_PACKETSIZE_752: packet_size = 752; break; } break; case CHIP_ID_EM2874: /* * FIXME: for now assumes 564 like it was before, but the * em2874 code should be added to return the proper value */ packet_size = 564; break; case CHIP_ID_EM2884: case CHIP_ID_EM28174: default: /* * FIXME: same as em2874. 564 was enough for 22 Mbit DVB-T * but not enough for 44 Mbit DVB-C. */ packet_size = 752; } return packet_size; } EXPORT_SYMBOL_GPL(em28xx_isoc_dvb_max_packetsize); /* * em28xx_wake_i2c() * configure i2c attached devices */ void em28xx_wake_i2c(struct em28xx *dev) { v4l2_device_call_all(&dev->v4l2_dev, 0, core, reset, 0); v4l2_device_call_all(&dev->v4l2_dev, 0, video, s_routing, INPUT(dev->ctl_input)->vmux, 0, 0); v4l2_device_call_all(&dev->v4l2_dev, 0, video, s_stream, 0); } /* * Device control list */ static LIST_HEAD(em28xx_devlist); static DEFINE_MUTEX(em28xx_devlist_mutex); /* * Extension interface */ static LIST_HEAD(em28xx_extension_devlist); int em28xx_register_extension(struct em28xx_ops *ops) { struct em28xx *dev = NULL; mutex_lock(&em28xx_devlist_mutex); list_add_tail(&ops->next, &em28xx_extension_devlist); list_for_each_entry(dev, &em28xx_devlist, devlist) { ops->init(dev); } mutex_unlock(&em28xx_devlist_mutex); printk(KERN_INFO "Em28xx: Initialized (%s) extension\n", ops->name); return 0; } EXPORT_SYMBOL(em28xx_register_extension); void em28xx_unregister_extension(struct em28xx_ops *ops) { struct em28xx *dev = NULL; mutex_lock(&em28xx_devlist_mutex); list_for_each_entry(dev, &em28xx_devlist, devlist) { ops->fini(dev); } list_del(&ops->next); mutex_unlock(&em28xx_devlist_mutex); printk(KERN_INFO "Em28xx: Removed (%s) extension\n", ops->name); } EXPORT_SYMBOL(em28xx_unregister_extension); void em28xx_init_extension(struct em28xx *dev) { const struct em28xx_ops *ops = NULL; mutex_lock(&em28xx_devlist_mutex); list_add_tail(&dev->devlist, &em28xx_devlist); list_for_each_entry(ops, &em28xx_extension_devlist, next) { if (ops->init) ops->init(dev); } mutex_unlock(&em28xx_devlist_mutex); } void em28xx_close_extension(struct em28xx *dev) { const struct em28xx_ops *ops = NULL; mutex_lock(&em28xx_devlist_mutex); list_for_each_entry(ops, &em28xx_extension_devlist, next) { if (ops->fini) ops->fini(dev); } list_del(&dev->devlist); mutex_unlock(&em28xx_devlist_mutex); }