/* * linux/drivers/mmc/host/pxa.c - PXA MMCI driver * * Copyright (C) 2003 Russell King, All Rights Reserved. * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2 as * published by the Free Software Foundation. * * This hardware is really sick: * - No way to clear interrupts. * - Have to turn off the clock whenever we touch the device. * - Doesn't tell you how many data blocks were transferred. * Yuck! * * 1 and 3 byte data transfers not supported * max block length up to 1023 */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "pxamci.h" #define DRIVER_NAME "pxa2xx-mci" #define NR_SG 1 #define CLKRT_OFF (~0) #define mmc_has_26MHz() (cpu_is_pxa300() || cpu_is_pxa310() \ || cpu_is_pxa935()) struct pxamci_host { struct mmc_host *mmc; spinlock_t lock; struct resource *res; void __iomem *base; struct clk *clk; unsigned long clkrate; int irq; int dma; unsigned int clkrt; unsigned int cmdat; unsigned int imask; unsigned int power_mode; struct pxamci_platform_data *pdata; struct mmc_request *mrq; struct mmc_command *cmd; struct mmc_data *data; dma_addr_t sg_dma; struct pxa_dma_desc *sg_cpu; unsigned int dma_len; unsigned int dma_dir; unsigned int dma_drcmrrx; unsigned int dma_drcmrtx; struct regulator *vcc; }; static inline void pxamci_init_ocr(struct pxamci_host *host) { #ifdef CONFIG_REGULATOR host->vcc = regulator_get(mmc_dev(host->mmc), "vmmc"); if (IS_ERR(host->vcc)) host->vcc = NULL; else { host->mmc->ocr_avail = mmc_regulator_get_ocrmask(host->vcc); if (host->pdata && host->pdata->ocr_mask) dev_warn(mmc_dev(host->mmc), "ocr_mask/setpower will not be used\n"); } #endif if (host->vcc == NULL) { /* fall-back to platform data */ host->mmc->ocr_avail = host->pdata ? host->pdata->ocr_mask : MMC_VDD_32_33 | MMC_VDD_33_34; } } static inline int pxamci_set_power(struct pxamci_host *host, unsigned char power_mode, unsigned int vdd) { int on; if (host->vcc) { int ret; if (power_mode == MMC_POWER_UP) { ret = mmc_regulator_set_ocr(host->mmc, host->vcc, vdd); if (ret) return ret; } else if (power_mode == MMC_POWER_OFF) { ret = mmc_regulator_set_ocr(host->mmc, host->vcc, 0); if (ret) return ret; } } if (!host->vcc && host->pdata && gpio_is_valid(host->pdata->gpio_power)) { on = ((1 << vdd) & host->pdata->ocr_mask); gpio_set_value(host->pdata->gpio_power, !!on ^ host->pdata->gpio_power_invert); } if (!host->vcc && host->pdata && host->pdata->setpower) host->pdata->setpower(mmc_dev(host->mmc), vdd); return 0; } static void pxamci_stop_clock(struct pxamci_host *host) { if (readl(host->base + MMC_STAT) & STAT_CLK_EN) { unsigned long timeout = 10000; unsigned int v; writel(STOP_CLOCK, host->base + MMC_STRPCL); do { v = readl(host->base + MMC_STAT); if (!(v & STAT_CLK_EN)) break; udelay(1); } while (timeout--); if (v & STAT_CLK_EN) dev_err(mmc_dev(host->mmc), "unable to stop clock\n"); } } static void pxamci_enable_irq(struct pxamci_host *host, unsigned int mask) { unsigned long flags; spin_lock_irqsave(&host->lock, flags); host->imask &= ~mask; writel(host->imask, host->base + MMC_I_MASK); spin_unlock_irqrestore(&host->lock, flags); } static void pxamci_disable_irq(struct pxamci_host *host, unsigned int mask) { unsigned long flags; spin_lock_irqsave(&host->lock, flags); host->imask |= mask; writel(host->imask, host->base + MMC_I_MASK); spin_unlock_irqrestore(&host->lock, flags); } static void pxamci_setup_data(struct pxamci_host *host, struct mmc_data *data) { unsigned int nob = data->blocks; unsigned long long clks; unsigned int timeout; bool dalgn = 0; u32 dcmd; int i; host->data = data; if (data->flags & MMC_DATA_STREAM) nob = 0xffff; writel(nob, host->base + MMC_NOB); writel(data->blksz, host->base + MMC_BLKLEN); clks = (unsigned long long)data->timeout_ns * host->clkrate; do_div(clks, 1000000000UL); timeout = (unsigned int)clks + (data->timeout_clks << host->clkrt); writel((timeout + 255) / 256, host->base + MMC_RDTO); if (data->flags & MMC_DATA_READ) { host->dma_dir = DMA_FROM_DEVICE; dcmd = DCMD_INCTRGADDR | DCMD_FLOWSRC; DRCMR(host->dma_drcmrtx) = 0; DRCMR(host->dma_drcmrrx) = host->dma | DRCMR_MAPVLD; } else { host->dma_dir = DMA_TO_DEVICE; dcmd = DCMD_INCSRCADDR | DCMD_FLOWTRG; DRCMR(host->dma_drcmrrx) = 0; DRCMR(host->dma_drcmrtx) = host->dma | DRCMR_MAPVLD; } dcmd |= DCMD_BURST32 | DCMD_WIDTH1; host->dma_len = dma_map_sg(mmc_dev(host->mmc), data->sg, data->sg_len, host->dma_dir); for (i = 0; i < host->dma_len; i++) { unsigned int length = sg_dma_len(&data->sg[i]); host->sg_cpu[i].dcmd = dcmd | length; if (length & 31 && !(data->flags & MMC_DATA_READ)) host->sg_cpu[i].dcmd |= DCMD_ENDIRQEN; /* Not aligned to 8-byte boundary? */ if (sg_dma_address(&data->sg[i]) & 0x7) dalgn = 1; if (data->flags & MMC_DATA_READ) { host->sg_cpu[i].dsadr = host->res->start + MMC_RXFIFO; host->sg_cpu[i].dtadr = sg_dma_address(&data->sg[i]); } else { host->sg_cpu[i].dsadr = sg_dma_address(&data->sg[i]); host->sg_cpu[i].dtadr = host->res->start + MMC_TXFIFO; } host->sg_cpu[i].ddadr = host->sg_dma + (i + 1) * sizeof(struct pxa_dma_desc); } host->sg_cpu[host->dma_len - 1].ddadr = DDADR_STOP; wmb(); /* * The PXA27x DMA controller encounters overhead when working with * unaligned (to 8-byte boundaries) data, so switch on byte alignment * mode only if we have unaligned data. */ if (dalgn) DALGN |= (1 << host->dma); else DALGN &= ~(1 << host->dma); DDADR(host->dma) = host->sg_dma; /* * workaround for erratum #91: * only start DMA now if we are doing a read, * otherwise we wait until CMD/RESP has finished * before starting DMA. */ if (!cpu_is_pxa27x() || data->flags & MMC_DATA_READ) DCSR(host->dma) = DCSR_RUN; } static void pxamci_start_cmd(struct pxamci_host *host, struct mmc_command *cmd, unsigned int cmdat) { WARN_ON(host->cmd != NULL); host->cmd = cmd; if (cmd->flags & MMC_RSP_BUSY) cmdat |= CMDAT_BUSY; #define RSP_TYPE(x) ((x) & ~(MMC_RSP_BUSY|MMC_RSP_OPCODE)) switch (RSP_TYPE(mmc_resp_type(cmd))) { case RSP_TYPE(MMC_RSP_R1): /* r1, r1b, r6, r7 */ cmdat |= CMDAT_RESP_SHORT; break; case RSP_TYPE(MMC_RSP_R3): cmdat |= CMDAT_RESP_R3; break; case RSP_TYPE(MMC_RSP_R2): cmdat |= CMDAT_RESP_R2; break; default: break; } writel(cmd->opcode, host->base + MMC_CMD); writel(cmd->arg >> 16, host->base + MMC_ARGH); writel(cmd->arg & 0xffff, host->base + MMC_ARGL); writel(cmdat, host->base + MMC_CMDAT); writel(host->clkrt, host->base + MMC_CLKRT); writel(START_CLOCK, host->base + MMC_STRPCL); pxamci_enable_irq(host, END_CMD_RES); } static void pxamci_finish_request(struct pxamci_host *host, struct mmc_request *mrq) { host->mrq = NULL; host->cmd = NULL; host->data = NULL; mmc_request_done(host->mmc, mrq); } static int pxamci_cmd_done(struct pxamci_host *host, unsigned int stat) { struct mmc_command *cmd = host->cmd; int i; u32 v; if (!cmd) return 0; host->cmd = NULL; /* * Did I mention this is Sick. We always need to * discard the upper 8 bits of the first 16-bit word. */ v = readl(host->base + MMC_RES) & 0xffff; for (i = 0; i < 4; i++) { u32 w1 = readl(host->base + MMC_RES) & 0xffff; u32 w2 = readl(host->base + MMC_RES) & 0xffff; cmd->resp[i] = v << 24 | w1 << 8 | w2 >> 8; v = w2; } if (stat & STAT_TIME_OUT_RESPONSE) { cmd->error = -ETIMEDOUT; } else if (stat & STAT_RES_CRC_ERR && cmd->flags & MMC_RSP_CRC) { /* * workaround for erratum #42: * Intel PXA27x Family Processor Specification Update Rev 001 * A bogus CRC error can appear if the msb of a 136 bit * response is a one. */ if (cpu_is_pxa27x() && (cmd->flags & MMC_RSP_136 && cmd->resp[0] & 0x80000000)) pr_debug("ignoring CRC from command %d - *risky*\n", cmd->opcode); else cmd->error = -EILSEQ; } pxamci_disable_irq(host, END_CMD_RES); if (host->data && !cmd->error) { pxamci_enable_irq(host, DATA_TRAN_DONE); /* * workaround for erratum #91, if doing write * enable DMA late */ if (cpu_is_pxa27x() && host->data->flags & MMC_DATA_WRITE) DCSR(host->dma) = DCSR_RUN; } else { pxamci_finish_request(host, host->mrq); } return 1; } static int pxamci_data_done(struct pxamci_host *host, unsigned int stat) { struct mmc_data *data = host->data; if (!data) return 0; DCSR(host->dma) = 0; dma_unmap_sg(mmc_dev(host->mmc), data->sg, data->sg_len, host->dma_dir); if (stat & STAT_READ_TIME_OUT) data->error = -ETIMEDOUT; else if (stat & (STAT_CRC_READ_ERROR|STAT_CRC_WRITE_ERROR)) data->error = -EILSEQ; /* * There appears to be a hardware design bug here. There seems to * be no way to find out how much data was transferred to the card. * This means that if there was an error on any block, we mark all * data blocks as being in error. */ if (!data->error) data->bytes_xfered = data->blocks * data->blksz; else data->bytes_xfered = 0; pxamci_disable_irq(host, DATA_TRAN_DONE); host->data = NULL; if (host->mrq->stop) { pxamci_stop_clock(host); pxamci_start_cmd(host, host->mrq->stop, host->cmdat); } else { pxamci_finish_request(host, host->mrq); } return 1; } static irqreturn_t pxamci_irq(int irq, void *devid) { struct pxamci_host *host = devid; unsigned int ireg; int handled = 0; ireg = readl(host->base + MMC_I_REG) & ~readl(host->base + MMC_I_MASK); if (ireg) { unsigned stat = readl(host->base + MMC_STAT); pr_debug("PXAMCI: irq %08x stat %08x\n", ireg, stat); if (ireg & END_CMD_RES) handled |= pxamci_cmd_done(host, stat); if (ireg & DATA_TRAN_DONE) handled |= pxamci_data_done(host, stat); if (ireg & SDIO_INT) { mmc_signal_sdio_irq(host->mmc); handled = 1; } } return IRQ_RETVAL(handled); } static void pxamci_request(struct mmc_host *mmc, struct mmc_request *mrq) { struct pxamci_host *host = mmc_priv(mmc); unsigned int cmdat; WARN_ON(host->mrq != NULL); host->mrq = mrq; pxamci_stop_clock(host); cmdat = host->cmdat; host->cmdat &= ~CMDAT_INIT; if (mrq->data) { pxamci_setup_data(host, mrq->data); cmdat &= ~CMDAT_BUSY; cmdat |= CMDAT_DATAEN | CMDAT_DMAEN; if (mrq->data->flags & MMC_DATA_WRITE) cmdat |= CMDAT_WRITE; if (mrq->data->flags & MMC_DATA_STREAM) cmdat |= CMDAT_STREAM; } pxamci_start_cmd(host, mrq->cmd, cmdat); } static int pxamci_get_ro(struct mmc_host *mmc) { struct pxamci_host *host = mmc_priv(mmc); if (host->pdata && gpio_is_valid(host->pdata->gpio_card_ro)) { if (host->pdata->gpio_card_ro_invert) return !gpio_get_value(host->pdata->gpio_card_ro); else return gpio_get_value(host->pdata->gpio_card_ro); } if (host->pdata && host->pdata->get_ro) return !!host->pdata->get_ro(mmc_dev(mmc)); /* * Board doesn't support read only detection; let the mmc core * decide what to do. */ return -ENOSYS; } static void pxamci_set_ios(struct mmc_host *mmc, struct mmc_ios *ios) { struct pxamci_host *host = mmc_priv(mmc); if (ios->clock) { unsigned long rate = host->clkrate; unsigned int clk = rate / ios->clock; if (host->clkrt == CLKRT_OFF) clk_enable(host->clk); if (ios->clock == 26000000) { /* to support 26MHz */ host->clkrt = 7; } else { /* to handle (19.5MHz, 26MHz) */ if (!clk) clk = 1; /* * clk might result in a lower divisor than we * desire. check for that condition and adjust * as appropriate. */ if (rate / clk > ios->clock) clk <<= 1; host->clkrt = fls(clk) - 1; } /* * we write clkrt on the next command */ } else { pxamci_stop_clock(host); if (host->clkrt != CLKRT_OFF) { host->clkrt = CLKRT_OFF; clk_disable(host->clk); } } if (host->power_mode != ios->power_mode) { int ret; host->power_mode = ios->power_mode; ret = pxamci_set_power(host, ios->power_mode, ios->vdd); if (ret) { dev_err(mmc_dev(mmc), "unable to set power\n"); /* * The .set_ios() function in the mmc_host_ops * struct return void, and failing to set the * power should be rare so we print an error and * return here. */ return; } if (ios->power_mode == MMC_POWER_ON) host->cmdat |= CMDAT_INIT; } if (ios->bus_width == MMC_BUS_WIDTH_4) host->cmdat |= CMDAT_SD_4DAT; else host->cmdat &= ~CMDAT_SD_4DAT; dev_dbg(mmc_dev(mmc), "PXAMCI: clkrt = %x cmdat = %x\n", host->clkrt, host->cmdat); } static void pxamci_enable_sdio_irq(struct mmc_host *host, int enable) { struct pxamci_host *pxa_host = mmc_priv(host); if (enable) pxamci_enable_irq(pxa_host, SDIO_INT); else pxamci_disable_irq(pxa_host, SDIO_INT); } static const struct mmc_host_ops pxamci_ops = { .request = pxamci_request, .get_ro = pxamci_get_ro, .set_ios = pxamci_set_ios, .enable_sdio_irq = pxamci_enable_sdio_irq, }; static void pxamci_dma_irq(int dma, void *devid) { struct pxamci_host *host = devid; int dcsr = DCSR(dma); DCSR(dma) = dcsr & ~DCSR_STOPIRQEN; if (dcsr & DCSR_ENDINTR) { writel(BUF_PART_FULL, host->base + MMC_PRTBUF); } else { pr_err("%s: DMA error on channel %d (DCSR=%#x)\n", mmc_hostname(host->mmc), dma, dcsr); host->data->error = -EIO; pxamci_data_done(host, 0); } } static irqreturn_t pxamci_detect_irq(int irq, void *devid) { struct pxamci_host *host = mmc_priv(devid); mmc_detect_change(devid, msecs_to_jiffies(host->pdata->detect_delay_ms)); return IRQ_HANDLED; } #ifdef CONFIG_OF static const struct of_device_id pxa_mmc_dt_ids[] = { { .compatible = "marvell,pxa-mmc" }, { } }; MODULE_DEVICE_TABLE(of, pxa_mmc_dt_ids); static int pxamci_of_init(struct platform_device *pdev) { struct device_node *np = pdev->dev.of_node; struct pxamci_platform_data *pdata; u32 tmp; if (!np) return 0; pdata = devm_kzalloc(&pdev->dev, sizeof(*pdata), GFP_KERNEL); if (!pdata) return -ENOMEM; pdata->gpio_card_detect = of_get_named_gpio(np, "cd-gpios", 0); pdata->gpio_card_ro = of_get_named_gpio(np, "wp-gpios", 0); /* pxa-mmc specific */ pdata->gpio_power = of_get_named_gpio(np, "pxa-mmc,gpio-power", 0); if (of_property_read_u32(np, "pxa-mmc,detect-delay-ms", &tmp) == 0) pdata->detect_delay_ms = tmp; pdev->dev.platform_data = pdata; return 0; } #else static int pxamci_of_init(struct platform_device *pdev) { return 0; } #endif static int pxamci_probe(struct platform_device *pdev) { struct mmc_host *mmc; struct pxamci_host *host = NULL; struct resource *r, *dmarx, *dmatx; int ret, irq, gpio_cd = -1, gpio_ro = -1, gpio_power = -1; ret = pxamci_of_init(pdev); if (ret) return ret; r = platform_get_resource(pdev, IORESOURCE_MEM, 0); irq = platform_get_irq(pdev, 0); if (!r || irq < 0) return -ENXIO; r = request_mem_region(r->start, SZ_4K, DRIVER_NAME); if (!r) return -EBUSY; mmc = mmc_alloc_host(sizeof(struct pxamci_host), &pdev->dev); if (!mmc) { ret = -ENOMEM; goto out; } mmc->ops = &pxamci_ops; /* * We can do SG-DMA, but we don't because we never know how much * data we successfully wrote to the card. */ mmc->max_segs = NR_SG; /* * Our hardware DMA can handle a maximum of one page per SG entry. */ mmc->max_seg_size = PAGE_SIZE; /* * Block length register is only 10 bits before PXA27x. */ mmc->max_blk_size = cpu_is_pxa25x() ? 1023 : 2048; /* * Block count register is 16 bits. */ mmc->max_blk_count = 65535; host = mmc_priv(mmc); host->mmc = mmc; host->dma = -1; host->pdata = pdev->dev.platform_data; host->clkrt = CLKRT_OFF; host->clk = clk_get(&pdev->dev, NULL); if (IS_ERR(host->clk)) { ret = PTR_ERR(host->clk); host->clk = NULL; goto out; } host->clkrate = clk_get_rate(host->clk); /* * Calculate minimum clock rate, rounding up. */ mmc->f_min = (host->clkrate + 63) / 64; mmc->f_max = (mmc_has_26MHz()) ? 26000000 : host->clkrate; pxamci_init_ocr(host); mmc->caps = 0; host->cmdat = 0; if (!cpu_is_pxa25x()) { mmc->caps |= MMC_CAP_4_BIT_DATA | MMC_CAP_SDIO_IRQ; host->cmdat |= CMDAT_SDIO_INT_EN; if (mmc_has_26MHz()) mmc->caps |= MMC_CAP_MMC_HIGHSPEED | MMC_CAP_SD_HIGHSPEED; } host->sg_cpu = dma_alloc_coherent(&pdev->dev, PAGE_SIZE, &host->sg_dma, GFP_KERNEL); if (!host->sg_cpu) { ret = -ENOMEM; goto out; } spin_lock_init(&host->lock); host->res = r; host->irq = irq; host->imask = MMC_I_MASK_ALL; host->base = ioremap(r->start, SZ_4K); if (!host->base) { ret = -ENOMEM; goto out; } /* * Ensure that the host controller is shut down, and setup * with our defaults. */ pxamci_stop_clock(host); writel(0, host->base + MMC_SPI); writel(64, host->base + MMC_RESTO); writel(host->imask, host->base + MMC_I_MASK); host->dma = pxa_request_dma(DRIVER_NAME, DMA_PRIO_LOW, pxamci_dma_irq, host); if (host->dma < 0) { ret = -EBUSY; goto out; } ret = request_irq(host->irq, pxamci_irq, 0, DRIVER_NAME, host); if (ret) goto out; platform_set_drvdata(pdev, mmc); dmarx = platform_get_resource(pdev, IORESOURCE_DMA, 0); if (!dmarx) { ret = -ENXIO; goto out; } host->dma_drcmrrx = dmarx->start; dmatx = platform_get_resource(pdev, IORESOURCE_DMA, 1); if (!dmatx) { ret = -ENXIO; goto out; } host->dma_drcmrtx = dmatx->start; if (host->pdata) { gpio_cd = host->pdata->gpio_card_detect; gpio_ro = host->pdata->gpio_card_ro; gpio_power = host->pdata->gpio_power; } if (gpio_is_valid(gpio_power)) { ret = gpio_request(gpio_power, "mmc card power"); if (ret) { dev_err(&pdev->dev, "Failed requesting gpio_power %d\n", gpio_power); goto out; } gpio_direction_output(gpio_power, host->pdata->gpio_power_invert); } if (gpio_is_valid(gpio_ro)) { ret = gpio_request(gpio_ro, "mmc card read only"); if (ret) { dev_err(&pdev->dev, "Failed requesting gpio_ro %d\n", gpio_ro); goto err_gpio_ro; } gpio_direction_input(gpio_ro); } if (gpio_is_valid(gpio_cd)) { ret = gpio_request(gpio_cd, "mmc card detect"); if (ret) { dev_err(&pdev->dev, "Failed requesting gpio_cd %d\n", gpio_cd); goto err_gpio_cd; } gpio_direction_input(gpio_cd); ret = request_irq(gpio_to_irq(gpio_cd), pxamci_detect_irq, IRQF_TRIGGER_RISING | IRQF_TRIGGER_FALLING, "mmc card detect", mmc); if (ret) { dev_err(&pdev->dev, "failed to request card detect IRQ\n"); goto err_request_irq; } } if (host->pdata && host->pdata->init) host->pdata->init(&pdev->dev, pxamci_detect_irq, mmc); if (gpio_is_valid(gpio_power) && host->pdata->setpower) dev_warn(&pdev->dev, "gpio_power and setpower() both defined\n"); if (gpio_is_valid(gpio_ro) && host->pdata->get_ro) dev_warn(&pdev->dev, "gpio_ro and get_ro() both defined\n"); mmc_add_host(mmc); return 0; err_request_irq: gpio_free(gpio_cd); err_gpio_cd: gpio_free(gpio_ro); err_gpio_ro: gpio_free(gpio_power); out: if (host) { if (host->dma >= 0) pxa_free_dma(host->dma); if (host->base) iounmap(host->base); if (host->sg_cpu) dma_free_coherent(&pdev->dev, PAGE_SIZE, host->sg_cpu, host->sg_dma); if (host->clk) clk_put(host->clk); } if (mmc) mmc_free_host(mmc); release_resource(r); return ret; } static int pxamci_remove(struct platform_device *pdev) { struct mmc_host *mmc = platform_get_drvdata(pdev); int gpio_cd = -1, gpio_ro = -1, gpio_power = -1; platform_set_drvdata(pdev, NULL); if (mmc) { struct pxamci_host *host = mmc_priv(mmc); mmc_remove_host(mmc); if (host->pdata) { gpio_cd = host->pdata->gpio_card_detect; gpio_ro = host->pdata->gpio_card_ro; gpio_power = host->pdata->gpio_power; } if (gpio_is_valid(gpio_cd)) { free_irq(gpio_to_irq(gpio_cd), mmc); gpio_free(gpio_cd); } if (gpio_is_valid(gpio_ro)) gpio_free(gpio_ro); if (gpio_is_valid(gpio_power)) gpio_free(gpio_power); if (host->vcc) regulator_put(host->vcc); if (host->pdata && host->pdata->exit) host->pdata->exit(&pdev->dev, mmc); pxamci_stop_clock(host); writel(TXFIFO_WR_REQ|RXFIFO_RD_REQ|CLK_IS_OFF|STOP_CMD| END_CMD_RES|PRG_DONE|DATA_TRAN_DONE, host->base + MMC_I_MASK); DRCMR(host->dma_drcmrrx) = 0; DRCMR(host->dma_drcmrtx) = 0; free_irq(host->irq, host); pxa_free_dma(host->dma); iounmap(host->base); dma_free_coherent(&pdev->dev, PAGE_SIZE, host->sg_cpu, host->sg_dma); clk_put(host->clk); release_resource(host->res); mmc_free_host(mmc); } return 0; } #ifdef CONFIG_PM static int pxamci_suspend(struct device *dev) { struct mmc_host *mmc = dev_get_drvdata(dev); int ret = 0; if (mmc) ret = mmc_suspend_host(mmc); return ret; } static int pxamci_resume(struct device *dev) { struct mmc_host *mmc = dev_get_drvdata(dev); int ret = 0; if (mmc) ret = mmc_resume_host(mmc); return ret; } static const struct dev_pm_ops pxamci_pm_ops = { .suspend = pxamci_suspend, .resume = pxamci_resume, }; #endif static struct platform_driver pxamci_driver = { .probe = pxamci_probe, .remove = pxamci_remove, .driver = { .name = DRIVER_NAME, .owner = THIS_MODULE, .of_match_table = of_match_ptr(pxa_mmc_dt_ids), #ifdef CONFIG_PM .pm = &pxamci_pm_ops, #endif }, }; module_platform_driver(pxamci_driver); MODULE_DESCRIPTION("PXA Multimedia Card Interface Driver"); MODULE_LICENSE("GPL"); MODULE_ALIAS("platform:pxa2xx-mci");