/* * drivers/mtd/nand/cs553x_nand.c * * (C) 2005, 2006 Red Hat Inc. * * Author: David Woodhouse * Tom Sylla * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2 as * published by the Free Software Foundation. * * Overview: * This is a device driver for the NAND flash controller found on * the AMD CS5535/CS5536 companion chipsets for the Geode processor. * mtd-id for command line partitioning is cs553x_nand_cs[0-3] * where 0-3 reflects the chip select for NAND. * */ #include #include #include #include #include #include #include #include #include #include #include #define NR_CS553X_CONTROLLERS 4 #define MSR_DIVIL_GLD_CAP 0x51400000 /* DIVIL capabilitiies */ #define CAP_CS5535 0x2df000ULL #define CAP_CS5536 0x5df500ULL /* NAND Timing MSRs */ #define MSR_NANDF_DATA 0x5140001b /* NAND Flash Data Timing MSR */ #define MSR_NANDF_CTL 0x5140001c /* NAND Flash Control Timing */ #define MSR_NANDF_RSVD 0x5140001d /* Reserved */ /* NAND BAR MSRs */ #define MSR_DIVIL_LBAR_FLSH0 0x51400010 /* Flash Chip Select 0 */ #define MSR_DIVIL_LBAR_FLSH1 0x51400011 /* Flash Chip Select 1 */ #define MSR_DIVIL_LBAR_FLSH2 0x51400012 /* Flash Chip Select 2 */ #define MSR_DIVIL_LBAR_FLSH3 0x51400013 /* Flash Chip Select 3 */ /* Each made up of... */ #define FLSH_LBAR_EN (1ULL<<32) #define FLSH_NOR_NAND (1ULL<<33) /* 1 for NAND */ #define FLSH_MEM_IO (1ULL<<34) /* 1 for MMIO */ /* I/O BARs have BASE_ADDR in bits 15:4, IO_MASK in 47:36 */ /* MMIO BARs have BASE_ADDR in bits 31:12, MEM_MASK in 63:44 */ /* Pin function selection MSR (IDE vs. flash on the IDE pins) */ #define MSR_DIVIL_BALL_OPTS 0x51400015 #define PIN_OPT_IDE (1<<0) /* 0 for flash, 1 for IDE */ /* Registers within the NAND flash controller BAR -- memory mapped */ #define MM_NAND_DATA 0x00 /* 0 to 0x7ff, in fact */ #define MM_NAND_CTL 0x800 /* Any even address 0x800-0x80e */ #define MM_NAND_IO 0x801 /* Any odd address 0x801-0x80f */ #define MM_NAND_STS 0x810 #define MM_NAND_ECC_LSB 0x811 #define MM_NAND_ECC_MSB 0x812 #define MM_NAND_ECC_COL 0x813 #define MM_NAND_LAC 0x814 #define MM_NAND_ECC_CTL 0x815 /* Registers within the NAND flash controller BAR -- I/O mapped */ #define IO_NAND_DATA 0x00 /* 0 to 3, in fact */ #define IO_NAND_CTL 0x04 #define IO_NAND_IO 0x05 #define IO_NAND_STS 0x06 #define IO_NAND_ECC_CTL 0x08 #define IO_NAND_ECC_LSB 0x09 #define IO_NAND_ECC_MSB 0x0a #define IO_NAND_ECC_COL 0x0b #define IO_NAND_LAC 0x0c #define CS_NAND_CTL_DIST_EN (1<<4) /* Enable NAND Distract interrupt */ #define CS_NAND_CTL_RDY_INT_MASK (1<<3) /* Enable RDY/BUSY# interrupt */ #define CS_NAND_CTL_ALE (1<<2) #define CS_NAND_CTL_CLE (1<<1) #define CS_NAND_CTL_CE (1<<0) /* Keep low; 1 to reset */ #define CS_NAND_STS_FLASH_RDY (1<<3) #define CS_NAND_CTLR_BUSY (1<<2) #define CS_NAND_CMD_COMP (1<<1) #define CS_NAND_DIST_ST (1<<0) #define CS_NAND_ECC_PARITY (1<<2) #define CS_NAND_ECC_CLRECC (1<<1) #define CS_NAND_ECC_ENECC (1<<0) static void cs553x_read_buf(struct mtd_info *mtd, u_char *buf, int len) { struct nand_chip *this = mtd->priv; while (unlikely(len > 0x800)) { memcpy_fromio(buf, this->IO_ADDR_R, 0x800); buf += 0x800; len -= 0x800; } memcpy_fromio(buf, this->IO_ADDR_R, len); } static void cs553x_write_buf(struct mtd_info *mtd, const u_char *buf, int len) { struct nand_chip *this = mtd->priv; while (unlikely(len > 0x800)) { memcpy_toio(this->IO_ADDR_R, buf, 0x800); buf += 0x800; len -= 0x800; } memcpy_toio(this->IO_ADDR_R, buf, len); } static unsigned char cs553x_read_byte(struct mtd_info *mtd) { struct nand_chip *this = mtd->priv; return readb(this->IO_ADDR_R); } static void cs553x_write_byte(struct mtd_info *mtd, u_char byte) { struct nand_chip *this = mtd->priv; int i = 100000; while (i && readb(this->IO_ADDR_R + MM_NAND_STS) & CS_NAND_CTLR_BUSY) { udelay(1); i--; } writeb(byte, this->IO_ADDR_W + 0x801); } static void cs553x_hwcontrol(struct mtd_info *mtd, int cmd, unsigned int ctrl) { struct nand_chip *this = mtd->priv; void __iomem *mmio_base = this->IO_ADDR_R; if (ctrl & NAND_CTRL_CHANGE) { unsigned char ctl = (ctrl & ~NAND_CTRL_CHANGE ) ^ 0x01; writeb(ctl, mmio_base + MM_NAND_CTL); } if (cmd != NAND_CMD_NONE) cs553x_write_byte(mtd, cmd); } static int cs553x_device_ready(struct mtd_info *mtd) { struct nand_chip *this = mtd->priv; void __iomem *mmio_base = this->IO_ADDR_R; unsigned char foo = readb(mmio_base + MM_NAND_STS); return (foo & CS_NAND_STS_FLASH_RDY) && !(foo & CS_NAND_CTLR_BUSY); } static void cs_enable_hwecc(struct mtd_info *mtd, int mode) { struct nand_chip *this = mtd->priv; void __iomem *mmio_base = this->IO_ADDR_R; writeb(0x07, mmio_base + MM_NAND_ECC_CTL); } static int cs_calculate_ecc(struct mtd_info *mtd, const u_char *dat, u_char *ecc_code) { uint32_t ecc; struct nand_chip *this = mtd->priv; void __iomem *mmio_base = this->IO_ADDR_R; ecc = readl(mmio_base + MM_NAND_STS); ecc_code[1] = ecc >> 8; ecc_code[0] = ecc >> 16; ecc_code[2] = ecc >> 24; return 0; } static struct mtd_info *cs553x_mtd[4]; static int __init cs553x_init_one(int cs, int mmio, unsigned long adr) { int err = 0; struct nand_chip *this; struct mtd_info *new_mtd; printk(KERN_NOTICE "Probing CS553x NAND controller CS#%d at %sIO 0x%08lx\n", cs, mmio?"MM":"P", adr); if (!mmio) { printk(KERN_NOTICE "PIO mode not yet implemented for CS553X NAND controller\n"); return -ENXIO; } /* Allocate memory for MTD device structure and private data */ new_mtd = kmalloc(sizeof(struct mtd_info) + sizeof(struct nand_chip), GFP_KERNEL); if (!new_mtd) { printk(KERN_WARNING "Unable to allocate CS553X NAND MTD device structure.\n"); err = -ENOMEM; goto out; } /* Get pointer to private data */ this = (struct nand_chip *)(&new_mtd[1]); /* Initialize structures */ memset(new_mtd, 0, sizeof(struct mtd_info)); memset(this, 0, sizeof(struct nand_chip)); /* Link the private data with the MTD structure */ new_mtd->priv = this; new_mtd->owner = THIS_MODULE; /* map physical address */ this->IO_ADDR_R = this->IO_ADDR_W = ioremap(adr, 4096); if (!this->IO_ADDR_R) { printk(KERN_WARNING "ioremap cs553x NAND @0x%08lx failed\n", adr); err = -EIO; goto out_mtd; } this->cmd_ctrl = cs553x_hwcontrol; this->dev_ready = cs553x_device_ready; this->read_byte = cs553x_read_byte; this->read_buf = cs553x_read_buf; this->write_buf = cs553x_write_buf; this->chip_delay = 0; this->ecc.mode = NAND_ECC_HW; this->ecc.size = 256; this->ecc.bytes = 3; this->ecc.hwctl = cs_enable_hwecc; this->ecc.calculate = cs_calculate_ecc; this->ecc.correct = nand_correct_data; this->ecc.strength = 1; /* Enable the following for a flash based bad block table */ this->bbt_options = NAND_BBT_USE_FLASH; /* Scan to find existence of the device */ if (nand_scan(new_mtd, 1)) { err = -ENXIO; goto out_ior; } new_mtd->name = kasprintf(GFP_KERNEL, "cs553x_nand_cs%d", cs); cs553x_mtd[cs] = new_mtd; goto out; out_ior: iounmap(this->IO_ADDR_R); out_mtd: kfree(new_mtd); out: return err; } static int is_geode(void) { /* These are the CPUs which will have a CS553[56] companion chip */ if (boot_cpu_data.x86_vendor == X86_VENDOR_AMD && boot_cpu_data.x86 == 5 && boot_cpu_data.x86_model == 10) return 1; /* Geode LX */ if ((boot_cpu_data.x86_vendor == X86_VENDOR_NSC || boot_cpu_data.x86_vendor == X86_VENDOR_CYRIX) && boot_cpu_data.x86 == 5 && boot_cpu_data.x86_model == 5) return 1; /* Geode GX (née GX2) */ return 0; } static int __init cs553x_init(void) { int err = -ENXIO; int i; uint64_t val; /* If the CPU isn't a Geode GX or LX, abort */ if (!is_geode()) return -ENXIO; /* If it doesn't have the CS553[56], abort */ rdmsrl(MSR_DIVIL_GLD_CAP, val); val &= ~0xFFULL; if (val != CAP_CS5535 && val != CAP_CS5536) return -ENXIO; /* If it doesn't have the NAND controller enabled, abort */ rdmsrl(MSR_DIVIL_BALL_OPTS, val); if (val & PIN_OPT_IDE) { printk(KERN_INFO "CS553x NAND controller: Flash I/O not enabled in MSR_DIVIL_BALL_OPTS.\n"); return -ENXIO; } for (i = 0; i < NR_CS553X_CONTROLLERS; i++) { rdmsrl(MSR_DIVIL_LBAR_FLSH0 + i, val); if ((val & (FLSH_LBAR_EN|FLSH_NOR_NAND)) == (FLSH_LBAR_EN|FLSH_NOR_NAND)) err = cs553x_init_one(i, !!(val & FLSH_MEM_IO), val & 0xFFFFFFFF); } /* Register all devices together here. This means we can easily hack it to do mtdconcat etc. if we want to. */ for (i = 0; i < NR_CS553X_CONTROLLERS; i++) { if (cs553x_mtd[i]) { /* If any devices registered, return success. Else the last error. */ mtd_device_parse_register(cs553x_mtd[i], NULL, NULL, NULL, 0); err = 0; } } return err; } module_init(cs553x_init); static void __exit cs553x_cleanup(void) { int i; for (i = 0; i < NR_CS553X_CONTROLLERS; i++) { struct mtd_info *mtd = cs553x_mtd[i]; struct nand_chip *this; void __iomem *mmio_base; if (!mtd) continue; this = cs553x_mtd[i]->priv; mmio_base = this->IO_ADDR_R; /* Release resources, unregister device */ nand_release(cs553x_mtd[i]); kfree(cs553x_mtd[i]->name); cs553x_mtd[i] = NULL; /* unmap physical address */ iounmap(mmio_base); /* Free the MTD device structure */ kfree(mtd); } } module_exit(cs553x_cleanup); MODULE_LICENSE("GPL"); MODULE_AUTHOR("David Woodhouse "); MODULE_DESCRIPTION("NAND controller driver for AMD CS5535/CS5536 companion chip");