/**************************************************************************** * Driver for Solarflare Solarstorm network controllers and boards * Copyright 2005-2006 Fen Systems Ltd. * Copyright 2006-2011 Solarflare Communications Inc. * * This program is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License version 2 as published * by the Free Software Foundation, incorporated herein by reference. */ #include #include #include #include #include #include #include "net_driver.h" #include "bitfield.h" #include "efx.h" #include "nic.h" #include "regs.h" #include "io.h" #include "workarounds.h" /************************************************************************** * * Configurable values * ************************************************************************** */ /* This is set to 16 for a good reason. In summary, if larger than * 16, the descriptor cache holds more than a default socket * buffer's worth of packets (for UDP we can only have at most one * socket buffer's worth outstanding). This combined with the fact * that we only get 1 TX event per descriptor cache means the NIC * goes idle. */ #define TX_DC_ENTRIES 16 #define TX_DC_ENTRIES_ORDER 1 #define RX_DC_ENTRIES 64 #define RX_DC_ENTRIES_ORDER 3 /* If EFX_MAX_INT_ERRORS internal errors occur within * EFX_INT_ERROR_EXPIRE seconds, we consider the NIC broken and * disable it. */ #define EFX_INT_ERROR_EXPIRE 3600 #define EFX_MAX_INT_ERRORS 5 /* Depth of RX flush request fifo */ #define EFX_RX_FLUSH_COUNT 4 /* Driver generated events */ #define _EFX_CHANNEL_MAGIC_TEST 0x000101 #define _EFX_CHANNEL_MAGIC_FILL 0x000102 #define _EFX_CHANNEL_MAGIC_RX_DRAIN 0x000103 #define _EFX_CHANNEL_MAGIC_TX_DRAIN 0x000104 #define _EFX_CHANNEL_MAGIC(_code, _data) ((_code) << 8 | (_data)) #define _EFX_CHANNEL_MAGIC_CODE(_magic) ((_magic) >> 8) #define EFX_CHANNEL_MAGIC_TEST(_channel) \ _EFX_CHANNEL_MAGIC(_EFX_CHANNEL_MAGIC_TEST, (_channel)->channel) #define EFX_CHANNEL_MAGIC_FILL(_rx_queue) \ _EFX_CHANNEL_MAGIC(_EFX_CHANNEL_MAGIC_FILL, \ efx_rx_queue_index(_rx_queue)) #define EFX_CHANNEL_MAGIC_RX_DRAIN(_rx_queue) \ _EFX_CHANNEL_MAGIC(_EFX_CHANNEL_MAGIC_RX_DRAIN, \ efx_rx_queue_index(_rx_queue)) #define EFX_CHANNEL_MAGIC_TX_DRAIN(_tx_queue) \ _EFX_CHANNEL_MAGIC(_EFX_CHANNEL_MAGIC_TX_DRAIN, \ (_tx_queue)->queue) static void efx_magic_event(struct efx_channel *channel, u32 magic); /************************************************************************** * * Solarstorm hardware access * **************************************************************************/ static inline void efx_write_buf_tbl(struct efx_nic *efx, efx_qword_t *value, unsigned int index) { efx_sram_writeq(efx, efx->membase + efx->type->buf_tbl_base, value, index); } /* Read the current event from the event queue */ static inline efx_qword_t *efx_event(struct efx_channel *channel, unsigned int index) { return ((efx_qword_t *) (channel->eventq.addr)) + (index & channel->eventq_mask); } /* See if an event is present * * We check both the high and low dword of the event for all ones. We * wrote all ones when we cleared the event, and no valid event can * have all ones in either its high or low dwords. This approach is * robust against reordering. * * Note that using a single 64-bit comparison is incorrect; even * though the CPU read will be atomic, the DMA write may not be. */ static inline int efx_event_present(efx_qword_t *event) { return !(EFX_DWORD_IS_ALL_ONES(event->dword[0]) | EFX_DWORD_IS_ALL_ONES(event->dword[1])); } static bool efx_masked_compare_oword(const efx_oword_t *a, const efx_oword_t *b, const efx_oword_t *mask) { return ((a->u64[0] ^ b->u64[0]) & mask->u64[0]) || ((a->u64[1] ^ b->u64[1]) & mask->u64[1]); } int efx_nic_test_registers(struct efx_nic *efx, const struct efx_nic_register_test *regs, size_t n_regs) { unsigned address = 0, i, j; efx_oword_t mask, imask, original, reg, buf; for (i = 0; i < n_regs; ++i) { address = regs[i].address; mask = imask = regs[i].mask; EFX_INVERT_OWORD(imask); efx_reado(efx, &original, address); /* bit sweep on and off */ for (j = 0; j < 128; j++) { if (!EFX_EXTRACT_OWORD32(mask, j, j)) continue; /* Test this testable bit can be set in isolation */ EFX_AND_OWORD(reg, original, mask); EFX_SET_OWORD32(reg, j, j, 1); efx_writeo(efx, ®, address); efx_reado(efx, &buf, address); if (efx_masked_compare_oword(®, &buf, &mask)) goto fail; /* Test this testable bit can be cleared in isolation */ EFX_OR_OWORD(reg, original, mask); EFX_SET_OWORD32(reg, j, j, 0); efx_writeo(efx, ®, address); efx_reado(efx, &buf, address); if (efx_masked_compare_oword(®, &buf, &mask)) goto fail; } efx_writeo(efx, &original, address); } return 0; fail: netif_err(efx, hw, efx->net_dev, "wrote "EFX_OWORD_FMT" read "EFX_OWORD_FMT " at address 0x%x mask "EFX_OWORD_FMT"\n", EFX_OWORD_VAL(reg), EFX_OWORD_VAL(buf), address, EFX_OWORD_VAL(mask)); return -EIO; } /************************************************************************** * * Special buffer handling * Special buffers are used for event queues and the TX and RX * descriptor rings. * *************************************************************************/ /* * Initialise a special buffer * * This will define a buffer (previously allocated via * efx_alloc_special_buffer()) in the buffer table, allowing * it to be used for event queues, descriptor rings etc. */ static void efx_init_special_buffer(struct efx_nic *efx, struct efx_special_buffer *buffer) { efx_qword_t buf_desc; unsigned int index; dma_addr_t dma_addr; int i; EFX_BUG_ON_PARANOID(!buffer->addr); /* Write buffer descriptors to NIC */ for (i = 0; i < buffer->entries; i++) { index = buffer->index + i; dma_addr = buffer->dma_addr + (i * EFX_BUF_SIZE); netif_dbg(efx, probe, efx->net_dev, "mapping special buffer %d at %llx\n", index, (unsigned long long)dma_addr); EFX_POPULATE_QWORD_3(buf_desc, FRF_AZ_BUF_ADR_REGION, 0, FRF_AZ_BUF_ADR_FBUF, dma_addr >> 12, FRF_AZ_BUF_OWNER_ID_FBUF, 0); efx_write_buf_tbl(efx, &buf_desc, index); } } /* Unmaps a buffer and clears the buffer table entries */ static void efx_fini_special_buffer(struct efx_nic *efx, struct efx_special_buffer *buffer) { efx_oword_t buf_tbl_upd; unsigned int start = buffer->index; unsigned int end = (buffer->index + buffer->entries - 1); if (!buffer->entries) return; netif_dbg(efx, hw, efx->net_dev, "unmapping special buffers %d-%d\n", buffer->index, buffer->index + buffer->entries - 1); EFX_POPULATE_OWORD_4(buf_tbl_upd, FRF_AZ_BUF_UPD_CMD, 0, FRF_AZ_BUF_CLR_CMD, 1, FRF_AZ_BUF_CLR_END_ID, end, FRF_AZ_BUF_CLR_START_ID, start); efx_writeo(efx, &buf_tbl_upd, FR_AZ_BUF_TBL_UPD); } /* * Allocate a new special buffer * * This allocates memory for a new buffer, clears it and allocates a * new buffer ID range. It does not write into the buffer table. * * This call will allocate 4KB buffers, since 8KB buffers can't be * used for event queues and descriptor rings. */ static int efx_alloc_special_buffer(struct efx_nic *efx, struct efx_special_buffer *buffer, unsigned int len) { len = ALIGN(len, EFX_BUF_SIZE); buffer->addr = dma_alloc_coherent(&efx->pci_dev->dev, len, &buffer->dma_addr, GFP_KERNEL); if (!buffer->addr) return -ENOMEM; buffer->len = len; buffer->entries = len / EFX_BUF_SIZE; BUG_ON(buffer->dma_addr & (EFX_BUF_SIZE - 1)); /* Select new buffer ID */ buffer->index = efx->next_buffer_table; efx->next_buffer_table += buffer->entries; #ifdef CONFIG_SFC_SRIOV BUG_ON(efx_sriov_enabled(efx) && efx->vf_buftbl_base < efx->next_buffer_table); #endif netif_dbg(efx, probe, efx->net_dev, "allocating special buffers %d-%d at %llx+%x " "(virt %p phys %llx)\n", buffer->index, buffer->index + buffer->entries - 1, (u64)buffer->dma_addr, len, buffer->addr, (u64)virt_to_phys(buffer->addr)); return 0; } static void efx_free_special_buffer(struct efx_nic *efx, struct efx_special_buffer *buffer) { if (!buffer->addr) return; netif_dbg(efx, hw, efx->net_dev, "deallocating special buffers %d-%d at %llx+%x " "(virt %p phys %llx)\n", buffer->index, buffer->index + buffer->entries - 1, (u64)buffer->dma_addr, buffer->len, buffer->addr, (u64)virt_to_phys(buffer->addr)); dma_free_coherent(&efx->pci_dev->dev, buffer->len, buffer->addr, buffer->dma_addr); buffer->addr = NULL; buffer->entries = 0; } /************************************************************************** * * Generic buffer handling * These buffers are used for interrupt status, MAC stats, etc. * **************************************************************************/ int efx_nic_alloc_buffer(struct efx_nic *efx, struct efx_buffer *buffer, unsigned int len) { buffer->addr = dma_alloc_coherent(&efx->pci_dev->dev, len, &buffer->dma_addr, GFP_ATOMIC | __GFP_ZERO); if (!buffer->addr) return -ENOMEM; buffer->len = len; return 0; } void efx_nic_free_buffer(struct efx_nic *efx, struct efx_buffer *buffer) { if (buffer->addr) { dma_free_coherent(&efx->pci_dev->dev, buffer->len, buffer->addr, buffer->dma_addr); buffer->addr = NULL; } } /************************************************************************** * * TX path * **************************************************************************/ /* Returns a pointer to the specified transmit descriptor in the TX * descriptor queue belonging to the specified channel. */ static inline efx_qword_t * efx_tx_desc(struct efx_tx_queue *tx_queue, unsigned int index) { return ((efx_qword_t *) (tx_queue->txd.addr)) + index; } /* This writes to the TX_DESC_WPTR; write pointer for TX descriptor ring */ static inline void efx_notify_tx_desc(struct efx_tx_queue *tx_queue) { unsigned write_ptr; efx_dword_t reg; write_ptr = tx_queue->write_count & tx_queue->ptr_mask; EFX_POPULATE_DWORD_1(reg, FRF_AZ_TX_DESC_WPTR_DWORD, write_ptr); efx_writed_page(tx_queue->efx, ®, FR_AZ_TX_DESC_UPD_DWORD_P0, tx_queue->queue); } /* Write pointer and first descriptor for TX descriptor ring */ static inline void efx_push_tx_desc(struct efx_tx_queue *tx_queue, const efx_qword_t *txd) { unsigned write_ptr; efx_oword_t reg; BUILD_BUG_ON(FRF_AZ_TX_DESC_LBN != 0); BUILD_BUG_ON(FR_AA_TX_DESC_UPD_KER != FR_BZ_TX_DESC_UPD_P0); write_ptr = tx_queue->write_count & tx_queue->ptr_mask; EFX_POPULATE_OWORD_2(reg, FRF_AZ_TX_DESC_PUSH_CMD, true, FRF_AZ_TX_DESC_WPTR, write_ptr); reg.qword[0] = *txd; efx_writeo_page(tx_queue->efx, ®, FR_BZ_TX_DESC_UPD_P0, tx_queue->queue); } static inline bool efx_may_push_tx_desc(struct efx_tx_queue *tx_queue, unsigned int write_count) { unsigned empty_read_count = ACCESS_ONCE(tx_queue->empty_read_count); if (empty_read_count == 0) return false; tx_queue->empty_read_count = 0; return ((empty_read_count ^ write_count) & ~EFX_EMPTY_COUNT_VALID) == 0 && tx_queue->write_count - write_count == 1; } /* For each entry inserted into the software descriptor ring, create a * descriptor in the hardware TX descriptor ring (in host memory), and * write a doorbell. */ void efx_nic_push_buffers(struct efx_tx_queue *tx_queue) { struct efx_tx_buffer *buffer; efx_qword_t *txd; unsigned write_ptr; unsigned old_write_count = tx_queue->write_count; BUG_ON(tx_queue->write_count == tx_queue->insert_count); do { write_ptr = tx_queue->write_count & tx_queue->ptr_mask; buffer = &tx_queue->buffer[write_ptr]; txd = efx_tx_desc(tx_queue, write_ptr); ++tx_queue->write_count; /* Create TX descriptor ring entry */ BUILD_BUG_ON(EFX_TX_BUF_CONT != 1); EFX_POPULATE_QWORD_4(*txd, FSF_AZ_TX_KER_CONT, buffer->flags & EFX_TX_BUF_CONT, FSF_AZ_TX_KER_BYTE_COUNT, buffer->len, FSF_AZ_TX_KER_BUF_REGION, 0, FSF_AZ_TX_KER_BUF_ADDR, buffer->dma_addr); } while (tx_queue->write_count != tx_queue->insert_count); wmb(); /* Ensure descriptors are written before they are fetched */ if (efx_may_push_tx_desc(tx_queue, old_write_count)) { txd = efx_tx_desc(tx_queue, old_write_count & tx_queue->ptr_mask); efx_push_tx_desc(tx_queue, txd); ++tx_queue->pushes; } else { efx_notify_tx_desc(tx_queue); } } /* Allocate hardware resources for a TX queue */ int efx_nic_probe_tx(struct efx_tx_queue *tx_queue) { struct efx_nic *efx = tx_queue->efx; unsigned entries; entries = tx_queue->ptr_mask + 1; return efx_alloc_special_buffer(efx, &tx_queue->txd, entries * sizeof(efx_qword_t)); } void efx_nic_init_tx(struct efx_tx_queue *tx_queue) { struct efx_nic *efx = tx_queue->efx; efx_oword_t reg; /* Pin TX descriptor ring */ efx_init_special_buffer(efx, &tx_queue->txd); /* Push TX descriptor ring to card */ EFX_POPULATE_OWORD_10(reg, FRF_AZ_TX_DESCQ_EN, 1, FRF_AZ_TX_ISCSI_DDIG_EN, 0, FRF_AZ_TX_ISCSI_HDIG_EN, 0, FRF_AZ_TX_DESCQ_BUF_BASE_ID, tx_queue->txd.index, FRF_AZ_TX_DESCQ_EVQ_ID, tx_queue->channel->channel, FRF_AZ_TX_DESCQ_OWNER_ID, 0, FRF_AZ_TX_DESCQ_LABEL, tx_queue->queue, FRF_AZ_TX_DESCQ_SIZE, __ffs(tx_queue->txd.entries), FRF_AZ_TX_DESCQ_TYPE, 0, FRF_BZ_TX_NON_IP_DROP_DIS, 1); if (efx_nic_rev(efx) >= EFX_REV_FALCON_B0) { int csum = tx_queue->queue & EFX_TXQ_TYPE_OFFLOAD; EFX_SET_OWORD_FIELD(reg, FRF_BZ_TX_IP_CHKSM_DIS, !csum); EFX_SET_OWORD_FIELD(reg, FRF_BZ_TX_TCP_CHKSM_DIS, !csum); } efx_writeo_table(efx, ®, efx->type->txd_ptr_tbl_base, tx_queue->queue); if (efx_nic_rev(efx) < EFX_REV_FALCON_B0) { /* Only 128 bits in this register */ BUILD_BUG_ON(EFX_MAX_TX_QUEUES > 128); efx_reado(efx, ®, FR_AA_TX_CHKSM_CFG); if (tx_queue->queue & EFX_TXQ_TYPE_OFFLOAD) __clear_bit_le(tx_queue->queue, ®); else __set_bit_le(tx_queue->queue, ®); efx_writeo(efx, ®, FR_AA_TX_CHKSM_CFG); } if (efx_nic_rev(efx) >= EFX_REV_FALCON_B0) { EFX_POPULATE_OWORD_1(reg, FRF_BZ_TX_PACE, (tx_queue->queue & EFX_TXQ_TYPE_HIGHPRI) ? FFE_BZ_TX_PACE_OFF : FFE_BZ_TX_PACE_RESERVED); efx_writeo_table(efx, ®, FR_BZ_TX_PACE_TBL, tx_queue->queue); } } static void efx_flush_tx_queue(struct efx_tx_queue *tx_queue) { struct efx_nic *efx = tx_queue->efx; efx_oword_t tx_flush_descq; WARN_ON(atomic_read(&tx_queue->flush_outstanding)); atomic_set(&tx_queue->flush_outstanding, 1); EFX_POPULATE_OWORD_2(tx_flush_descq, FRF_AZ_TX_FLUSH_DESCQ_CMD, 1, FRF_AZ_TX_FLUSH_DESCQ, tx_queue->queue); efx_writeo(efx, &tx_flush_descq, FR_AZ_TX_FLUSH_DESCQ); } void efx_nic_fini_tx(struct efx_tx_queue *tx_queue) { struct efx_nic *efx = tx_queue->efx; efx_oword_t tx_desc_ptr; /* Remove TX descriptor ring from card */ EFX_ZERO_OWORD(tx_desc_ptr); efx_writeo_table(efx, &tx_desc_ptr, efx->type->txd_ptr_tbl_base, tx_queue->queue); /* Unpin TX descriptor ring */ efx_fini_special_buffer(efx, &tx_queue->txd); } /* Free buffers backing TX queue */ void efx_nic_remove_tx(struct efx_tx_queue *tx_queue) { efx_free_special_buffer(tx_queue->efx, &tx_queue->txd); } /************************************************************************** * * RX path * **************************************************************************/ /* Returns a pointer to the specified descriptor in the RX descriptor queue */ static inline efx_qword_t * efx_rx_desc(struct efx_rx_queue *rx_queue, unsigned int index) { return ((efx_qword_t *) (rx_queue->rxd.addr)) + index; } /* This creates an entry in the RX descriptor queue */ static inline void efx_build_rx_desc(struct efx_rx_queue *rx_queue, unsigned index) { struct efx_rx_buffer *rx_buf; efx_qword_t *rxd; rxd = efx_rx_desc(rx_queue, index); rx_buf = efx_rx_buffer(rx_queue, index); EFX_POPULATE_QWORD_3(*rxd, FSF_AZ_RX_KER_BUF_SIZE, rx_buf->len - rx_queue->efx->type->rx_buffer_padding, FSF_AZ_RX_KER_BUF_REGION, 0, FSF_AZ_RX_KER_BUF_ADDR, rx_buf->dma_addr); } /* This writes to the RX_DESC_WPTR register for the specified receive * descriptor ring. */ void efx_nic_notify_rx_desc(struct efx_rx_queue *rx_queue) { struct efx_nic *efx = rx_queue->efx; efx_dword_t reg; unsigned write_ptr; while (rx_queue->notified_count != rx_queue->added_count) { efx_build_rx_desc( rx_queue, rx_queue->notified_count & rx_queue->ptr_mask); ++rx_queue->notified_count; } wmb(); write_ptr = rx_queue->added_count & rx_queue->ptr_mask; EFX_POPULATE_DWORD_1(reg, FRF_AZ_RX_DESC_WPTR_DWORD, write_ptr); efx_writed_page(efx, ®, FR_AZ_RX_DESC_UPD_DWORD_P0, efx_rx_queue_index(rx_queue)); } int efx_nic_probe_rx(struct efx_rx_queue *rx_queue) { struct efx_nic *efx = rx_queue->efx; unsigned entries; entries = rx_queue->ptr_mask + 1; return efx_alloc_special_buffer(efx, &rx_queue->rxd, entries * sizeof(efx_qword_t)); } void efx_nic_init_rx(struct efx_rx_queue *rx_queue) { efx_oword_t rx_desc_ptr; struct efx_nic *efx = rx_queue->efx; bool is_b0 = efx_nic_rev(efx) >= EFX_REV_FALCON_B0; bool iscsi_digest_en = is_b0; bool jumbo_en; /* For kernel-mode queues in Falcon A1, the JUMBO flag enables * DMA to continue after a PCIe page boundary (and scattering * is not possible). In Falcon B0 and Siena, it enables * scatter. */ jumbo_en = !is_b0 || efx->rx_scatter; netif_dbg(efx, hw, efx->net_dev, "RX queue %d ring in special buffers %d-%d\n", efx_rx_queue_index(rx_queue), rx_queue->rxd.index, rx_queue->rxd.index + rx_queue->rxd.entries - 1); rx_queue->scatter_n = 0; /* Pin RX descriptor ring */ efx_init_special_buffer(efx, &rx_queue->rxd); /* Push RX descriptor ring to card */ EFX_POPULATE_OWORD_10(rx_desc_ptr, FRF_AZ_RX_ISCSI_DDIG_EN, iscsi_digest_en, FRF_AZ_RX_ISCSI_HDIG_EN, iscsi_digest_en, FRF_AZ_RX_DESCQ_BUF_BASE_ID, rx_queue->rxd.index, FRF_AZ_RX_DESCQ_EVQ_ID, efx_rx_queue_channel(rx_queue)->channel, FRF_AZ_RX_DESCQ_OWNER_ID, 0, FRF_AZ_RX_DESCQ_LABEL, efx_rx_queue_index(rx_queue), FRF_AZ_RX_DESCQ_SIZE, __ffs(rx_queue->rxd.entries), FRF_AZ_RX_DESCQ_TYPE, 0 /* kernel queue */ , FRF_AZ_RX_DESCQ_JUMBO, jumbo_en, FRF_AZ_RX_DESCQ_EN, 1); efx_writeo_table(efx, &rx_desc_ptr, efx->type->rxd_ptr_tbl_base, efx_rx_queue_index(rx_queue)); } static void efx_flush_rx_queue(struct efx_rx_queue *rx_queue) { struct efx_nic *efx = rx_queue->efx; efx_oword_t rx_flush_descq; EFX_POPULATE_OWORD_2(rx_flush_descq, FRF_AZ_RX_FLUSH_DESCQ_CMD, 1, FRF_AZ_RX_FLUSH_DESCQ, efx_rx_queue_index(rx_queue)); efx_writeo(efx, &rx_flush_descq, FR_AZ_RX_FLUSH_DESCQ); } void efx_nic_fini_rx(struct efx_rx_queue *rx_queue) { efx_oword_t rx_desc_ptr; struct efx_nic *efx = rx_queue->efx; /* Remove RX descriptor ring from card */ EFX_ZERO_OWORD(rx_desc_ptr); efx_writeo_table(efx, &rx_desc_ptr, efx->type->rxd_ptr_tbl_base, efx_rx_queue_index(rx_queue)); /* Unpin RX descriptor ring */ efx_fini_special_buffer(efx, &rx_queue->rxd); } /* Free buffers backing RX queue */ void efx_nic_remove_rx(struct efx_rx_queue *rx_queue) { efx_free_special_buffer(rx_queue->efx, &rx_queue->rxd); } /************************************************************************** * * Flush handling * **************************************************************************/ /* efx_nic_flush_queues() must be woken up when all flushes are completed, * or more RX flushes can be kicked off. */ static bool efx_flush_wake(struct efx_nic *efx) { /* Ensure that all updates are visible to efx_nic_flush_queues() */ smp_mb(); return (atomic_read(&efx->drain_pending) == 0 || (atomic_read(&efx->rxq_flush_outstanding) < EFX_RX_FLUSH_COUNT && atomic_read(&efx->rxq_flush_pending) > 0)); } static bool efx_check_tx_flush_complete(struct efx_nic *efx) { bool i = true; efx_oword_t txd_ptr_tbl; struct efx_channel *channel; struct efx_tx_queue *tx_queue; efx_for_each_channel(channel, efx) { efx_for_each_channel_tx_queue(tx_queue, channel) { efx_reado_table(efx, &txd_ptr_tbl, FR_BZ_TX_DESC_PTR_TBL, tx_queue->queue); if (EFX_OWORD_FIELD(txd_ptr_tbl, FRF_AZ_TX_DESCQ_FLUSH) || EFX_OWORD_FIELD(txd_ptr_tbl, FRF_AZ_TX_DESCQ_EN)) { netif_dbg(efx, hw, efx->net_dev, "flush did not complete on TXQ %d\n", tx_queue->queue); i = false; } else if (atomic_cmpxchg(&tx_queue->flush_outstanding, 1, 0)) { /* The flush is complete, but we didn't * receive a flush completion event */ netif_dbg(efx, hw, efx->net_dev, "flush complete on TXQ %d, so drain " "the queue\n", tx_queue->queue); /* Don't need to increment drain_pending as it * has already been incremented for the queues * which did not drain */ efx_magic_event(channel, EFX_CHANNEL_MAGIC_TX_DRAIN( tx_queue)); } } } return i; } /* Flush all the transmit queues, and continue flushing receive queues until * they're all flushed. Wait for the DRAIN events to be recieved so that there * are no more RX and TX events left on any channel. */ int efx_nic_flush_queues(struct efx_nic *efx) { unsigned timeout = msecs_to_jiffies(5000); /* 5s for all flushes and drains */ struct efx_channel *channel; struct efx_rx_queue *rx_queue; struct efx_tx_queue *tx_queue; int rc = 0; efx->type->prepare_flush(efx); efx_for_each_channel(channel, efx) { efx_for_each_channel_tx_queue(tx_queue, channel) { atomic_inc(&efx->drain_pending); efx_flush_tx_queue(tx_queue); } efx_for_each_channel_rx_queue(rx_queue, channel) { atomic_inc(&efx->drain_pending); rx_queue->flush_pending = true; atomic_inc(&efx->rxq_flush_pending); } } while (timeout && atomic_read(&efx->drain_pending) > 0) { /* If SRIOV is enabled, then offload receive queue flushing to * the firmware (though we will still have to poll for * completion). If that fails, fall back to the old scheme. */ if (efx_sriov_enabled(efx)) { rc = efx_mcdi_flush_rxqs(efx); if (!rc) goto wait; } /* The hardware supports four concurrent rx flushes, each of * which may need to be retried if there is an outstanding * descriptor fetch */ efx_for_each_channel(channel, efx) { efx_for_each_channel_rx_queue(rx_queue, channel) { if (atomic_read(&efx->rxq_flush_outstanding) >= EFX_RX_FLUSH_COUNT) break; if (rx_queue->flush_pending) { rx_queue->flush_pending = false; atomic_dec(&efx->rxq_flush_pending); atomic_inc(&efx->rxq_flush_outstanding); efx_flush_rx_queue(rx_queue); } } } wait: timeout = wait_event_timeout(efx->flush_wq, efx_flush_wake(efx), timeout); } if (atomic_read(&efx->drain_pending) && !efx_check_tx_flush_complete(efx)) { netif_err(efx, hw, efx->net_dev, "failed to flush %d queues " "(rx %d+%d)\n", atomic_read(&efx->drain_pending), atomic_read(&efx->rxq_flush_outstanding), atomic_read(&efx->rxq_flush_pending)); rc = -ETIMEDOUT; atomic_set(&efx->drain_pending, 0); atomic_set(&efx->rxq_flush_pending, 0); atomic_set(&efx->rxq_flush_outstanding, 0); } efx->type->finish_flush(efx); return rc; } /************************************************************************** * * Event queue processing * Event queues are processed by per-channel tasklets. * **************************************************************************/ /* Update a channel's event queue's read pointer (RPTR) register * * This writes the EVQ_RPTR_REG register for the specified channel's * event queue. */ void efx_nic_eventq_read_ack(struct efx_channel *channel) { efx_dword_t reg; struct efx_nic *efx = channel->efx; EFX_POPULATE_DWORD_1(reg, FRF_AZ_EVQ_RPTR, channel->eventq_read_ptr & channel->eventq_mask); /* For Falcon A1, EVQ_RPTR_KER is documented as having a step size * of 4 bytes, but it is really 16 bytes just like later revisions. */ efx_writed(efx, ®, efx->type->evq_rptr_tbl_base + FR_BZ_EVQ_RPTR_STEP * channel->channel); } /* Use HW to insert a SW defined event */ void efx_generate_event(struct efx_nic *efx, unsigned int evq, efx_qword_t *event) { efx_oword_t drv_ev_reg; BUILD_BUG_ON(FRF_AZ_DRV_EV_DATA_LBN != 0 || FRF_AZ_DRV_EV_DATA_WIDTH != 64); drv_ev_reg.u32[0] = event->u32[0]; drv_ev_reg.u32[1] = event->u32[1]; drv_ev_reg.u32[2] = 0; drv_ev_reg.u32[3] = 0; EFX_SET_OWORD_FIELD(drv_ev_reg, FRF_AZ_DRV_EV_QID, evq); efx_writeo(efx, &drv_ev_reg, FR_AZ_DRV_EV); } static void efx_magic_event(struct efx_channel *channel, u32 magic) { efx_qword_t event; EFX_POPULATE_QWORD_2(event, FSF_AZ_EV_CODE, FSE_AZ_EV_CODE_DRV_GEN_EV, FSF_AZ_DRV_GEN_EV_MAGIC, magic); efx_generate_event(channel->efx, channel->channel, &event); } /* Handle a transmit completion event * * The NIC batches TX completion events; the message we receive is of * the form "complete all TX events up to this index". */ static int efx_handle_tx_event(struct efx_channel *channel, efx_qword_t *event) { unsigned int tx_ev_desc_ptr; unsigned int tx_ev_q_label; struct efx_tx_queue *tx_queue; struct efx_nic *efx = channel->efx; int tx_packets = 0; if (unlikely(ACCESS_ONCE(efx->reset_pending))) return 0; if (likely(EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_COMP))) { /* Transmit completion */ tx_ev_desc_ptr = EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_DESC_PTR); tx_ev_q_label = EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_Q_LABEL); tx_queue = efx_channel_get_tx_queue( channel, tx_ev_q_label % EFX_TXQ_TYPES); tx_packets = ((tx_ev_desc_ptr - tx_queue->read_count) & tx_queue->ptr_mask); efx_xmit_done(tx_queue, tx_ev_desc_ptr); } else if (EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_WQ_FF_FULL)) { /* Rewrite the FIFO write pointer */ tx_ev_q_label = EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_Q_LABEL); tx_queue = efx_channel_get_tx_queue( channel, tx_ev_q_label % EFX_TXQ_TYPES); netif_tx_lock(efx->net_dev); efx_notify_tx_desc(tx_queue); netif_tx_unlock(efx->net_dev); } else if (EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_PKT_ERR) && EFX_WORKAROUND_10727(efx)) { efx_schedule_reset(efx, RESET_TYPE_TX_DESC_FETCH); } else { netif_err(efx, tx_err, efx->net_dev, "channel %d unexpected TX event " EFX_QWORD_FMT"\n", channel->channel, EFX_QWORD_VAL(*event)); } return tx_packets; } /* Detect errors included in the rx_evt_pkt_ok bit. */ static u16 efx_handle_rx_not_ok(struct efx_rx_queue *rx_queue, const efx_qword_t *event) { struct efx_channel *channel = efx_rx_queue_channel(rx_queue); struct efx_nic *efx = rx_queue->efx; bool rx_ev_buf_owner_id_err, rx_ev_ip_hdr_chksum_err; bool rx_ev_tcp_udp_chksum_err, rx_ev_eth_crc_err; bool rx_ev_frm_trunc, rx_ev_drib_nib, rx_ev_tobe_disc; bool rx_ev_other_err, rx_ev_pause_frm; bool rx_ev_hdr_type, rx_ev_mcast_pkt; unsigned rx_ev_pkt_type; rx_ev_hdr_type = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_HDR_TYPE); rx_ev_mcast_pkt = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_MCAST_PKT); rx_ev_tobe_disc = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_TOBE_DISC); rx_ev_pkt_type = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_PKT_TYPE); rx_ev_buf_owner_id_err = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_BUF_OWNER_ID_ERR); rx_ev_ip_hdr_chksum_err = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_IP_HDR_CHKSUM_ERR); rx_ev_tcp_udp_chksum_err = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_TCP_UDP_CHKSUM_ERR); rx_ev_eth_crc_err = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_ETH_CRC_ERR); rx_ev_frm_trunc = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_FRM_TRUNC); rx_ev_drib_nib = ((efx_nic_rev(efx) >= EFX_REV_FALCON_B0) ? 0 : EFX_QWORD_FIELD(*event, FSF_AA_RX_EV_DRIB_NIB)); rx_ev_pause_frm = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_PAUSE_FRM_ERR); /* Every error apart from tobe_disc and pause_frm */ rx_ev_other_err = (rx_ev_drib_nib | rx_ev_tcp_udp_chksum_err | rx_ev_buf_owner_id_err | rx_ev_eth_crc_err | rx_ev_frm_trunc | rx_ev_ip_hdr_chksum_err); /* Count errors that are not in MAC stats. Ignore expected * checksum errors during self-test. */ if (rx_ev_frm_trunc) ++channel->n_rx_frm_trunc; else if (rx_ev_tobe_disc) ++channel->n_rx_tobe_disc; else if (!efx->loopback_selftest) { if (rx_ev_ip_hdr_chksum_err) ++channel->n_rx_ip_hdr_chksum_err; else if (rx_ev_tcp_udp_chksum_err) ++channel->n_rx_tcp_udp_chksum_err; } /* TOBE_DISC is expected on unicast mismatches; don't print out an * error message. FRM_TRUNC indicates RXDP dropped the packet due * to a FIFO overflow. */ #ifdef DEBUG if (rx_ev_other_err && net_ratelimit()) { netif_dbg(efx, rx_err, efx->net_dev, " RX queue %d unexpected RX event " EFX_QWORD_FMT "%s%s%s%s%s%s%s%s\n", efx_rx_queue_index(rx_queue), EFX_QWORD_VAL(*event), rx_ev_buf_owner_id_err ? " [OWNER_ID_ERR]" : "", rx_ev_ip_hdr_chksum_err ? " [IP_HDR_CHKSUM_ERR]" : "", rx_ev_tcp_udp_chksum_err ? " [TCP_UDP_CHKSUM_ERR]" : "", rx_ev_eth_crc_err ? " [ETH_CRC_ERR]" : "", rx_ev_frm_trunc ? " [FRM_TRUNC]" : "", rx_ev_drib_nib ? " [DRIB_NIB]" : "", rx_ev_tobe_disc ? " [TOBE_DISC]" : "", rx_ev_pause_frm ? " [PAUSE]" : ""); } #endif /* The frame must be discarded if any of these are true. */ return (rx_ev_eth_crc_err | rx_ev_frm_trunc | rx_ev_drib_nib | rx_ev_tobe_disc | rx_ev_pause_frm) ? EFX_RX_PKT_DISCARD : 0; } /* Handle receive events that are not in-order. Return true if this * can be handled as a partial packet discard, false if it's more * serious. */ static bool efx_handle_rx_bad_index(struct efx_rx_queue *rx_queue, unsigned index) { struct efx_channel *channel = efx_rx_queue_channel(rx_queue); struct efx_nic *efx = rx_queue->efx; unsigned expected, dropped; if (rx_queue->scatter_n && index == ((rx_queue->removed_count + rx_queue->scatter_n - 1) & rx_queue->ptr_mask)) { ++channel->n_rx_nodesc_trunc; return true; } expected = rx_queue->removed_count & rx_queue->ptr_mask; dropped = (index - expected) & rx_queue->ptr_mask; netif_info(efx, rx_err, efx->net_dev, "dropped %d events (index=%d expected=%d)\n", dropped, index, expected); efx_schedule_reset(efx, EFX_WORKAROUND_5676(efx) ? RESET_TYPE_RX_RECOVERY : RESET_TYPE_DISABLE); return false; } /* Handle a packet received event * * The NIC gives a "discard" flag if it's a unicast packet with the * wrong destination address * Also "is multicast" and "matches multicast filter" flags can be used to * discard non-matching multicast packets. */ static void efx_handle_rx_event(struct efx_channel *channel, const efx_qword_t *event) { unsigned int rx_ev_desc_ptr, rx_ev_byte_cnt; unsigned int rx_ev_hdr_type, rx_ev_mcast_pkt; unsigned expected_ptr; bool rx_ev_pkt_ok, rx_ev_sop, rx_ev_cont; u16 flags; struct efx_rx_queue *rx_queue; struct efx_nic *efx = channel->efx; if (unlikely(ACCESS_ONCE(efx->reset_pending))) return; rx_ev_cont = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_JUMBO_CONT); rx_ev_sop = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_SOP); WARN_ON(EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_Q_LABEL) != channel->channel); rx_queue = efx_channel_get_rx_queue(channel); rx_ev_desc_ptr = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_DESC_PTR); expected_ptr = ((rx_queue->removed_count + rx_queue->scatter_n) & rx_queue->ptr_mask); /* Check for partial drops and other errors */ if (unlikely(rx_ev_desc_ptr != expected_ptr) || unlikely(rx_ev_sop != (rx_queue->scatter_n == 0))) { if (rx_ev_desc_ptr != expected_ptr && !efx_handle_rx_bad_index(rx_queue, rx_ev_desc_ptr)) return; /* Discard all pending fragments */ if (rx_queue->scatter_n) { efx_rx_packet( rx_queue, rx_queue->removed_count & rx_queue->ptr_mask, rx_queue->scatter_n, 0, EFX_RX_PKT_DISCARD); rx_queue->removed_count += rx_queue->scatter_n; rx_queue->scatter_n = 0; } /* Return if there is no new fragment */ if (rx_ev_desc_ptr != expected_ptr) return; /* Discard new fragment if not SOP */ if (!rx_ev_sop) { efx_rx_packet( rx_queue, rx_queue->removed_count & rx_queue->ptr_mask, 1, 0, EFX_RX_PKT_DISCARD); ++rx_queue->removed_count; return; } } ++rx_queue->scatter_n; if (rx_ev_cont) return; rx_ev_byte_cnt = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_BYTE_CNT); rx_ev_pkt_ok = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_PKT_OK); rx_ev_hdr_type = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_HDR_TYPE); if (likely(rx_ev_pkt_ok)) { /* If packet is marked as OK and packet type is TCP/IP or * UDP/IP, then we can rely on the hardware checksum. */ flags = (rx_ev_hdr_type == FSE_CZ_RX_EV_HDR_TYPE_IPV4V6_TCP || rx_ev_hdr_type == FSE_CZ_RX_EV_HDR_TYPE_IPV4V6_UDP) ? EFX_RX_PKT_CSUMMED : 0; } else { flags = efx_handle_rx_not_ok(rx_queue, event); } /* Detect multicast packets that didn't match the filter */ rx_ev_mcast_pkt = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_MCAST_PKT); if (rx_ev_mcast_pkt) { unsigned int rx_ev_mcast_hash_match = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_MCAST_HASH_MATCH); if (unlikely(!rx_ev_mcast_hash_match)) { ++channel->n_rx_mcast_mismatch; flags |= EFX_RX_PKT_DISCARD; } } channel->irq_mod_score += 2; /* Handle received packet */ efx_rx_packet(rx_queue, rx_queue->removed_count & rx_queue->ptr_mask, rx_queue->scatter_n, rx_ev_byte_cnt, flags); rx_queue->removed_count += rx_queue->scatter_n; rx_queue->scatter_n = 0; } /* If this flush done event corresponds to a &struct efx_tx_queue, then * send an %EFX_CHANNEL_MAGIC_TX_DRAIN event to drain the event queue * of all transmit completions. */ static void efx_handle_tx_flush_done(struct efx_nic *efx, efx_qword_t *event) { struct efx_tx_queue *tx_queue; int qid; qid = EFX_QWORD_FIELD(*event, FSF_AZ_DRIVER_EV_SUBDATA); if (qid < EFX_TXQ_TYPES * efx->n_tx_channels) { tx_queue = efx_get_tx_queue(efx, qid / EFX_TXQ_TYPES, qid % EFX_TXQ_TYPES); if (atomic_cmpxchg(&tx_queue->flush_outstanding, 1, 0)) { efx_magic_event(tx_queue->channel, EFX_CHANNEL_MAGIC_TX_DRAIN(tx_queue)); } } } /* If this flush done event corresponds to a &struct efx_rx_queue: If the flush * was succesful then send an %EFX_CHANNEL_MAGIC_RX_DRAIN, otherwise add * the RX queue back to the mask of RX queues in need of flushing. */ static void efx_handle_rx_flush_done(struct efx_nic *efx, efx_qword_t *event) { struct efx_channel *channel; struct efx_rx_queue *rx_queue; int qid; bool failed; qid = EFX_QWORD_FIELD(*event, FSF_AZ_DRIVER_EV_RX_DESCQ_ID); failed = EFX_QWORD_FIELD(*event, FSF_AZ_DRIVER_EV_RX_FLUSH_FAIL); if (qid >= efx->n_channels) return; channel = efx_get_channel(efx, qid); if (!efx_channel_has_rx_queue(channel)) return; rx_queue = efx_channel_get_rx_queue(channel); if (failed) { netif_info(efx, hw, efx->net_dev, "RXQ %d flush retry\n", qid); rx_queue->flush_pending = true; atomic_inc(&efx->rxq_flush_pending); } else { efx_magic_event(efx_rx_queue_channel(rx_queue), EFX_CHANNEL_MAGIC_RX_DRAIN(rx_queue)); } atomic_dec(&efx->rxq_flush_outstanding); if (efx_flush_wake(efx)) wake_up(&efx->flush_wq); } static void efx_handle_drain_event(struct efx_channel *channel) { struct efx_nic *efx = channel->efx; WARN_ON(atomic_read(&efx->drain_pending) == 0); atomic_dec(&efx->drain_pending); if (efx_flush_wake(efx)) wake_up(&efx->flush_wq); } static void efx_handle_generated_event(struct efx_channel *channel, efx_qword_t *event) { struct efx_nic *efx = channel->efx; struct efx_rx_queue *rx_queue = efx_channel_has_rx_queue(channel) ? efx_channel_get_rx_queue(channel) : NULL; unsigned magic, code; magic = EFX_QWORD_FIELD(*event, FSF_AZ_DRV_GEN_EV_MAGIC); code = _EFX_CHANNEL_MAGIC_CODE(magic); if (magic == EFX_CHANNEL_MAGIC_TEST(channel)) { channel->event_test_cpu = raw_smp_processor_id(); } else if (rx_queue && magic == EFX_CHANNEL_MAGIC_FILL(rx_queue)) { /* The queue must be empty, so we won't receive any rx * events, so efx_process_channel() won't refill the * queue. Refill it here */ efx_fast_push_rx_descriptors(rx_queue); } else if (rx_queue && magic == EFX_CHANNEL_MAGIC_RX_DRAIN(rx_queue)) { rx_queue->enabled = false; efx_handle_drain_event(channel); } else if (code == _EFX_CHANNEL_MAGIC_TX_DRAIN) { efx_handle_drain_event(channel); } else { netif_dbg(efx, hw, efx->net_dev, "channel %d received " "generated event "EFX_QWORD_FMT"\n", channel->channel, EFX_QWORD_VAL(*event)); } } static void efx_handle_driver_event(struct efx_channel *channel, efx_qword_t *event) { struct efx_nic *efx = channel->efx; unsigned int ev_sub_code; unsigned int ev_sub_data; ev_sub_code = EFX_QWORD_FIELD(*event, FSF_AZ_DRIVER_EV_SUBCODE); ev_sub_data = EFX_QWORD_FIELD(*event, FSF_AZ_DRIVER_EV_SUBDATA); switch (ev_sub_code) { case FSE_AZ_TX_DESCQ_FLS_DONE_EV: netif_vdbg(efx, hw, efx->net_dev, "channel %d TXQ %d flushed\n", channel->channel, ev_sub_data); efx_handle_tx_flush_done(efx, event); efx_sriov_tx_flush_done(efx, event); break; case FSE_AZ_RX_DESCQ_FLS_DONE_EV: netif_vdbg(efx, hw, efx->net_dev, "channel %d RXQ %d flushed\n", channel->channel, ev_sub_data); efx_handle_rx_flush_done(efx, event); efx_sriov_rx_flush_done(efx, event); break; case FSE_AZ_EVQ_INIT_DONE_EV: netif_dbg(efx, hw, efx->net_dev, "channel %d EVQ %d initialised\n", channel->channel, ev_sub_data); break; case FSE_AZ_SRM_UPD_DONE_EV: netif_vdbg(efx, hw, efx->net_dev, "channel %d SRAM update done\n", channel->channel); break; case FSE_AZ_WAKE_UP_EV: netif_vdbg(efx, hw, efx->net_dev, "channel %d RXQ %d wakeup event\n", channel->channel, ev_sub_data); break; case FSE_AZ_TIMER_EV: netif_vdbg(efx, hw, efx->net_dev, "channel %d RX queue %d timer expired\n", channel->channel, ev_sub_data); break; case FSE_AA_RX_RECOVER_EV: netif_err(efx, rx_err, efx->net_dev, "channel %d seen DRIVER RX_RESET event. " "Resetting.\n", channel->channel); atomic_inc(&efx->rx_reset); efx_schedule_reset(efx, EFX_WORKAROUND_6555(efx) ? RESET_TYPE_RX_RECOVERY : RESET_TYPE_DISABLE); break; case FSE_BZ_RX_DSC_ERROR_EV: if (ev_sub_data < EFX_VI_BASE) { netif_err(efx, rx_err, efx->net_dev, "RX DMA Q %d reports descriptor fetch error." " RX Q %d is disabled.\n", ev_sub_data, ev_sub_data); efx_schedule_reset(efx, RESET_TYPE_RX_DESC_FETCH); } else efx_sriov_desc_fetch_err(efx, ev_sub_data); break; case FSE_BZ_TX_DSC_ERROR_EV: if (ev_sub_data < EFX_VI_BASE) { netif_err(efx, tx_err, efx->net_dev, "TX DMA Q %d reports descriptor fetch error." " TX Q %d is disabled.\n", ev_sub_data, ev_sub_data); efx_schedule_reset(efx, RESET_TYPE_TX_DESC_FETCH); } else efx_sriov_desc_fetch_err(efx, ev_sub_data); break; default: netif_vdbg(efx, hw, efx->net_dev, "channel %d unknown driver event code %d " "data %04x\n", channel->channel, ev_sub_code, ev_sub_data); break; } } int efx_nic_process_eventq(struct efx_channel *channel, int budget) { struct efx_nic *efx = channel->efx; unsigned int read_ptr; efx_qword_t event, *p_event; int ev_code; int tx_packets = 0; int spent = 0; read_ptr = channel->eventq_read_ptr; for (;;) { p_event = efx_event(channel, read_ptr); event = *p_event; if (!efx_event_present(&event)) /* End of events */ break; netif_vdbg(channel->efx, intr, channel->efx->net_dev, "channel %d event is "EFX_QWORD_FMT"\n", channel->channel, EFX_QWORD_VAL(event)); /* Clear this event by marking it all ones */ EFX_SET_QWORD(*p_event); ++read_ptr; ev_code = EFX_QWORD_FIELD(event, FSF_AZ_EV_CODE); switch (ev_code) { case FSE_AZ_EV_CODE_RX_EV: efx_handle_rx_event(channel, &event); if (++spent == budget) goto out; break; case FSE_AZ_EV_CODE_TX_EV: tx_packets += efx_handle_tx_event(channel, &event); if (tx_packets > efx->txq_entries) { spent = budget; goto out; } break; case FSE_AZ_EV_CODE_DRV_GEN_EV: efx_handle_generated_event(channel, &event); break; case FSE_AZ_EV_CODE_DRIVER_EV: efx_handle_driver_event(channel, &event); break; case FSE_CZ_EV_CODE_USER_EV: efx_sriov_event(channel, &event); break; case FSE_CZ_EV_CODE_MCDI_EV: efx_mcdi_process_event(channel, &event); break; case FSE_AZ_EV_CODE_GLOBAL_EV: if (efx->type->handle_global_event && efx->type->handle_global_event(channel, &event)) break; /* else fall through */ default: netif_err(channel->efx, hw, channel->efx->net_dev, "channel %d unknown event type %d (data " EFX_QWORD_FMT ")\n", channel->channel, ev_code, EFX_QWORD_VAL(event)); } } out: channel->eventq_read_ptr = read_ptr; return spent; } /* Check whether an event is present in the eventq at the current * read pointer. Only useful for self-test. */ bool efx_nic_event_present(struct efx_channel *channel) { return efx_event_present(efx_event(channel, channel->eventq_read_ptr)); } /* Allocate buffer table entries for event queue */ int efx_nic_probe_eventq(struct efx_channel *channel) { struct efx_nic *efx = channel->efx; unsigned entries; entries = channel->eventq_mask + 1; return efx_alloc_special_buffer(efx, &channel->eventq, entries * sizeof(efx_qword_t)); } void efx_nic_init_eventq(struct efx_channel *channel) { efx_oword_t reg; struct efx_nic *efx = channel->efx; netif_dbg(efx, hw, efx->net_dev, "channel %d event queue in special buffers %d-%d\n", channel->channel, channel->eventq.index, channel->eventq.index + channel->eventq.entries - 1); if (efx_nic_rev(efx) >= EFX_REV_SIENA_A0) { EFX_POPULATE_OWORD_3(reg, FRF_CZ_TIMER_Q_EN, 1, FRF_CZ_HOST_NOTIFY_MODE, 0, FRF_CZ_TIMER_MODE, FFE_CZ_TIMER_MODE_DIS); efx_writeo_table(efx, ®, FR_BZ_TIMER_TBL, channel->channel); } /* Pin event queue buffer */ efx_init_special_buffer(efx, &channel->eventq); /* Fill event queue with all ones (i.e. empty events) */ memset(channel->eventq.addr, 0xff, channel->eventq.len); /* Push event queue to card */ EFX_POPULATE_OWORD_3(reg, FRF_AZ_EVQ_EN, 1, FRF_AZ_EVQ_SIZE, __ffs(channel->eventq.entries), FRF_AZ_EVQ_BUF_BASE_ID, channel->eventq.index); efx_writeo_table(efx, ®, efx->type->evq_ptr_tbl_base, channel->channel); efx->type->push_irq_moderation(channel); } void efx_nic_fini_eventq(struct efx_channel *channel) { efx_oword_t reg; struct efx_nic *efx = channel->efx; /* Remove event queue from card */ EFX_ZERO_OWORD(reg); efx_writeo_table(efx, ®, efx->type->evq_ptr_tbl_base, channel->channel); if (efx_nic_rev(efx) >= EFX_REV_SIENA_A0) efx_writeo_table(efx, ®, FR_BZ_TIMER_TBL, channel->channel); /* Unpin event queue */ efx_fini_special_buffer(efx, &channel->eventq); } /* Free buffers backing event queue */ void efx_nic_remove_eventq(struct efx_channel *channel) { efx_free_special_buffer(channel->efx, &channel->eventq); } void efx_nic_event_test_start(struct efx_channel *channel) { channel->event_test_cpu = -1; smp_wmb(); efx_magic_event(channel, EFX_CHANNEL_MAGIC_TEST(channel)); } void efx_nic_generate_fill_event(struct efx_rx_queue *rx_queue) { efx_magic_event(efx_rx_queue_channel(rx_queue), EFX_CHANNEL_MAGIC_FILL(rx_queue)); } /************************************************************************** * * Hardware interrupts * The hardware interrupt handler does very little work; all the event * queue processing is carried out by per-channel tasklets. * **************************************************************************/ /* Enable/disable/generate interrupts */ static inline void efx_nic_interrupts(struct efx_nic *efx, bool enabled, bool force) { efx_oword_t int_en_reg_ker; EFX_POPULATE_OWORD_3(int_en_reg_ker, FRF_AZ_KER_INT_LEVE_SEL, efx->irq_level, FRF_AZ_KER_INT_KER, force, FRF_AZ_DRV_INT_EN_KER, enabled); efx_writeo(efx, &int_en_reg_ker, FR_AZ_INT_EN_KER); } void efx_nic_enable_interrupts(struct efx_nic *efx) { EFX_ZERO_OWORD(*((efx_oword_t *) efx->irq_status.addr)); wmb(); /* Ensure interrupt vector is clear before interrupts enabled */ efx_nic_interrupts(efx, true, false); } void efx_nic_disable_interrupts(struct efx_nic *efx) { /* Disable interrupts */ efx_nic_interrupts(efx, false, false); } /* Generate a test interrupt * Interrupt must already have been enabled, otherwise nasty things * may happen. */ void efx_nic_irq_test_start(struct efx_nic *efx) { efx->last_irq_cpu = -1; smp_wmb(); efx_nic_interrupts(efx, true, true); } /* Process a fatal interrupt * Disable bus mastering ASAP and schedule a reset */ irqreturn_t efx_nic_fatal_interrupt(struct efx_nic *efx) { struct falcon_nic_data *nic_data = efx->nic_data; efx_oword_t *int_ker = efx->irq_status.addr; efx_oword_t fatal_intr; int error, mem_perr; efx_reado(efx, &fatal_intr, FR_AZ_FATAL_INTR_KER); error = EFX_OWORD_FIELD(fatal_intr, FRF_AZ_FATAL_INTR); netif_err(efx, hw, efx->net_dev, "SYSTEM ERROR "EFX_OWORD_FMT" status " EFX_OWORD_FMT ": %s\n", EFX_OWORD_VAL(*int_ker), EFX_OWORD_VAL(fatal_intr), error ? "disabling bus mastering" : "no recognised error"); /* If this is a memory parity error dump which blocks are offending */ mem_perr = (EFX_OWORD_FIELD(fatal_intr, FRF_AZ_MEM_PERR_INT_KER) || EFX_OWORD_FIELD(fatal_intr, FRF_AZ_SRM_PERR_INT_KER)); if (mem_perr) { efx_oword_t reg; efx_reado(efx, ®, FR_AZ_MEM_STAT); netif_err(efx, hw, efx->net_dev, "SYSTEM ERROR: memory parity error "EFX_OWORD_FMT"\n", EFX_OWORD_VAL(reg)); } /* Disable both devices */ pci_clear_master(efx->pci_dev); if (efx_nic_is_dual_func(efx)) pci_clear_master(nic_data->pci_dev2); efx_nic_disable_interrupts(efx); /* Count errors and reset or disable the NIC accordingly */ if (efx->int_error_count == 0 || time_after(jiffies, efx->int_error_expire)) { efx->int_error_count = 0; efx->int_error_expire = jiffies + EFX_INT_ERROR_EXPIRE * HZ; } if (++efx->int_error_count < EFX_MAX_INT_ERRORS) { netif_err(efx, hw, efx->net_dev, "SYSTEM ERROR - reset scheduled\n"); efx_schedule_reset(efx, RESET_TYPE_INT_ERROR); } else { netif_err(efx, hw, efx->net_dev, "SYSTEM ERROR - max number of errors seen." "NIC will be disabled\n"); efx_schedule_reset(efx, RESET_TYPE_DISABLE); } return IRQ_HANDLED; } /* Handle a legacy interrupt * Acknowledges the interrupt and schedule event queue processing. */ static irqreturn_t efx_legacy_interrupt(int irq, void *dev_id) { struct efx_nic *efx = dev_id; efx_oword_t *int_ker = efx->irq_status.addr; irqreturn_t result = IRQ_NONE; struct efx_channel *channel; efx_dword_t reg; u32 queues; int syserr; /* Could this be ours? If interrupts are disabled then the * channel state may not be valid. */ if (!efx->legacy_irq_enabled) return result; /* Read the ISR which also ACKs the interrupts */ efx_readd(efx, ®, FR_BZ_INT_ISR0); queues = EFX_EXTRACT_DWORD(reg, 0, 31); /* Handle non-event-queue sources */ if (queues & (1U << efx->irq_level)) { syserr = EFX_OWORD_FIELD(*int_ker, FSF_AZ_NET_IVEC_FATAL_INT); if (unlikely(syserr)) return efx_nic_fatal_interrupt(efx); efx->last_irq_cpu = raw_smp_processor_id(); } if (queues != 0) { if (EFX_WORKAROUND_15783(efx)) efx->irq_zero_count = 0; /* Schedule processing of any interrupting queues */ efx_for_each_channel(channel, efx) { if (queues & 1) efx_schedule_channel_irq(channel); queues >>= 1; } result = IRQ_HANDLED; } else if (EFX_WORKAROUND_15783(efx)) { efx_qword_t *event; /* We can't return IRQ_HANDLED more than once on seeing ISR=0 * because this might be a shared interrupt. */ if (efx->irq_zero_count++ == 0) result = IRQ_HANDLED; /* Ensure we schedule or rearm all event queues */ efx_for_each_channel(channel, efx) { event = efx_event(channel, channel->eventq_read_ptr); if (efx_event_present(event)) efx_schedule_channel_irq(channel); else efx_nic_eventq_read_ack(channel); } } if (result == IRQ_HANDLED) netif_vdbg(efx, intr, efx->net_dev, "IRQ %d on CPU %d status " EFX_DWORD_FMT "\n", irq, raw_smp_processor_id(), EFX_DWORD_VAL(reg)); return result; } /* Handle an MSI interrupt * * Handle an MSI hardware interrupt. This routine schedules event * queue processing. No interrupt acknowledgement cycle is necessary. * Also, we never need to check that the interrupt is for us, since * MSI interrupts cannot be shared. */ static irqreturn_t efx_msi_interrupt(int irq, void *dev_id) { struct efx_channel *channel = *(struct efx_channel **)dev_id; struct efx_nic *efx = channel->efx; efx_oword_t *int_ker = efx->irq_status.addr; int syserr; netif_vdbg(efx, intr, efx->net_dev, "IRQ %d on CPU %d status " EFX_OWORD_FMT "\n", irq, raw_smp_processor_id(), EFX_OWORD_VAL(*int_ker)); /* Handle non-event-queue sources */ if (channel->channel == efx->irq_level) { syserr = EFX_OWORD_FIELD(*int_ker, FSF_AZ_NET_IVEC_FATAL_INT); if (unlikely(syserr)) return efx_nic_fatal_interrupt(efx); efx->last_irq_cpu = raw_smp_processor_id(); } /* Schedule processing of the channel */ efx_schedule_channel_irq(channel); return IRQ_HANDLED; } /* Setup RSS indirection table. * This maps from the hash value of the packet to RXQ */ void efx_nic_push_rx_indir_table(struct efx_nic *efx) { size_t i = 0; efx_dword_t dword; if (efx_nic_rev(efx) < EFX_REV_FALCON_B0) return; BUILD_BUG_ON(ARRAY_SIZE(efx->rx_indir_table) != FR_BZ_RX_INDIRECTION_TBL_ROWS); for (i = 0; i < FR_BZ_RX_INDIRECTION_TBL_ROWS; i++) { EFX_POPULATE_DWORD_1(dword, FRF_BZ_IT_QUEUE, efx->rx_indir_table[i]); efx_writed(efx, &dword, FR_BZ_RX_INDIRECTION_TBL + FR_BZ_RX_INDIRECTION_TBL_STEP * i); } } /* Hook interrupt handler(s) * Try MSI and then legacy interrupts. */ int efx_nic_init_interrupt(struct efx_nic *efx) { struct efx_channel *channel; int rc; if (!EFX_INT_MODE_USE_MSI(efx)) { irq_handler_t handler; if (efx_nic_rev(efx) >= EFX_REV_FALCON_B0) handler = efx_legacy_interrupt; else handler = falcon_legacy_interrupt_a1; rc = request_irq(efx->legacy_irq, handler, IRQF_SHARED, efx->name, efx); if (rc) { netif_err(efx, drv, efx->net_dev, "failed to hook legacy IRQ %d\n", efx->pci_dev->irq); goto fail1; } return 0; } /* Hook MSI or MSI-X interrupt */ efx_for_each_channel(channel, efx) { rc = request_irq(channel->irq, efx_msi_interrupt, IRQF_PROBE_SHARED, /* Not shared */ efx->channel_name[channel->channel], &efx->channel[channel->channel]); if (rc) { netif_err(efx, drv, efx->net_dev, "failed to hook IRQ %d\n", channel->irq); goto fail2; } } return 0; fail2: efx_for_each_channel(channel, efx) free_irq(channel->irq, &efx->channel[channel->channel]); fail1: return rc; } void efx_nic_fini_interrupt(struct efx_nic *efx) { struct efx_channel *channel; efx_oword_t reg; /* Disable MSI/MSI-X interrupts */ efx_for_each_channel(channel, efx) { if (channel->irq) free_irq(channel->irq, &efx->channel[channel->channel]); } /* ACK legacy interrupt */ if (efx_nic_rev(efx) >= EFX_REV_FALCON_B0) efx_reado(efx, ®, FR_BZ_INT_ISR0); else falcon_irq_ack_a1(efx); /* Disable legacy interrupt */ if (efx->legacy_irq) free_irq(efx->legacy_irq, efx); } /* Looks at available SRAM resources and works out how many queues we * can support, and where things like descriptor caches should live. * * SRAM is split up as follows: * 0 buftbl entries for channels * efx->vf_buftbl_base buftbl entries for SR-IOV * efx->rx_dc_base RX descriptor caches * efx->tx_dc_base TX descriptor caches */ void efx_nic_dimension_resources(struct efx_nic *efx, unsigned sram_lim_qw) { unsigned vi_count, buftbl_min; /* Account for the buffer table entries backing the datapath channels * and the descriptor caches for those channels. */ buftbl_min = ((efx->n_rx_channels * EFX_MAX_DMAQ_SIZE + efx->n_tx_channels * EFX_TXQ_TYPES * EFX_MAX_DMAQ_SIZE + efx->n_channels * EFX_MAX_EVQ_SIZE) * sizeof(efx_qword_t) / EFX_BUF_SIZE); vi_count = max(efx->n_channels, efx->n_tx_channels * EFX_TXQ_TYPES); #ifdef CONFIG_SFC_SRIOV if (efx_sriov_wanted(efx)) { unsigned vi_dc_entries, buftbl_free, entries_per_vf, vf_limit; efx->vf_buftbl_base = buftbl_min; vi_dc_entries = RX_DC_ENTRIES + TX_DC_ENTRIES; vi_count = max(vi_count, EFX_VI_BASE); buftbl_free = (sram_lim_qw - buftbl_min - vi_count * vi_dc_entries); entries_per_vf = ((vi_dc_entries + EFX_VF_BUFTBL_PER_VI) * efx_vf_size(efx)); vf_limit = min(buftbl_free / entries_per_vf, (1024U - EFX_VI_BASE) >> efx->vi_scale); if (efx->vf_count > vf_limit) { netif_err(efx, probe, efx->net_dev, "Reducing VF count from from %d to %d\n", efx->vf_count, vf_limit); efx->vf_count = vf_limit; } vi_count += efx->vf_count * efx_vf_size(efx); } #endif efx->tx_dc_base = sram_lim_qw - vi_count * TX_DC_ENTRIES; efx->rx_dc_base = efx->tx_dc_base - vi_count * RX_DC_ENTRIES; } u32 efx_nic_fpga_ver(struct efx_nic *efx) { efx_oword_t altera_build; efx_reado(efx, &altera_build, FR_AZ_ALTERA_BUILD); return EFX_OWORD_FIELD(altera_build, FRF_AZ_ALTERA_BUILD_VER); } void efx_nic_init_common(struct efx_nic *efx) { efx_oword_t temp; /* Set positions of descriptor caches in SRAM. */ EFX_POPULATE_OWORD_1(temp, FRF_AZ_SRM_TX_DC_BASE_ADR, efx->tx_dc_base); efx_writeo(efx, &temp, FR_AZ_SRM_TX_DC_CFG); EFX_POPULATE_OWORD_1(temp, FRF_AZ_SRM_RX_DC_BASE_ADR, efx->rx_dc_base); efx_writeo(efx, &temp, FR_AZ_SRM_RX_DC_CFG); /* Set TX descriptor cache size. */ BUILD_BUG_ON(TX_DC_ENTRIES != (8 << TX_DC_ENTRIES_ORDER)); EFX_POPULATE_OWORD_1(temp, FRF_AZ_TX_DC_SIZE, TX_DC_ENTRIES_ORDER); efx_writeo(efx, &temp, FR_AZ_TX_DC_CFG); /* Set RX descriptor cache size. Set low watermark to size-8, as * this allows most efficient prefetching. */ BUILD_BUG_ON(RX_DC_ENTRIES != (8 << RX_DC_ENTRIES_ORDER)); EFX_POPULATE_OWORD_1(temp, FRF_AZ_RX_DC_SIZE, RX_DC_ENTRIES_ORDER); efx_writeo(efx, &temp, FR_AZ_RX_DC_CFG); EFX_POPULATE_OWORD_1(temp, FRF_AZ_RX_DC_PF_LWM, RX_DC_ENTRIES - 8); efx_writeo(efx, &temp, FR_AZ_RX_DC_PF_WM); /* Program INT_KER address */ EFX_POPULATE_OWORD_2(temp, FRF_AZ_NORM_INT_VEC_DIS_KER, EFX_INT_MODE_USE_MSI(efx), FRF_AZ_INT_ADR_KER, efx->irq_status.dma_addr); efx_writeo(efx, &temp, FR_AZ_INT_ADR_KER); if (EFX_WORKAROUND_17213(efx) && !EFX_INT_MODE_USE_MSI(efx)) /* Use an interrupt level unused by event queues */ efx->irq_level = 0x1f; else /* Use a valid MSI-X vector */ efx->irq_level = 0; /* Enable all the genuinely fatal interrupts. (They are still * masked by the overall interrupt mask, controlled by * falcon_interrupts()). * * Note: All other fatal interrupts are enabled */ EFX_POPULATE_OWORD_3(temp, FRF_AZ_ILL_ADR_INT_KER_EN, 1, FRF_AZ_RBUF_OWN_INT_KER_EN, 1, FRF_AZ_TBUF_OWN_INT_KER_EN, 1); if (efx_nic_rev(efx) >= EFX_REV_SIENA_A0) EFX_SET_OWORD_FIELD(temp, FRF_CZ_SRAM_PERR_INT_P_KER_EN, 1); EFX_INVERT_OWORD(temp); efx_writeo(efx, &temp, FR_AZ_FATAL_INTR_KER); efx_nic_push_rx_indir_table(efx); /* Disable the ugly timer-based TX DMA backoff and allow TX DMA to be * controlled by the RX FIFO fill level. Set arbitration to one pkt/Q. */ efx_reado(efx, &temp, FR_AZ_TX_RESERVED); EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_RX_SPACER, 0xfe); EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_RX_SPACER_EN, 1); EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_ONE_PKT_PER_Q, 1); EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_PUSH_EN, 1); EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_DIS_NON_IP_EV, 1); /* Enable SW_EV to inherit in char driver - assume harmless here */ EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_SOFT_EVT_EN, 1); /* Prefetch threshold 2 => fetch when descriptor cache half empty */ EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_PREF_THRESHOLD, 2); /* Disable hardware watchdog which can misfire */ EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_PREF_WD_TMR, 0x3fffff); /* Squash TX of packets of 16 bytes or less */ if (efx_nic_rev(efx) >= EFX_REV_FALCON_B0) EFX_SET_OWORD_FIELD(temp, FRF_BZ_TX_FLUSH_MIN_LEN_EN, 1); efx_writeo(efx, &temp, FR_AZ_TX_RESERVED); if (efx_nic_rev(efx) >= EFX_REV_FALCON_B0) { EFX_POPULATE_OWORD_4(temp, /* Default values */ FRF_BZ_TX_PACE_SB_NOT_AF, 0x15, FRF_BZ_TX_PACE_SB_AF, 0xb, FRF_BZ_TX_PACE_FB_BASE, 0, /* Allow large pace values in the * fast bin. */ FRF_BZ_TX_PACE_BIN_TH, FFE_BZ_TX_PACE_RESERVED); efx_writeo(efx, &temp, FR_BZ_TX_PACE); } } /* Register dump */ #define REGISTER_REVISION_A 1 #define REGISTER_REVISION_B 2 #define REGISTER_REVISION_C 3 #define REGISTER_REVISION_Z 3 /* latest revision */ struct efx_nic_reg { u32 offset:24; u32 min_revision:2, max_revision:2; }; #define REGISTER(name, min_rev, max_rev) { \ FR_ ## min_rev ## max_rev ## _ ## name, \ REGISTER_REVISION_ ## min_rev, REGISTER_REVISION_ ## max_rev \ } #define REGISTER_AA(name) REGISTER(name, A, A) #define REGISTER_AB(name) REGISTER(name, A, B) #define REGISTER_AZ(name) REGISTER(name, A, Z) #define REGISTER_BB(name) REGISTER(name, B, B) #define REGISTER_BZ(name) REGISTER(name, B, Z) #define REGISTER_CZ(name) REGISTER(name, C, Z) static const struct efx_nic_reg efx_nic_regs[] = { REGISTER_AZ(ADR_REGION), REGISTER_AZ(INT_EN_KER), REGISTER_BZ(INT_EN_CHAR), REGISTER_AZ(INT_ADR_KER), REGISTER_BZ(INT_ADR_CHAR), /* INT_ACK_KER is WO */ /* INT_ISR0 is RC */ REGISTER_AZ(HW_INIT), REGISTER_CZ(USR_EV_CFG), REGISTER_AB(EE_SPI_HCMD), REGISTER_AB(EE_SPI_HADR), REGISTER_AB(EE_SPI_HDATA), REGISTER_AB(EE_BASE_PAGE), REGISTER_AB(EE_VPD_CFG0), /* EE_VPD_SW_CNTL and EE_VPD_SW_DATA are not used */ /* PMBX_DBG_IADDR and PBMX_DBG_IDATA are indirect */ /* PCIE_CORE_INDIRECT is indirect */ REGISTER_AB(NIC_STAT), REGISTER_AB(GPIO_CTL), REGISTER_AB(GLB_CTL), /* FATAL_INTR_KER and FATAL_INTR_CHAR are partly RC */ REGISTER_BZ(DP_CTRL), REGISTER_AZ(MEM_STAT), REGISTER_AZ(CS_DEBUG), REGISTER_AZ(ALTERA_BUILD), REGISTER_AZ(CSR_SPARE), REGISTER_AB(PCIE_SD_CTL0123), REGISTER_AB(PCIE_SD_CTL45), REGISTER_AB(PCIE_PCS_CTL_STAT), /* DEBUG_DATA_OUT is not used */ /* DRV_EV is WO */ REGISTER_AZ(EVQ_CTL), REGISTER_AZ(EVQ_CNT1), REGISTER_AZ(EVQ_CNT2), REGISTER_AZ(BUF_TBL_CFG), REGISTER_AZ(SRM_RX_DC_CFG), REGISTER_AZ(SRM_TX_DC_CFG), REGISTER_AZ(SRM_CFG), /* BUF_TBL_UPD is WO */ REGISTER_AZ(SRM_UPD_EVQ), REGISTER_AZ(SRAM_PARITY), REGISTER_AZ(RX_CFG), REGISTER_BZ(RX_FILTER_CTL), /* RX_FLUSH_DESCQ is WO */ REGISTER_AZ(RX_DC_CFG), REGISTER_AZ(RX_DC_PF_WM), REGISTER_BZ(RX_RSS_TKEY), /* RX_NODESC_DROP is RC */ REGISTER_AA(RX_SELF_RST), /* RX_DEBUG, RX_PUSH_DROP are not used */ REGISTER_CZ(RX_RSS_IPV6_REG1), REGISTER_CZ(RX_RSS_IPV6_REG2), REGISTER_CZ(RX_RSS_IPV6_REG3), /* TX_FLUSH_DESCQ is WO */ REGISTER_AZ(TX_DC_CFG), REGISTER_AA(TX_CHKSM_CFG), REGISTER_AZ(TX_CFG), /* TX_PUSH_DROP is not used */ REGISTER_AZ(TX_RESERVED), REGISTER_BZ(TX_PACE), /* TX_PACE_DROP_QID is RC */ REGISTER_BB(TX_VLAN), REGISTER_BZ(TX_IPFIL_PORTEN), REGISTER_AB(MD_TXD), REGISTER_AB(MD_RXD), REGISTER_AB(MD_CS), REGISTER_AB(MD_PHY_ADR), REGISTER_AB(MD_ID), /* MD_STAT is RC */ REGISTER_AB(MAC_STAT_DMA), REGISTER_AB(MAC_CTRL), REGISTER_BB(GEN_MODE), REGISTER_AB(MAC_MC_HASH_REG0), REGISTER_AB(MAC_MC_HASH_REG1), REGISTER_AB(GM_CFG1), REGISTER_AB(GM_CFG2), /* GM_IPG and GM_HD are not used */ REGISTER_AB(GM_MAX_FLEN), /* GM_TEST is not used */ REGISTER_AB(GM_ADR1), REGISTER_AB(GM_ADR2), REGISTER_AB(GMF_CFG0), REGISTER_AB(GMF_CFG1), REGISTER_AB(GMF_CFG2), REGISTER_AB(GMF_CFG3), REGISTER_AB(GMF_CFG4), REGISTER_AB(GMF_CFG5), REGISTER_BB(TX_SRC_MAC_CTL), REGISTER_AB(XM_ADR_LO), REGISTER_AB(XM_ADR_HI), REGISTER_AB(XM_GLB_CFG), REGISTER_AB(XM_TX_CFG), REGISTER_AB(XM_RX_CFG), REGISTER_AB(XM_MGT_INT_MASK), REGISTER_AB(XM_FC), REGISTER_AB(XM_PAUSE_TIME), REGISTER_AB(XM_TX_PARAM), REGISTER_AB(XM_RX_PARAM), /* XM_MGT_INT_MSK (note no 'A') is RC */ REGISTER_AB(XX_PWR_RST), REGISTER_AB(XX_SD_CTL), REGISTER_AB(XX_TXDRV_CTL), /* XX_PRBS_CTL, XX_PRBS_CHK and XX_PRBS_ERR are not used */ /* XX_CORE_STAT is partly RC */ }; struct efx_nic_reg_table { u32 offset:24; u32 min_revision:2, max_revision:2; u32 step:6, rows:21; }; #define REGISTER_TABLE_DIMENSIONS(_, offset, min_rev, max_rev, step, rows) { \ offset, \ REGISTER_REVISION_ ## min_rev, REGISTER_REVISION_ ## max_rev, \ step, rows \ } #define REGISTER_TABLE(name, min_rev, max_rev) \ REGISTER_TABLE_DIMENSIONS( \ name, FR_ ## min_rev ## max_rev ## _ ## name, \ min_rev, max_rev, \ FR_ ## min_rev ## max_rev ## _ ## name ## _STEP, \ FR_ ## min_rev ## max_rev ## _ ## name ## _ROWS) #define REGISTER_TABLE_AA(name) REGISTER_TABLE(name, A, A) #define REGISTER_TABLE_AZ(name) REGISTER_TABLE(name, A, Z) #define REGISTER_TABLE_BB(name) REGISTER_TABLE(name, B, B) #define REGISTER_TABLE_BZ(name) REGISTER_TABLE(name, B, Z) #define REGISTER_TABLE_BB_CZ(name) \ REGISTER_TABLE_DIMENSIONS(name, FR_BZ_ ## name, B, B, \ FR_BZ_ ## name ## _STEP, \ FR_BB_ ## name ## _ROWS), \ REGISTER_TABLE_DIMENSIONS(name, FR_BZ_ ## name, C, Z, \ FR_BZ_ ## name ## _STEP, \ FR_CZ_ ## name ## _ROWS) #define REGISTER_TABLE_CZ(name) REGISTER_TABLE(name, C, Z) static const struct efx_nic_reg_table efx_nic_reg_tables[] = { /* DRIVER is not used */ /* EVQ_RPTR, TIMER_COMMAND, USR_EV and {RX,TX}_DESC_UPD are WO */ REGISTER_TABLE_BB(TX_IPFIL_TBL), REGISTER_TABLE_BB(TX_SRC_MAC_TBL), REGISTER_TABLE_AA(RX_DESC_PTR_TBL_KER), REGISTER_TABLE_BB_CZ(RX_DESC_PTR_TBL), REGISTER_TABLE_AA(TX_DESC_PTR_TBL_KER), REGISTER_TABLE_BB_CZ(TX_DESC_PTR_TBL), REGISTER_TABLE_AA(EVQ_PTR_TBL_KER), REGISTER_TABLE_BB_CZ(EVQ_PTR_TBL), /* We can't reasonably read all of the buffer table (up to 8MB!). * However this driver will only use a few entries. Reading * 1K entries allows for some expansion of queue count and * size before we need to change the version. */ REGISTER_TABLE_DIMENSIONS(BUF_FULL_TBL_KER, FR_AA_BUF_FULL_TBL_KER, A, A, 8, 1024), REGISTER_TABLE_DIMENSIONS(BUF_FULL_TBL, FR_BZ_BUF_FULL_TBL, B, Z, 8, 1024), REGISTER_TABLE_CZ(RX_MAC_FILTER_TBL0), REGISTER_TABLE_BB_CZ(TIMER_TBL), REGISTER_TABLE_BB_CZ(TX_PACE_TBL), REGISTER_TABLE_BZ(RX_INDIRECTION_TBL), /* TX_FILTER_TBL0 is huge and not used by this driver */ REGISTER_TABLE_CZ(TX_MAC_FILTER_TBL0), REGISTER_TABLE_CZ(MC_TREG_SMEM), /* MSIX_PBA_TABLE is not mapped */ /* SRM_DBG is not mapped (and is redundant with BUF_FLL_TBL) */ REGISTER_TABLE_BZ(RX_FILTER_TBL0), }; size_t efx_nic_get_regs_len(struct efx_nic *efx) { const struct efx_nic_reg *reg; const struct efx_nic_reg_table *table; size_t len = 0; for (reg = efx_nic_regs; reg < efx_nic_regs + ARRAY_SIZE(efx_nic_regs); reg++) if (efx->type->revision >= reg->min_revision && efx->type->revision <= reg->max_revision) len += sizeof(efx_oword_t); for (table = efx_nic_reg_tables; table < efx_nic_reg_tables + ARRAY_SIZE(efx_nic_reg_tables); table++) if (efx->type->revision >= table->min_revision && efx->type->revision <= table->max_revision) len += table->rows * min_t(size_t, table->step, 16); return len; } void efx_nic_get_regs(struct efx_nic *efx, void *buf) { const struct efx_nic_reg *reg; const struct efx_nic_reg_table *table; for (reg = efx_nic_regs; reg < efx_nic_regs + ARRAY_SIZE(efx_nic_regs); reg++) { if (efx->type->revision >= reg->min_revision && efx->type->revision <= reg->max_revision) { efx_reado(efx, (efx_oword_t *)buf, reg->offset); buf += sizeof(efx_oword_t); } } for (table = efx_nic_reg_tables; table < efx_nic_reg_tables + ARRAY_SIZE(efx_nic_reg_tables); table++) { size_t size, i; if (!(efx->type->revision >= table->min_revision && efx->type->revision <= table->max_revision)) continue; size = min_t(size_t, table->step, 16); for (i = 0; i < table->rows; i++) { switch (table->step) { case 4: /* 32-bit SRAM */ efx_readd(efx, buf, table->offset + 4 * i); break; case 8: /* 64-bit SRAM */ efx_sram_readq(efx, efx->membase + table->offset, buf, i); break; case 16: /* 128-bit-readable register */ efx_reado_table(efx, buf, table->offset, i); break; case 32: /* 128-bit register, interleaved */ efx_reado_table(efx, buf, table->offset, 2 * i); break; default: WARN_ON(1); return; } buf += size; } } }