/* * Driver for the National Semiconductor DP83640 PHYTER * * Copyright (C) 2010 OMICRON electronics GmbH * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */ #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt #include #include #include #include #include #include #include #include #include #include #include "dp83640_reg.h" #define DP83640_PHY_ID 0x20005ce1 #define PAGESEL 0x13 #define LAYER4 0x02 #define LAYER2 0x01 #define MAX_RXTS 64 #define N_EXT_TS 6 #define PSF_PTPVER 2 #define PSF_EVNT 0x4000 #define PSF_RX 0x2000 #define PSF_TX 0x1000 #define EXT_EVENT 1 #define CAL_EVENT 7 #define CAL_TRIGGER 7 #define PER_TRIGGER 6 #define MII_DP83640_MICR 0x11 #define MII_DP83640_MISR 0x12 #define MII_DP83640_MICR_OE 0x1 #define MII_DP83640_MICR_IE 0x2 #define MII_DP83640_MISR_RHF_INT_EN 0x01 #define MII_DP83640_MISR_FHF_INT_EN 0x02 #define MII_DP83640_MISR_ANC_INT_EN 0x04 #define MII_DP83640_MISR_DUP_INT_EN 0x08 #define MII_DP83640_MISR_SPD_INT_EN 0x10 #define MII_DP83640_MISR_LINK_INT_EN 0x20 #define MII_DP83640_MISR_ED_INT_EN 0x40 #define MII_DP83640_MISR_LQ_INT_EN 0x80 /* phyter seems to miss the mark by 16 ns */ #define ADJTIME_FIX 16 #if defined(__BIG_ENDIAN) #define ENDIAN_FLAG 0 #elif defined(__LITTLE_ENDIAN) #define ENDIAN_FLAG PSF_ENDIAN #endif #define SKB_PTP_TYPE(__skb) (*(unsigned int *)((__skb)->cb)) struct phy_rxts { u16 ns_lo; /* ns[15:0] */ u16 ns_hi; /* overflow[1:0], ns[29:16] */ u16 sec_lo; /* sec[15:0] */ u16 sec_hi; /* sec[31:16] */ u16 seqid; /* sequenceId[15:0] */ u16 msgtype; /* messageType[3:0], hash[11:0] */ }; struct phy_txts { u16 ns_lo; /* ns[15:0] */ u16 ns_hi; /* overflow[1:0], ns[29:16] */ u16 sec_lo; /* sec[15:0] */ u16 sec_hi; /* sec[31:16] */ }; struct rxts { struct list_head list; unsigned long tmo; u64 ns; u16 seqid; u8 msgtype; u16 hash; }; struct dp83640_clock; struct dp83640_private { struct list_head list; struct dp83640_clock *clock; struct phy_device *phydev; struct work_struct ts_work; int hwts_tx_en; int hwts_rx_en; int layer; int version; /* remember state of cfg0 during calibration */ int cfg0; /* remember the last event time stamp */ struct phy_txts edata; /* list of rx timestamps */ struct list_head rxts; struct list_head rxpool; struct rxts rx_pool_data[MAX_RXTS]; /* protects above three fields from concurrent access */ spinlock_t rx_lock; /* queues of incoming and outgoing packets */ struct sk_buff_head rx_queue; struct sk_buff_head tx_queue; }; struct dp83640_clock { /* keeps the instance in the 'phyter_clocks' list */ struct list_head list; /* we create one clock instance per MII bus */ struct mii_bus *bus; /* protects extended registers from concurrent access */ struct mutex extreg_lock; /* remembers which page was last selected */ int page; /* our advertised capabilities */ struct ptp_clock_info caps; /* protects the three fields below from concurrent access */ struct mutex clock_lock; /* the one phyter from which we shall read */ struct dp83640_private *chosen; /* list of the other attached phyters, not chosen */ struct list_head phylist; /* reference to our PTP hardware clock */ struct ptp_clock *ptp_clock; }; /* globals */ enum { CALIBRATE_GPIO, PEROUT_GPIO, EXTTS0_GPIO, EXTTS1_GPIO, EXTTS2_GPIO, EXTTS3_GPIO, EXTTS4_GPIO, EXTTS5_GPIO, GPIO_TABLE_SIZE }; static int chosen_phy = -1; static ushort gpio_tab[GPIO_TABLE_SIZE] = { 1, 2, 3, 4, 8, 9, 10, 11 }; module_param(chosen_phy, int, 0444); module_param_array(gpio_tab, ushort, NULL, 0444); MODULE_PARM_DESC(chosen_phy, \ "The address of the PHY to use for the ancillary clock features"); MODULE_PARM_DESC(gpio_tab, \ "Which GPIO line to use for which purpose: cal,perout,extts1,...,extts6"); /* a list of clocks and a mutex to protect it */ static LIST_HEAD(phyter_clocks); static DEFINE_MUTEX(phyter_clocks_lock); static void rx_timestamp_work(struct work_struct *work); /* extended register access functions */ #define BROADCAST_ADDR 31 static inline int broadcast_write(struct mii_bus *bus, u32 regnum, u16 val) { return mdiobus_write(bus, BROADCAST_ADDR, regnum, val); } /* Caller must hold extreg_lock. */ static int ext_read(struct phy_device *phydev, int page, u32 regnum) { struct dp83640_private *dp83640 = phydev->priv; int val; if (dp83640->clock->page != page) { broadcast_write(phydev->bus, PAGESEL, page); dp83640->clock->page = page; } val = phy_read(phydev, regnum); return val; } /* Caller must hold extreg_lock. */ static void ext_write(int broadcast, struct phy_device *phydev, int page, u32 regnum, u16 val) { struct dp83640_private *dp83640 = phydev->priv; if (dp83640->clock->page != page) { broadcast_write(phydev->bus, PAGESEL, page); dp83640->clock->page = page; } if (broadcast) broadcast_write(phydev->bus, regnum, val); else phy_write(phydev, regnum, val); } /* Caller must hold extreg_lock. */ static int tdr_write(int bc, struct phy_device *dev, const struct timespec *ts, u16 cmd) { ext_write(bc, dev, PAGE4, PTP_TDR, ts->tv_nsec & 0xffff);/* ns[15:0] */ ext_write(bc, dev, PAGE4, PTP_TDR, ts->tv_nsec >> 16); /* ns[31:16] */ ext_write(bc, dev, PAGE4, PTP_TDR, ts->tv_sec & 0xffff); /* sec[15:0] */ ext_write(bc, dev, PAGE4, PTP_TDR, ts->tv_sec >> 16); /* sec[31:16]*/ ext_write(bc, dev, PAGE4, PTP_CTL, cmd); return 0; } /* convert phy timestamps into driver timestamps */ static void phy2rxts(struct phy_rxts *p, struct rxts *rxts) { u32 sec; sec = p->sec_lo; sec |= p->sec_hi << 16; rxts->ns = p->ns_lo; rxts->ns |= (p->ns_hi & 0x3fff) << 16; rxts->ns += ((u64)sec) * 1000000000ULL; rxts->seqid = p->seqid; rxts->msgtype = (p->msgtype >> 12) & 0xf; rxts->hash = p->msgtype & 0x0fff; rxts->tmo = jiffies + 2; } static u64 phy2txts(struct phy_txts *p) { u64 ns; u32 sec; sec = p->sec_lo; sec |= p->sec_hi << 16; ns = p->ns_lo; ns |= (p->ns_hi & 0x3fff) << 16; ns += ((u64)sec) * 1000000000ULL; return ns; } static void periodic_output(struct dp83640_clock *clock, struct ptp_clock_request *clkreq, bool on) { struct dp83640_private *dp83640 = clock->chosen; struct phy_device *phydev = dp83640->phydev; u32 sec, nsec, period; u16 gpio, ptp_trig, trigger, val; gpio = on ? gpio_tab[PEROUT_GPIO] : 0; trigger = PER_TRIGGER; ptp_trig = TRIG_WR | (trigger & TRIG_CSEL_MASK) << TRIG_CSEL_SHIFT | (gpio & TRIG_GPIO_MASK) << TRIG_GPIO_SHIFT | TRIG_PER | TRIG_PULSE; val = (trigger & TRIG_SEL_MASK) << TRIG_SEL_SHIFT; if (!on) { val |= TRIG_DIS; mutex_lock(&clock->extreg_lock); ext_write(0, phydev, PAGE5, PTP_TRIG, ptp_trig); ext_write(0, phydev, PAGE4, PTP_CTL, val); mutex_unlock(&clock->extreg_lock); return; } sec = clkreq->perout.start.sec; nsec = clkreq->perout.start.nsec; period = clkreq->perout.period.sec * 1000000000UL; period += clkreq->perout.period.nsec; mutex_lock(&clock->extreg_lock); ext_write(0, phydev, PAGE5, PTP_TRIG, ptp_trig); /*load trigger*/ val |= TRIG_LOAD; ext_write(0, phydev, PAGE4, PTP_CTL, val); ext_write(0, phydev, PAGE4, PTP_TDR, nsec & 0xffff); /* ns[15:0] */ ext_write(0, phydev, PAGE4, PTP_TDR, nsec >> 16); /* ns[31:16] */ ext_write(0, phydev, PAGE4, PTP_TDR, sec & 0xffff); /* sec[15:0] */ ext_write(0, phydev, PAGE4, PTP_TDR, sec >> 16); /* sec[31:16] */ ext_write(0, phydev, PAGE4, PTP_TDR, period & 0xffff); /* ns[15:0] */ ext_write(0, phydev, PAGE4, PTP_TDR, period >> 16); /* ns[31:16] */ /*enable trigger*/ val &= ~TRIG_LOAD; val |= TRIG_EN; ext_write(0, phydev, PAGE4, PTP_CTL, val); mutex_unlock(&clock->extreg_lock); } /* ptp clock methods */ static int ptp_dp83640_adjfreq(struct ptp_clock_info *ptp, s32 ppb) { struct dp83640_clock *clock = container_of(ptp, struct dp83640_clock, caps); struct phy_device *phydev = clock->chosen->phydev; u64 rate; int neg_adj = 0; u16 hi, lo; if (ppb < 0) { neg_adj = 1; ppb = -ppb; } rate = ppb; rate <<= 26; rate = div_u64(rate, 1953125); hi = (rate >> 16) & PTP_RATE_HI_MASK; if (neg_adj) hi |= PTP_RATE_DIR; lo = rate & 0xffff; mutex_lock(&clock->extreg_lock); ext_write(1, phydev, PAGE4, PTP_RATEH, hi); ext_write(1, phydev, PAGE4, PTP_RATEL, lo); mutex_unlock(&clock->extreg_lock); return 0; } static int ptp_dp83640_adjtime(struct ptp_clock_info *ptp, s64 delta) { struct dp83640_clock *clock = container_of(ptp, struct dp83640_clock, caps); struct phy_device *phydev = clock->chosen->phydev; struct timespec ts; int err; delta += ADJTIME_FIX; ts = ns_to_timespec(delta); mutex_lock(&clock->extreg_lock); err = tdr_write(1, phydev, &ts, PTP_STEP_CLK); mutex_unlock(&clock->extreg_lock); return err; } static int ptp_dp83640_gettime(struct ptp_clock_info *ptp, struct timespec *ts) { struct dp83640_clock *clock = container_of(ptp, struct dp83640_clock, caps); struct phy_device *phydev = clock->chosen->phydev; unsigned int val[4]; mutex_lock(&clock->extreg_lock); ext_write(0, phydev, PAGE4, PTP_CTL, PTP_RD_CLK); val[0] = ext_read(phydev, PAGE4, PTP_TDR); /* ns[15:0] */ val[1] = ext_read(phydev, PAGE4, PTP_TDR); /* ns[31:16] */ val[2] = ext_read(phydev, PAGE4, PTP_TDR); /* sec[15:0] */ val[3] = ext_read(phydev, PAGE4, PTP_TDR); /* sec[31:16] */ mutex_unlock(&clock->extreg_lock); ts->tv_nsec = val[0] | (val[1] << 16); ts->tv_sec = val[2] | (val[3] << 16); return 0; } static int ptp_dp83640_settime(struct ptp_clock_info *ptp, const struct timespec *ts) { struct dp83640_clock *clock = container_of(ptp, struct dp83640_clock, caps); struct phy_device *phydev = clock->chosen->phydev; int err; mutex_lock(&clock->extreg_lock); err = tdr_write(1, phydev, ts, PTP_LOAD_CLK); mutex_unlock(&clock->extreg_lock); return err; } static int ptp_dp83640_enable(struct ptp_clock_info *ptp, struct ptp_clock_request *rq, int on) { struct dp83640_clock *clock = container_of(ptp, struct dp83640_clock, caps); struct phy_device *phydev = clock->chosen->phydev; int index; u16 evnt, event_num, gpio_num; switch (rq->type) { case PTP_CLK_REQ_EXTTS: index = rq->extts.index; if (index < 0 || index >= N_EXT_TS) return -EINVAL; event_num = EXT_EVENT + index; evnt = EVNT_WR | (event_num & EVNT_SEL_MASK) << EVNT_SEL_SHIFT; if (on) { gpio_num = gpio_tab[EXTTS0_GPIO + index]; evnt |= (gpio_num & EVNT_GPIO_MASK) << EVNT_GPIO_SHIFT; evnt |= EVNT_RISE; } ext_write(0, phydev, PAGE5, PTP_EVNT, evnt); return 0; case PTP_CLK_REQ_PEROUT: if (rq->perout.index != 0) return -EINVAL; periodic_output(clock, rq, on); return 0; default: break; } return -EOPNOTSUPP; } static u8 status_frame_dst[6] = { 0x01, 0x1B, 0x19, 0x00, 0x00, 0x00 }; static u8 status_frame_src[6] = { 0x08, 0x00, 0x17, 0x0B, 0x6B, 0x0F }; static void enable_status_frames(struct phy_device *phydev, bool on) { u16 cfg0 = 0, ver; if (on) cfg0 = PSF_EVNT_EN | PSF_RXTS_EN | PSF_TXTS_EN | ENDIAN_FLAG; ver = (PSF_PTPVER & VERSIONPTP_MASK) << VERSIONPTP_SHIFT; ext_write(0, phydev, PAGE5, PSF_CFG0, cfg0); ext_write(0, phydev, PAGE6, PSF_CFG1, ver); if (!phydev->attached_dev) { pr_warn("expected to find an attached netdevice\n"); return; } if (on) { if (dev_mc_add(phydev->attached_dev, status_frame_dst)) pr_warn("failed to add mc address\n"); } else { if (dev_mc_del(phydev->attached_dev, status_frame_dst)) pr_warn("failed to delete mc address\n"); } } static bool is_status_frame(struct sk_buff *skb, int type) { struct ethhdr *h = eth_hdr(skb); if (PTP_CLASS_V2_L2 == type && !memcmp(h->h_source, status_frame_src, sizeof(status_frame_src))) return true; else return false; } static int expired(struct rxts *rxts) { return time_after(jiffies, rxts->tmo); } /* Caller must hold rx_lock. */ static void prune_rx_ts(struct dp83640_private *dp83640) { struct list_head *this, *next; struct rxts *rxts; list_for_each_safe(this, next, &dp83640->rxts) { rxts = list_entry(this, struct rxts, list); if (expired(rxts)) { list_del_init(&rxts->list); list_add(&rxts->list, &dp83640->rxpool); } } } /* synchronize the phyters so they act as one clock */ static void enable_broadcast(struct phy_device *phydev, int init_page, int on) { int val; phy_write(phydev, PAGESEL, 0); val = phy_read(phydev, PHYCR2); if (on) val |= BC_WRITE; else val &= ~BC_WRITE; phy_write(phydev, PHYCR2, val); phy_write(phydev, PAGESEL, init_page); } static void recalibrate(struct dp83640_clock *clock) { s64 now, diff; struct phy_txts event_ts; struct timespec ts; struct list_head *this; struct dp83640_private *tmp; struct phy_device *master = clock->chosen->phydev; u16 cal_gpio, cfg0, evnt, ptp_trig, trigger, val; trigger = CAL_TRIGGER; cal_gpio = gpio_tab[CALIBRATE_GPIO]; mutex_lock(&clock->extreg_lock); /* * enable broadcast, disable status frames, enable ptp clock */ list_for_each(this, &clock->phylist) { tmp = list_entry(this, struct dp83640_private, list); enable_broadcast(tmp->phydev, clock->page, 1); tmp->cfg0 = ext_read(tmp->phydev, PAGE5, PSF_CFG0); ext_write(0, tmp->phydev, PAGE5, PSF_CFG0, 0); ext_write(0, tmp->phydev, PAGE4, PTP_CTL, PTP_ENABLE); } enable_broadcast(master, clock->page, 1); cfg0 = ext_read(master, PAGE5, PSF_CFG0); ext_write(0, master, PAGE5, PSF_CFG0, 0); ext_write(0, master, PAGE4, PTP_CTL, PTP_ENABLE); /* * enable an event timestamp */ evnt = EVNT_WR | EVNT_RISE | EVNT_SINGLE; evnt |= (CAL_EVENT & EVNT_SEL_MASK) << EVNT_SEL_SHIFT; evnt |= (cal_gpio & EVNT_GPIO_MASK) << EVNT_GPIO_SHIFT; list_for_each(this, &clock->phylist) { tmp = list_entry(this, struct dp83640_private, list); ext_write(0, tmp->phydev, PAGE5, PTP_EVNT, evnt); } ext_write(0, master, PAGE5, PTP_EVNT, evnt); /* * configure a trigger */ ptp_trig = TRIG_WR | TRIG_IF_LATE | TRIG_PULSE; ptp_trig |= (trigger & TRIG_CSEL_MASK) << TRIG_CSEL_SHIFT; ptp_trig |= (cal_gpio & TRIG_GPIO_MASK) << TRIG_GPIO_SHIFT; ext_write(0, master, PAGE5, PTP_TRIG, ptp_trig); /* load trigger */ val = (trigger & TRIG_SEL_MASK) << TRIG_SEL_SHIFT; val |= TRIG_LOAD; ext_write(0, master, PAGE4, PTP_CTL, val); /* enable trigger */ val &= ~TRIG_LOAD; val |= TRIG_EN; ext_write(0, master, PAGE4, PTP_CTL, val); /* disable trigger */ val = (trigger & TRIG_SEL_MASK) << TRIG_SEL_SHIFT; val |= TRIG_DIS; ext_write(0, master, PAGE4, PTP_CTL, val); /* * read out and correct offsets */ val = ext_read(master, PAGE4, PTP_STS); pr_info("master PTP_STS 0x%04hx\n", val); val = ext_read(master, PAGE4, PTP_ESTS); pr_info("master PTP_ESTS 0x%04hx\n", val); event_ts.ns_lo = ext_read(master, PAGE4, PTP_EDATA); event_ts.ns_hi = ext_read(master, PAGE4, PTP_EDATA); event_ts.sec_lo = ext_read(master, PAGE4, PTP_EDATA); event_ts.sec_hi = ext_read(master, PAGE4, PTP_EDATA); now = phy2txts(&event_ts); list_for_each(this, &clock->phylist) { tmp = list_entry(this, struct dp83640_private, list); val = ext_read(tmp->phydev, PAGE4, PTP_STS); pr_info("slave PTP_STS 0x%04hx\n", val); val = ext_read(tmp->phydev, PAGE4, PTP_ESTS); pr_info("slave PTP_ESTS 0x%04hx\n", val); event_ts.ns_lo = ext_read(tmp->phydev, PAGE4, PTP_EDATA); event_ts.ns_hi = ext_read(tmp->phydev, PAGE4, PTP_EDATA); event_ts.sec_lo = ext_read(tmp->phydev, PAGE4, PTP_EDATA); event_ts.sec_hi = ext_read(tmp->phydev, PAGE4, PTP_EDATA); diff = now - (s64) phy2txts(&event_ts); pr_info("slave offset %lld nanoseconds\n", diff); diff += ADJTIME_FIX; ts = ns_to_timespec(diff); tdr_write(0, tmp->phydev, &ts, PTP_STEP_CLK); } /* * restore status frames */ list_for_each(this, &clock->phylist) { tmp = list_entry(this, struct dp83640_private, list); ext_write(0, tmp->phydev, PAGE5, PSF_CFG0, tmp->cfg0); } ext_write(0, master, PAGE5, PSF_CFG0, cfg0); mutex_unlock(&clock->extreg_lock); } /* time stamping methods */ static inline u16 exts_chan_to_edata(int ch) { return 1 << ((ch + EXT_EVENT) * 2); } static int decode_evnt(struct dp83640_private *dp83640, void *data, u16 ests) { struct phy_txts *phy_txts; struct ptp_clock_event event; int i, parsed; int words = (ests >> EVNT_TS_LEN_SHIFT) & EVNT_TS_LEN_MASK; u16 ext_status = 0; if (ests & MULT_EVNT) { ext_status = *(u16 *) data; data += sizeof(ext_status); } phy_txts = data; switch (words) { /* fall through in every case */ case 3: dp83640->edata.sec_hi = phy_txts->sec_hi; case 2: dp83640->edata.sec_lo = phy_txts->sec_lo; case 1: dp83640->edata.ns_hi = phy_txts->ns_hi; case 0: dp83640->edata.ns_lo = phy_txts->ns_lo; } if (ext_status) { parsed = words + 2; } else { parsed = words + 1; i = ((ests >> EVNT_NUM_SHIFT) & EVNT_NUM_MASK) - EXT_EVENT; ext_status = exts_chan_to_edata(i); } event.type = PTP_CLOCK_EXTTS; event.timestamp = phy2txts(&dp83640->edata); for (i = 0; i < N_EXT_TS; i++) { if (ext_status & exts_chan_to_edata(i)) { event.index = i; ptp_clock_event(dp83640->clock->ptp_clock, &event); } } return parsed * sizeof(u16); } static void decode_rxts(struct dp83640_private *dp83640, struct phy_rxts *phy_rxts) { struct rxts *rxts; unsigned long flags; spin_lock_irqsave(&dp83640->rx_lock, flags); prune_rx_ts(dp83640); if (list_empty(&dp83640->rxpool)) { pr_debug("rx timestamp pool is empty\n"); goto out; } rxts = list_first_entry(&dp83640->rxpool, struct rxts, list); list_del_init(&rxts->list); phy2rxts(phy_rxts, rxts); list_add_tail(&rxts->list, &dp83640->rxts); out: spin_unlock_irqrestore(&dp83640->rx_lock, flags); } static void decode_txts(struct dp83640_private *dp83640, struct phy_txts *phy_txts) { struct skb_shared_hwtstamps shhwtstamps; struct sk_buff *skb; u64 ns; /* We must already have the skb that triggered this. */ skb = skb_dequeue(&dp83640->tx_queue); if (!skb) { pr_debug("have timestamp but tx_queue empty\n"); return; } ns = phy2txts(phy_txts); memset(&shhwtstamps, 0, sizeof(shhwtstamps)); shhwtstamps.hwtstamp = ns_to_ktime(ns); skb_complete_tx_timestamp(skb, &shhwtstamps); } static void decode_status_frame(struct dp83640_private *dp83640, struct sk_buff *skb) { struct phy_rxts *phy_rxts; struct phy_txts *phy_txts; u8 *ptr; int len, size; u16 ests, type; ptr = skb->data + 2; for (len = skb_headlen(skb) - 2; len > sizeof(type); len -= size) { type = *(u16 *)ptr; ests = type & 0x0fff; type = type & 0xf000; len -= sizeof(type); ptr += sizeof(type); if (PSF_RX == type && len >= sizeof(*phy_rxts)) { phy_rxts = (struct phy_rxts *) ptr; decode_rxts(dp83640, phy_rxts); size = sizeof(*phy_rxts); } else if (PSF_TX == type && len >= sizeof(*phy_txts)) { phy_txts = (struct phy_txts *) ptr; decode_txts(dp83640, phy_txts); size = sizeof(*phy_txts); } else if (PSF_EVNT == type && len >= sizeof(*phy_txts)) { size = decode_evnt(dp83640, ptr, ests); } else { size = 0; break; } ptr += size; } } static int is_sync(struct sk_buff *skb, int type) { u8 *data = skb->data, *msgtype; unsigned int offset = 0; switch (type) { case PTP_CLASS_V1_IPV4: case PTP_CLASS_V2_IPV4: offset = ETH_HLEN + IPV4_HLEN(data) + UDP_HLEN; break; case PTP_CLASS_V1_IPV6: case PTP_CLASS_V2_IPV6: offset = OFF_PTP6; break; case PTP_CLASS_V2_L2: offset = ETH_HLEN; break; case PTP_CLASS_V2_VLAN: offset = ETH_HLEN + VLAN_HLEN; break; default: return 0; } if (type & PTP_CLASS_V1) offset += OFF_PTP_CONTROL; if (skb->len < offset + 1) return 0; msgtype = data + offset; return (*msgtype & 0xf) == 0; } static int match(struct sk_buff *skb, unsigned int type, struct rxts *rxts) { u16 *seqid; unsigned int offset; u8 *msgtype, *data = skb_mac_header(skb); /* check sequenceID, messageType, 12 bit hash of offset 20-29 */ switch (type) { case PTP_CLASS_V1_IPV4: case PTP_CLASS_V2_IPV4: offset = ETH_HLEN + IPV4_HLEN(data) + UDP_HLEN; break; case PTP_CLASS_V1_IPV6: case PTP_CLASS_V2_IPV6: offset = OFF_PTP6; break; case PTP_CLASS_V2_L2: offset = ETH_HLEN; break; case PTP_CLASS_V2_VLAN: offset = ETH_HLEN + VLAN_HLEN; break; default: return 0; } if (skb->len + ETH_HLEN < offset + OFF_PTP_SEQUENCE_ID + sizeof(*seqid)) return 0; if (unlikely(type & PTP_CLASS_V1)) msgtype = data + offset + OFF_PTP_CONTROL; else msgtype = data + offset; seqid = (u16 *)(data + offset + OFF_PTP_SEQUENCE_ID); return (rxts->msgtype == (*msgtype & 0xf) && rxts->seqid == ntohs(*seqid)); } static void dp83640_free_clocks(void) { struct dp83640_clock *clock; struct list_head *this, *next; mutex_lock(&phyter_clocks_lock); list_for_each_safe(this, next, &phyter_clocks) { clock = list_entry(this, struct dp83640_clock, list); if (!list_empty(&clock->phylist)) { pr_warn("phy list non-empty while unloading\n"); BUG(); } list_del(&clock->list); mutex_destroy(&clock->extreg_lock); mutex_destroy(&clock->clock_lock); put_device(&clock->bus->dev); kfree(clock); } mutex_unlock(&phyter_clocks_lock); } static void dp83640_clock_init(struct dp83640_clock *clock, struct mii_bus *bus) { INIT_LIST_HEAD(&clock->list); clock->bus = bus; mutex_init(&clock->extreg_lock); mutex_init(&clock->clock_lock); INIT_LIST_HEAD(&clock->phylist); clock->caps.owner = THIS_MODULE; sprintf(clock->caps.name, "dp83640 timer"); clock->caps.max_adj = 1953124; clock->caps.n_alarm = 0; clock->caps.n_ext_ts = N_EXT_TS; clock->caps.n_per_out = 1; clock->caps.pps = 0; clock->caps.adjfreq = ptp_dp83640_adjfreq; clock->caps.adjtime = ptp_dp83640_adjtime; clock->caps.gettime = ptp_dp83640_gettime; clock->caps.settime = ptp_dp83640_settime; clock->caps.enable = ptp_dp83640_enable; /* * Get a reference to this bus instance. */ get_device(&bus->dev); } static int choose_this_phy(struct dp83640_clock *clock, struct phy_device *phydev) { if (chosen_phy == -1 && !clock->chosen) return 1; if (chosen_phy == phydev->addr) return 1; return 0; } static struct dp83640_clock *dp83640_clock_get(struct dp83640_clock *clock) { if (clock) mutex_lock(&clock->clock_lock); return clock; } /* * Look up and lock a clock by bus instance. * If there is no clock for this bus, then create it first. */ static struct dp83640_clock *dp83640_clock_get_bus(struct mii_bus *bus) { struct dp83640_clock *clock = NULL, *tmp; struct list_head *this; mutex_lock(&phyter_clocks_lock); list_for_each(this, &phyter_clocks) { tmp = list_entry(this, struct dp83640_clock, list); if (tmp->bus == bus) { clock = tmp; break; } } if (clock) goto out; clock = kzalloc(sizeof(struct dp83640_clock), GFP_KERNEL); if (!clock) goto out; dp83640_clock_init(clock, bus); list_add_tail(&phyter_clocks, &clock->list); out: mutex_unlock(&phyter_clocks_lock); return dp83640_clock_get(clock); } static void dp83640_clock_put(struct dp83640_clock *clock) { mutex_unlock(&clock->clock_lock); } static int dp83640_probe(struct phy_device *phydev) { struct dp83640_clock *clock; struct dp83640_private *dp83640; int err = -ENOMEM, i; if (phydev->addr == BROADCAST_ADDR) return 0; clock = dp83640_clock_get_bus(phydev->bus); if (!clock) goto no_clock; dp83640 = kzalloc(sizeof(struct dp83640_private), GFP_KERNEL); if (!dp83640) goto no_memory; dp83640->phydev = phydev; INIT_WORK(&dp83640->ts_work, rx_timestamp_work); INIT_LIST_HEAD(&dp83640->rxts); INIT_LIST_HEAD(&dp83640->rxpool); for (i = 0; i < MAX_RXTS; i++) list_add(&dp83640->rx_pool_data[i].list, &dp83640->rxpool); phydev->priv = dp83640; spin_lock_init(&dp83640->rx_lock); skb_queue_head_init(&dp83640->rx_queue); skb_queue_head_init(&dp83640->tx_queue); dp83640->clock = clock; if (choose_this_phy(clock, phydev)) { clock->chosen = dp83640; clock->ptp_clock = ptp_clock_register(&clock->caps, &phydev->dev); if (IS_ERR(clock->ptp_clock)) { err = PTR_ERR(clock->ptp_clock); goto no_register; } } else list_add_tail(&dp83640->list, &clock->phylist); if (clock->chosen && !list_empty(&clock->phylist)) recalibrate(clock); else enable_broadcast(dp83640->phydev, clock->page, 1); dp83640_clock_put(clock); return 0; no_register: clock->chosen = NULL; kfree(dp83640); no_memory: dp83640_clock_put(clock); no_clock: return err; } static void dp83640_remove(struct phy_device *phydev) { struct dp83640_clock *clock; struct list_head *this, *next; struct dp83640_private *tmp, *dp83640 = phydev->priv; struct sk_buff *skb; if (phydev->addr == BROADCAST_ADDR) return; enable_status_frames(phydev, false); cancel_work_sync(&dp83640->ts_work); while ((skb = skb_dequeue(&dp83640->rx_queue)) != NULL) kfree_skb(skb); while ((skb = skb_dequeue(&dp83640->tx_queue)) != NULL) skb_complete_tx_timestamp(skb, NULL); clock = dp83640_clock_get(dp83640->clock); if (dp83640 == clock->chosen) { ptp_clock_unregister(clock->ptp_clock); clock->chosen = NULL; } else { list_for_each_safe(this, next, &clock->phylist) { tmp = list_entry(this, struct dp83640_private, list); if (tmp == dp83640) { list_del_init(&tmp->list); break; } } } dp83640_clock_put(clock); kfree(dp83640); } static int dp83640_ack_interrupt(struct phy_device *phydev) { int err = phy_read(phydev, MII_DP83640_MISR); if (err < 0) return err; return 0; } static int dp83640_config_intr(struct phy_device *phydev) { int micr; int misr; int err; if (phydev->interrupts == PHY_INTERRUPT_ENABLED) { misr = phy_read(phydev, MII_DP83640_MISR); if (misr < 0) return misr; misr |= (MII_DP83640_MISR_ANC_INT_EN | MII_DP83640_MISR_DUP_INT_EN | MII_DP83640_MISR_SPD_INT_EN | MII_DP83640_MISR_LINK_INT_EN); err = phy_write(phydev, MII_DP83640_MISR, misr); if (err < 0) return err; micr = phy_read(phydev, MII_DP83640_MICR); if (micr < 0) return micr; micr |= (MII_DP83640_MICR_OE | MII_DP83640_MICR_IE); return phy_write(phydev, MII_DP83640_MICR, micr); } else { micr = phy_read(phydev, MII_DP83640_MICR); if (micr < 0) return micr; micr &= ~(MII_DP83640_MICR_OE | MII_DP83640_MICR_IE); err = phy_write(phydev, MII_DP83640_MICR, micr); if (err < 0) return err; misr = phy_read(phydev, MII_DP83640_MISR); if (misr < 0) return misr; misr &= ~(MII_DP83640_MISR_ANC_INT_EN | MII_DP83640_MISR_DUP_INT_EN | MII_DP83640_MISR_SPD_INT_EN | MII_DP83640_MISR_LINK_INT_EN); return phy_write(phydev, MII_DP83640_MISR, misr); } } static int dp83640_hwtstamp(struct phy_device *phydev, struct ifreq *ifr) { struct dp83640_private *dp83640 = phydev->priv; struct hwtstamp_config cfg; u16 txcfg0, rxcfg0; if (copy_from_user(&cfg, ifr->ifr_data, sizeof(cfg))) return -EFAULT; if (cfg.flags) /* reserved for future extensions */ return -EINVAL; if (cfg.tx_type < 0 || cfg.tx_type > HWTSTAMP_TX_ONESTEP_SYNC) return -ERANGE; dp83640->hwts_tx_en = cfg.tx_type; switch (cfg.rx_filter) { case HWTSTAMP_FILTER_NONE: dp83640->hwts_rx_en = 0; dp83640->layer = 0; dp83640->version = 0; break; case HWTSTAMP_FILTER_PTP_V1_L4_EVENT: case HWTSTAMP_FILTER_PTP_V1_L4_SYNC: case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ: dp83640->hwts_rx_en = 1; dp83640->layer = LAYER4; dp83640->version = 1; break; case HWTSTAMP_FILTER_PTP_V2_L4_EVENT: case HWTSTAMP_FILTER_PTP_V2_L4_SYNC: case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ: dp83640->hwts_rx_en = 1; dp83640->layer = LAYER4; dp83640->version = 2; break; case HWTSTAMP_FILTER_PTP_V2_L2_EVENT: case HWTSTAMP_FILTER_PTP_V2_L2_SYNC: case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ: dp83640->hwts_rx_en = 1; dp83640->layer = LAYER2; dp83640->version = 2; break; case HWTSTAMP_FILTER_PTP_V2_EVENT: case HWTSTAMP_FILTER_PTP_V2_SYNC: case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ: dp83640->hwts_rx_en = 1; dp83640->layer = LAYER4|LAYER2; dp83640->version = 2; break; default: return -ERANGE; } txcfg0 = (dp83640->version & TX_PTP_VER_MASK) << TX_PTP_VER_SHIFT; rxcfg0 = (dp83640->version & TX_PTP_VER_MASK) << TX_PTP_VER_SHIFT; if (dp83640->layer & LAYER2) { txcfg0 |= TX_L2_EN; rxcfg0 |= RX_L2_EN; } if (dp83640->layer & LAYER4) { txcfg0 |= TX_IPV6_EN | TX_IPV4_EN; rxcfg0 |= RX_IPV6_EN | RX_IPV4_EN; } if (dp83640->hwts_tx_en) txcfg0 |= TX_TS_EN; if (dp83640->hwts_tx_en == HWTSTAMP_TX_ONESTEP_SYNC) txcfg0 |= SYNC_1STEP | CHK_1STEP; if (dp83640->hwts_rx_en) rxcfg0 |= RX_TS_EN; mutex_lock(&dp83640->clock->extreg_lock); if (dp83640->hwts_tx_en || dp83640->hwts_rx_en) { enable_status_frames(phydev, true); ext_write(0, phydev, PAGE4, PTP_CTL, PTP_ENABLE); } ext_write(0, phydev, PAGE5, PTP_TXCFG0, txcfg0); ext_write(0, phydev, PAGE5, PTP_RXCFG0, rxcfg0); mutex_unlock(&dp83640->clock->extreg_lock); return copy_to_user(ifr->ifr_data, &cfg, sizeof(cfg)) ? -EFAULT : 0; } static void rx_timestamp_work(struct work_struct *work) { struct dp83640_private *dp83640 = container_of(work, struct dp83640_private, ts_work); struct list_head *this, *next; struct rxts *rxts; struct skb_shared_hwtstamps *shhwtstamps; struct sk_buff *skb; unsigned int type; unsigned long flags; /* Deliver each deferred packet, with or without a time stamp. */ while ((skb = skb_dequeue(&dp83640->rx_queue)) != NULL) { type = SKB_PTP_TYPE(skb); spin_lock_irqsave(&dp83640->rx_lock, flags); list_for_each_safe(this, next, &dp83640->rxts) { rxts = list_entry(this, struct rxts, list); if (match(skb, type, rxts)) { shhwtstamps = skb_hwtstamps(skb); memset(shhwtstamps, 0, sizeof(*shhwtstamps)); shhwtstamps->hwtstamp = ns_to_ktime(rxts->ns); list_del_init(&rxts->list); list_add(&rxts->list, &dp83640->rxpool); break; } } spin_unlock_irqrestore(&dp83640->rx_lock, flags); netif_rx_ni(skb); } /* Clear out expired time stamps. */ spin_lock_irqsave(&dp83640->rx_lock, flags); prune_rx_ts(dp83640); spin_unlock_irqrestore(&dp83640->rx_lock, flags); } static bool dp83640_rxtstamp(struct phy_device *phydev, struct sk_buff *skb, int type) { struct dp83640_private *dp83640 = phydev->priv; if (!dp83640->hwts_rx_en) return false; if (is_status_frame(skb, type)) { decode_status_frame(dp83640, skb); kfree_skb(skb); return true; } SKB_PTP_TYPE(skb) = type; skb_queue_tail(&dp83640->rx_queue, skb); schedule_work(&dp83640->ts_work); return true; } static void dp83640_txtstamp(struct phy_device *phydev, struct sk_buff *skb, int type) { struct dp83640_private *dp83640 = phydev->priv; switch (dp83640->hwts_tx_en) { case HWTSTAMP_TX_ONESTEP_SYNC: if (is_sync(skb, type)) { skb_complete_tx_timestamp(skb, NULL); return; } /* fall through */ case HWTSTAMP_TX_ON: skb_queue_tail(&dp83640->tx_queue, skb); schedule_work(&dp83640->ts_work); break; case HWTSTAMP_TX_OFF: default: skb_complete_tx_timestamp(skb, NULL); break; } } static int dp83640_ts_info(struct phy_device *dev, struct ethtool_ts_info *info) { struct dp83640_private *dp83640 = dev->priv; info->so_timestamping = SOF_TIMESTAMPING_TX_HARDWARE | SOF_TIMESTAMPING_RX_HARDWARE | SOF_TIMESTAMPING_RAW_HARDWARE; info->phc_index = ptp_clock_index(dp83640->clock->ptp_clock); info->tx_types = (1 << HWTSTAMP_TX_OFF) | (1 << HWTSTAMP_TX_ON) | (1 << HWTSTAMP_TX_ONESTEP_SYNC); info->rx_filters = (1 << HWTSTAMP_FILTER_NONE) | (1 << HWTSTAMP_FILTER_PTP_V1_L4_EVENT) | (1 << HWTSTAMP_FILTER_PTP_V1_L4_SYNC) | (1 << HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ) | (1 << HWTSTAMP_FILTER_PTP_V2_L4_EVENT) | (1 << HWTSTAMP_FILTER_PTP_V2_L4_SYNC) | (1 << HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ) | (1 << HWTSTAMP_FILTER_PTP_V2_L2_EVENT) | (1 << HWTSTAMP_FILTER_PTP_V2_L2_SYNC) | (1 << HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ) | (1 << HWTSTAMP_FILTER_PTP_V2_EVENT) | (1 << HWTSTAMP_FILTER_PTP_V2_SYNC) | (1 << HWTSTAMP_FILTER_PTP_V2_DELAY_REQ); return 0; } static struct phy_driver dp83640_driver = { .phy_id = DP83640_PHY_ID, .phy_id_mask = 0xfffffff0, .name = "NatSemi DP83640", .features = PHY_BASIC_FEATURES, .flags = PHY_HAS_INTERRUPT, .probe = dp83640_probe, .remove = dp83640_remove, .config_aneg = genphy_config_aneg, .read_status = genphy_read_status, .ack_interrupt = dp83640_ack_interrupt, .config_intr = dp83640_config_intr, .ts_info = dp83640_ts_info, .hwtstamp = dp83640_hwtstamp, .rxtstamp = dp83640_rxtstamp, .txtstamp = dp83640_txtstamp, .driver = {.owner = THIS_MODULE,} }; static int __init dp83640_init(void) { return phy_driver_register(&dp83640_driver); } static void __exit dp83640_exit(void) { dp83640_free_clocks(); phy_driver_unregister(&dp83640_driver); } MODULE_DESCRIPTION("National Semiconductor DP83640 PHY driver"); MODULE_AUTHOR("Richard Cochran "); MODULE_LICENSE("GPL"); module_init(dp83640_init); module_exit(dp83640_exit); static struct mdio_device_id __maybe_unused dp83640_tbl[] = { { DP83640_PHY_ID, 0xfffffff0 }, { } }; MODULE_DEVICE_TABLE(mdio, dp83640_tbl);