/* * Intel IXP4xx HSS (synchronous serial port) driver for Linux * * Copyright (C) 2007-2008 Krzysztof HaƂasa * * This program is free software; you can redistribute it and/or modify it * under the terms of version 2 of the GNU General Public License * as published by the Free Software Foundation. */ #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt #include #include #include #include #include #include #include #include #include #include #include #include #include #include #define DEBUG_DESC 0 #define DEBUG_RX 0 #define DEBUG_TX 0 #define DEBUG_PKT_BYTES 0 #define DEBUG_CLOSE 0 #define DRV_NAME "ixp4xx_hss" #define PKT_EXTRA_FLAGS 0 /* orig 1 */ #define PKT_NUM_PIPES 1 /* 1, 2 or 4 */ #define PKT_PIPE_FIFO_SIZEW 4 /* total 4 dwords per HSS */ #define RX_DESCS 16 /* also length of all RX queues */ #define TX_DESCS 16 /* also length of all TX queues */ #define POOL_ALLOC_SIZE (sizeof(struct desc) * (RX_DESCS + TX_DESCS)) #define RX_SIZE (HDLC_MAX_MRU + 4) /* NPE needs more space */ #define MAX_CLOSE_WAIT 1000 /* microseconds */ #define HSS_COUNT 2 #define FRAME_SIZE 256 /* doesn't matter at this point */ #define FRAME_OFFSET 0 #define MAX_CHANNELS (FRAME_SIZE / 8) #define NAPI_WEIGHT 16 /* Queue IDs */ #define HSS0_CHL_RXTRIG_QUEUE 12 /* orig size = 32 dwords */ #define HSS0_PKT_RX_QUEUE 13 /* orig size = 32 dwords */ #define HSS0_PKT_TX0_QUEUE 14 /* orig size = 16 dwords */ #define HSS0_PKT_TX1_QUEUE 15 #define HSS0_PKT_TX2_QUEUE 16 #define HSS0_PKT_TX3_QUEUE 17 #define HSS0_PKT_RXFREE0_QUEUE 18 /* orig size = 16 dwords */ #define HSS0_PKT_RXFREE1_QUEUE 19 #define HSS0_PKT_RXFREE2_QUEUE 20 #define HSS0_PKT_RXFREE3_QUEUE 21 #define HSS0_PKT_TXDONE_QUEUE 22 /* orig size = 64 dwords */ #define HSS1_CHL_RXTRIG_QUEUE 10 #define HSS1_PKT_RX_QUEUE 0 #define HSS1_PKT_TX0_QUEUE 5 #define HSS1_PKT_TX1_QUEUE 6 #define HSS1_PKT_TX2_QUEUE 7 #define HSS1_PKT_TX3_QUEUE 8 #define HSS1_PKT_RXFREE0_QUEUE 1 #define HSS1_PKT_RXFREE1_QUEUE 2 #define HSS1_PKT_RXFREE2_QUEUE 3 #define HSS1_PKT_RXFREE3_QUEUE 4 #define HSS1_PKT_TXDONE_QUEUE 9 #define NPE_PKT_MODE_HDLC 0 #define NPE_PKT_MODE_RAW 1 #define NPE_PKT_MODE_56KMODE 2 #define NPE_PKT_MODE_56KENDIAN_MSB 4 /* PKT_PIPE_HDLC_CFG_WRITE flags */ #define PKT_HDLC_IDLE_ONES 0x1 /* default = flags */ #define PKT_HDLC_CRC_32 0x2 /* default = CRC-16 */ #define PKT_HDLC_MSB_ENDIAN 0x4 /* default = LE */ /* hss_config, PCRs */ /* Frame sync sampling, default = active low */ #define PCR_FRM_SYNC_ACTIVE_HIGH 0x40000000 #define PCR_FRM_SYNC_FALLINGEDGE 0x80000000 #define PCR_FRM_SYNC_RISINGEDGE 0xC0000000 /* Frame sync pin: input (default) or output generated off a given clk edge */ #define PCR_FRM_SYNC_OUTPUT_FALLING 0x20000000 #define PCR_FRM_SYNC_OUTPUT_RISING 0x30000000 /* Frame and data clock sampling on edge, default = falling */ #define PCR_FCLK_EDGE_RISING 0x08000000 #define PCR_DCLK_EDGE_RISING 0x04000000 /* Clock direction, default = input */ #define PCR_SYNC_CLK_DIR_OUTPUT 0x02000000 /* Generate/Receive frame pulses, default = enabled */ #define PCR_FRM_PULSE_DISABLED 0x01000000 /* Data rate is full (default) or half the configured clk speed */ #define PCR_HALF_CLK_RATE 0x00200000 /* Invert data between NPE and HSS FIFOs? (default = no) */ #define PCR_DATA_POLARITY_INVERT 0x00100000 /* TX/RX endianness, default = LSB */ #define PCR_MSB_ENDIAN 0x00080000 /* Normal (default) / open drain mode (TX only) */ #define PCR_TX_PINS_OPEN_DRAIN 0x00040000 /* No framing bit transmitted and expected on RX? (default = framing bit) */ #define PCR_SOF_NO_FBIT 0x00020000 /* Drive data pins? */ #define PCR_TX_DATA_ENABLE 0x00010000 /* Voice 56k type: drive the data pins low (default), high, high Z */ #define PCR_TX_V56K_HIGH 0x00002000 #define PCR_TX_V56K_HIGH_IMP 0x00004000 /* Unassigned type: drive the data pins low (default), high, high Z */ #define PCR_TX_UNASS_HIGH 0x00000800 #define PCR_TX_UNASS_HIGH_IMP 0x00001000 /* T1 @ 1.544MHz only: Fbit dictated in FIFO (default) or high Z */ #define PCR_TX_FB_HIGH_IMP 0x00000400 /* 56k data endiannes - which bit unused: high (default) or low */ #define PCR_TX_56KE_BIT_0_UNUSED 0x00000200 /* 56k data transmission type: 32/8 bit data (default) or 56K data */ #define PCR_TX_56KS_56K_DATA 0x00000100 /* hss_config, cCR */ /* Number of packetized clients, default = 1 */ #define CCR_NPE_HFIFO_2_HDLC 0x04000000 #define CCR_NPE_HFIFO_3_OR_4HDLC 0x08000000 /* default = no loopback */ #define CCR_LOOPBACK 0x02000000 /* HSS number, default = 0 (first) */ #define CCR_SECOND_HSS 0x01000000 /* hss_config, clkCR: main:10, num:10, denom:12 */ #define CLK42X_SPEED_EXP ((0x3FF << 22) | ( 2 << 12) | 15) /*65 KHz*/ #define CLK42X_SPEED_512KHZ (( 130 << 22) | ( 2 << 12) | 15) #define CLK42X_SPEED_1536KHZ (( 43 << 22) | ( 18 << 12) | 47) #define CLK42X_SPEED_1544KHZ (( 43 << 22) | ( 33 << 12) | 192) #define CLK42X_SPEED_2048KHZ (( 32 << 22) | ( 34 << 12) | 63) #define CLK42X_SPEED_4096KHZ (( 16 << 22) | ( 34 << 12) | 127) #define CLK42X_SPEED_8192KHZ (( 8 << 22) | ( 34 << 12) | 255) #define CLK46X_SPEED_512KHZ (( 130 << 22) | ( 24 << 12) | 127) #define CLK46X_SPEED_1536KHZ (( 43 << 22) | (152 << 12) | 383) #define CLK46X_SPEED_1544KHZ (( 43 << 22) | ( 66 << 12) | 385) #define CLK46X_SPEED_2048KHZ (( 32 << 22) | (280 << 12) | 511) #define CLK46X_SPEED_4096KHZ (( 16 << 22) | (280 << 12) | 1023) #define CLK46X_SPEED_8192KHZ (( 8 << 22) | (280 << 12) | 2047) /* * HSS_CONFIG_CLOCK_CR register consists of 3 parts: * A (10 bits), B (10 bits) and C (12 bits). * IXP42x HSS clock generator operation (verified with an oscilloscope): * Each clock bit takes 7.5 ns (1 / 133.xx MHz). * The clock sequence consists of (C - B) states of 0s and 1s, each state is * A bits wide. It's followed by (B + 1) states of 0s and 1s, each state is * (A + 1) bits wide. * * The resulting average clock frequency (assuming 33.333 MHz oscillator) is: * freq = 66.666 MHz / (A + (B + 1) / (C + 1)) * minimum freq = 66.666 MHz / (A + 1) * maximum freq = 66.666 MHz / A * * Example: A = 2, B = 2, C = 7, CLOCK_CR register = 2 << 22 | 2 << 12 | 7 * freq = 66.666 MHz / (2 + (2 + 1) / (7 + 1)) = 28.07 MHz (Mb/s). * The clock sequence is: 1100110011 (5 doubles) 000111000 (3 triples). * The sequence takes (C - B) * A + (B + 1) * (A + 1) = 5 * 2 + 3 * 3 bits * = 19 bits (each 7.5 ns long) = 142.5 ns (then the sequence repeats). * The sequence consists of 4 complete clock periods, thus the average * frequency (= clock rate) is 4 / 142.5 ns = 28.07 MHz (Mb/s). * (max specified clock rate for IXP42x HSS is 8.192 Mb/s). */ /* hss_config, LUT entries */ #define TDMMAP_UNASSIGNED 0 #define TDMMAP_HDLC 1 /* HDLC - packetized */ #define TDMMAP_VOICE56K 2 /* Voice56K - 7-bit channelized */ #define TDMMAP_VOICE64K 3 /* Voice64K - 8-bit channelized */ /* offsets into HSS config */ #define HSS_CONFIG_TX_PCR 0x00 /* port configuration registers */ #define HSS_CONFIG_RX_PCR 0x04 #define HSS_CONFIG_CORE_CR 0x08 /* loopback control, HSS# */ #define HSS_CONFIG_CLOCK_CR 0x0C /* clock generator control */ #define HSS_CONFIG_TX_FCR 0x10 /* frame configuration registers */ #define HSS_CONFIG_RX_FCR 0x14 #define HSS_CONFIG_TX_LUT 0x18 /* channel look-up tables */ #define HSS_CONFIG_RX_LUT 0x38 /* NPE command codes */ /* writes the ConfigWord value to the location specified by offset */ #define PORT_CONFIG_WRITE 0x40 /* triggers the NPE to load the contents of the configuration table */ #define PORT_CONFIG_LOAD 0x41 /* triggers the NPE to return an HssErrorReadResponse message */ #define PORT_ERROR_READ 0x42 /* triggers the NPE to reset internal status and enable the HssPacketized operation for the flow specified by pPipe */ #define PKT_PIPE_FLOW_ENABLE 0x50 #define PKT_PIPE_FLOW_DISABLE 0x51 #define PKT_NUM_PIPES_WRITE 0x52 #define PKT_PIPE_FIFO_SIZEW_WRITE 0x53 #define PKT_PIPE_HDLC_CFG_WRITE 0x54 #define PKT_PIPE_IDLE_PATTERN_WRITE 0x55 #define PKT_PIPE_RX_SIZE_WRITE 0x56 #define PKT_PIPE_MODE_WRITE 0x57 /* HDLC packet status values - desc->status */ #define ERR_SHUTDOWN 1 /* stop or shutdown occurrence */ #define ERR_HDLC_ALIGN 2 /* HDLC alignment error */ #define ERR_HDLC_FCS 3 /* HDLC Frame Check Sum error */ #define ERR_RXFREE_Q_EMPTY 4 /* RX-free queue became empty while receiving this packet (if buf_len < pkt_len) */ #define ERR_HDLC_TOO_LONG 5 /* HDLC frame size too long */ #define ERR_HDLC_ABORT 6 /* abort sequence received */ #define ERR_DISCONNECTING 7 /* disconnect is in progress */ #ifdef __ARMEB__ typedef struct sk_buff buffer_t; #define free_buffer dev_kfree_skb #define free_buffer_irq dev_kfree_skb_irq #else typedef void buffer_t; #define free_buffer kfree #define free_buffer_irq kfree #endif struct port { struct device *dev; struct npe *npe; struct net_device *netdev; struct napi_struct napi; struct hss_plat_info *plat; buffer_t *rx_buff_tab[RX_DESCS], *tx_buff_tab[TX_DESCS]; struct desc *desc_tab; /* coherent */ u32 desc_tab_phys; unsigned int id; unsigned int clock_type, clock_rate, loopback; unsigned int initialized, carrier; u8 hdlc_cfg; u32 clock_reg; }; /* NPE message structure */ struct msg { #ifdef __ARMEB__ u8 cmd, unused, hss_port, index; union { struct { u8 data8a, data8b, data8c, data8d; }; struct { u16 data16a, data16b; }; struct { u32 data32; }; }; #else u8 index, hss_port, unused, cmd; union { struct { u8 data8d, data8c, data8b, data8a; }; struct { u16 data16b, data16a; }; struct { u32 data32; }; }; #endif }; /* HDLC packet descriptor */ struct desc { u32 next; /* pointer to next buffer, unused */ #ifdef __ARMEB__ u16 buf_len; /* buffer length */ u16 pkt_len; /* packet length */ u32 data; /* pointer to data buffer in RAM */ u8 status; u8 error_count; u16 __reserved; #else u16 pkt_len; /* packet length */ u16 buf_len; /* buffer length */ u32 data; /* pointer to data buffer in RAM */ u16 __reserved; u8 error_count; u8 status; #endif u32 __reserved1[4]; }; #define rx_desc_phys(port, n) ((port)->desc_tab_phys + \ (n) * sizeof(struct desc)) #define rx_desc_ptr(port, n) (&(port)->desc_tab[n]) #define tx_desc_phys(port, n) ((port)->desc_tab_phys + \ ((n) + RX_DESCS) * sizeof(struct desc)) #define tx_desc_ptr(port, n) (&(port)->desc_tab[(n) + RX_DESCS]) /***************************************************************************** * global variables ****************************************************************************/ static int ports_open; static struct dma_pool *dma_pool; static spinlock_t npe_lock; static const struct { int tx, txdone, rx, rxfree; }queue_ids[2] = {{HSS0_PKT_TX0_QUEUE, HSS0_PKT_TXDONE_QUEUE, HSS0_PKT_RX_QUEUE, HSS0_PKT_RXFREE0_QUEUE}, {HSS1_PKT_TX0_QUEUE, HSS1_PKT_TXDONE_QUEUE, HSS1_PKT_RX_QUEUE, HSS1_PKT_RXFREE0_QUEUE}, }; /***************************************************************************** * utility functions ****************************************************************************/ static inline struct port* dev_to_port(struct net_device *dev) { return dev_to_hdlc(dev)->priv; } #ifndef __ARMEB__ static inline void memcpy_swab32(u32 *dest, u32 *src, int cnt) { int i; for (i = 0; i < cnt; i++) dest[i] = swab32(src[i]); } #endif /***************************************************************************** * HSS access ****************************************************************************/ static void hss_npe_send(struct port *port, struct msg *msg, const char* what) { u32 *val = (u32*)msg; if (npe_send_message(port->npe, msg, what)) { pr_crit("HSS-%i: unable to send command [%08X:%08X] to %s\n", port->id, val[0], val[1], npe_name(port->npe)); BUG(); } } static void hss_config_set_lut(struct port *port) { struct msg msg; int ch; memset(&msg, 0, sizeof(msg)); msg.cmd = PORT_CONFIG_WRITE; msg.hss_port = port->id; for (ch = 0; ch < MAX_CHANNELS; ch++) { msg.data32 >>= 2; msg.data32 |= TDMMAP_HDLC << 30; if (ch % 16 == 15) { msg.index = HSS_CONFIG_TX_LUT + ((ch / 4) & ~3); hss_npe_send(port, &msg, "HSS_SET_TX_LUT"); msg.index += HSS_CONFIG_RX_LUT - HSS_CONFIG_TX_LUT; hss_npe_send(port, &msg, "HSS_SET_RX_LUT"); } } } static void hss_config(struct port *port) { struct msg msg; memset(&msg, 0, sizeof(msg)); msg.cmd = PORT_CONFIG_WRITE; msg.hss_port = port->id; msg.index = HSS_CONFIG_TX_PCR; msg.data32 = PCR_FRM_PULSE_DISABLED | PCR_MSB_ENDIAN | PCR_TX_DATA_ENABLE | PCR_SOF_NO_FBIT; if (port->clock_type == CLOCK_INT) msg.data32 |= PCR_SYNC_CLK_DIR_OUTPUT; hss_npe_send(port, &msg, "HSS_SET_TX_PCR"); msg.index = HSS_CONFIG_RX_PCR; msg.data32 ^= PCR_TX_DATA_ENABLE | PCR_DCLK_EDGE_RISING; hss_npe_send(port, &msg, "HSS_SET_RX_PCR"); memset(&msg, 0, sizeof(msg)); msg.cmd = PORT_CONFIG_WRITE; msg.hss_port = port->id; msg.index = HSS_CONFIG_CORE_CR; msg.data32 = (port->loopback ? CCR_LOOPBACK : 0) | (port->id ? CCR_SECOND_HSS : 0); hss_npe_send(port, &msg, "HSS_SET_CORE_CR"); memset(&msg, 0, sizeof(msg)); msg.cmd = PORT_CONFIG_WRITE; msg.hss_port = port->id; msg.index = HSS_CONFIG_CLOCK_CR; msg.data32 = port->clock_reg; hss_npe_send(port, &msg, "HSS_SET_CLOCK_CR"); memset(&msg, 0, sizeof(msg)); msg.cmd = PORT_CONFIG_WRITE; msg.hss_port = port->id; msg.index = HSS_CONFIG_TX_FCR; msg.data16a = FRAME_OFFSET; msg.data16b = FRAME_SIZE - 1; hss_npe_send(port, &msg, "HSS_SET_TX_FCR"); memset(&msg, 0, sizeof(msg)); msg.cmd = PORT_CONFIG_WRITE; msg.hss_port = port->id; msg.index = HSS_CONFIG_RX_FCR; msg.data16a = FRAME_OFFSET; msg.data16b = FRAME_SIZE - 1; hss_npe_send(port, &msg, "HSS_SET_RX_FCR"); hss_config_set_lut(port); memset(&msg, 0, sizeof(msg)); msg.cmd = PORT_CONFIG_LOAD; msg.hss_port = port->id; hss_npe_send(port, &msg, "HSS_LOAD_CONFIG"); if (npe_recv_message(port->npe, &msg, "HSS_LOAD_CONFIG") || /* HSS_LOAD_CONFIG for port #1 returns port_id = #4 */ msg.cmd != PORT_CONFIG_LOAD || msg.data32) { pr_crit("HSS-%i: HSS_LOAD_CONFIG failed\n", port->id); BUG(); } /* HDLC may stop working without this - check FIXME */ npe_recv_message(port->npe, &msg, "FLUSH_IT"); } static void hss_set_hdlc_cfg(struct port *port) { struct msg msg; memset(&msg, 0, sizeof(msg)); msg.cmd = PKT_PIPE_HDLC_CFG_WRITE; msg.hss_port = port->id; msg.data8a = port->hdlc_cfg; /* rx_cfg */ msg.data8b = port->hdlc_cfg | (PKT_EXTRA_FLAGS << 3); /* tx_cfg */ hss_npe_send(port, &msg, "HSS_SET_HDLC_CFG"); } static u32 hss_get_status(struct port *port) { struct msg msg; memset(&msg, 0, sizeof(msg)); msg.cmd = PORT_ERROR_READ; msg.hss_port = port->id; hss_npe_send(port, &msg, "PORT_ERROR_READ"); if (npe_recv_message(port->npe, &msg, "PORT_ERROR_READ")) { pr_crit("HSS-%i: unable to read HSS status\n", port->id); BUG(); } return msg.data32; } static void hss_start_hdlc(struct port *port) { struct msg msg; memset(&msg, 0, sizeof(msg)); msg.cmd = PKT_PIPE_FLOW_ENABLE; msg.hss_port = port->id; msg.data32 = 0; hss_npe_send(port, &msg, "HSS_ENABLE_PKT_PIPE"); } static void hss_stop_hdlc(struct port *port) { struct msg msg; memset(&msg, 0, sizeof(msg)); msg.cmd = PKT_PIPE_FLOW_DISABLE; msg.hss_port = port->id; hss_npe_send(port, &msg, "HSS_DISABLE_PKT_PIPE"); hss_get_status(port); /* make sure it's halted */ } static int hss_load_firmware(struct port *port) { struct msg msg; int err; if (port->initialized) return 0; if (!npe_running(port->npe) && (err = npe_load_firmware(port->npe, npe_name(port->npe), port->dev))) return err; /* HDLC mode configuration */ memset(&msg, 0, sizeof(msg)); msg.cmd = PKT_NUM_PIPES_WRITE; msg.hss_port = port->id; msg.data8a = PKT_NUM_PIPES; hss_npe_send(port, &msg, "HSS_SET_PKT_PIPES"); msg.cmd = PKT_PIPE_FIFO_SIZEW_WRITE; msg.data8a = PKT_PIPE_FIFO_SIZEW; hss_npe_send(port, &msg, "HSS_SET_PKT_FIFO"); msg.cmd = PKT_PIPE_MODE_WRITE; msg.data8a = NPE_PKT_MODE_HDLC; /* msg.data8b = inv_mask */ /* msg.data8c = or_mask */ hss_npe_send(port, &msg, "HSS_SET_PKT_MODE"); msg.cmd = PKT_PIPE_RX_SIZE_WRITE; msg.data16a = HDLC_MAX_MRU; /* including CRC */ hss_npe_send(port, &msg, "HSS_SET_PKT_RX_SIZE"); msg.cmd = PKT_PIPE_IDLE_PATTERN_WRITE; msg.data32 = 0x7F7F7F7F; /* ??? FIXME */ hss_npe_send(port, &msg, "HSS_SET_PKT_IDLE"); port->initialized = 1; return 0; } /***************************************************************************** * packetized (HDLC) operation ****************************************************************************/ static inline void debug_pkt(struct net_device *dev, const char *func, u8 *data, int len) { #if DEBUG_PKT_BYTES int i; printk(KERN_DEBUG "%s: %s(%i)", dev->name, func, len); for (i = 0; i < len; i++) { if (i >= DEBUG_PKT_BYTES) break; printk("%s%02X", !(i % 4) ? " " : "", data[i]); } printk("\n"); #endif } static inline void debug_desc(u32 phys, struct desc *desc) { #if DEBUG_DESC printk(KERN_DEBUG "%X: %X %3X %3X %08X %X %X\n", phys, desc->next, desc->buf_len, desc->pkt_len, desc->data, desc->status, desc->error_count); #endif } static inline int queue_get_desc(unsigned int queue, struct port *port, int is_tx) { u32 phys, tab_phys, n_desc; struct desc *tab; if (!(phys = qmgr_get_entry(queue))) return -1; BUG_ON(phys & 0x1F); tab_phys = is_tx ? tx_desc_phys(port, 0) : rx_desc_phys(port, 0); tab = is_tx ? tx_desc_ptr(port, 0) : rx_desc_ptr(port, 0); n_desc = (phys - tab_phys) / sizeof(struct desc); BUG_ON(n_desc >= (is_tx ? TX_DESCS : RX_DESCS)); debug_desc(phys, &tab[n_desc]); BUG_ON(tab[n_desc].next); return n_desc; } static inline void queue_put_desc(unsigned int queue, u32 phys, struct desc *desc) { debug_desc(phys, desc); BUG_ON(phys & 0x1F); qmgr_put_entry(queue, phys); /* Don't check for queue overflow here, we've allocated sufficient length and queues >= 32 don't support this check anyway. */ } static inline void dma_unmap_tx(struct port *port, struct desc *desc) { #ifdef __ARMEB__ dma_unmap_single(&port->netdev->dev, desc->data, desc->buf_len, DMA_TO_DEVICE); #else dma_unmap_single(&port->netdev->dev, desc->data & ~3, ALIGN((desc->data & 3) + desc->buf_len, 4), DMA_TO_DEVICE); #endif } static void hss_hdlc_set_carrier(void *pdev, int carrier) { struct net_device *netdev = pdev; struct port *port = dev_to_port(netdev); unsigned long flags; spin_lock_irqsave(&npe_lock, flags); port->carrier = carrier; if (!port->loopback) { if (carrier) netif_carrier_on(netdev); else netif_carrier_off(netdev); } spin_unlock_irqrestore(&npe_lock, flags); } static void hss_hdlc_rx_irq(void *pdev) { struct net_device *dev = pdev; struct port *port = dev_to_port(dev); #if DEBUG_RX printk(KERN_DEBUG "%s: hss_hdlc_rx_irq\n", dev->name); #endif qmgr_disable_irq(queue_ids[port->id].rx); napi_schedule(&port->napi); } static int hss_hdlc_poll(struct napi_struct *napi, int budget) { struct port *port = container_of(napi, struct port, napi); struct net_device *dev = port->netdev; unsigned int rxq = queue_ids[port->id].rx; unsigned int rxfreeq = queue_ids[port->id].rxfree; int received = 0; #if DEBUG_RX printk(KERN_DEBUG "%s: hss_hdlc_poll\n", dev->name); #endif while (received < budget) { struct sk_buff *skb; struct desc *desc; int n; #ifdef __ARMEB__ struct sk_buff *temp; u32 phys; #endif if ((n = queue_get_desc(rxq, port, 0)) < 0) { #if DEBUG_RX printk(KERN_DEBUG "%s: hss_hdlc_poll" " napi_complete\n", dev->name); #endif napi_complete(napi); qmgr_enable_irq(rxq); if (!qmgr_stat_empty(rxq) && napi_reschedule(napi)) { #if DEBUG_RX printk(KERN_DEBUG "%s: hss_hdlc_poll" " napi_reschedule succeeded\n", dev->name); #endif qmgr_disable_irq(rxq); continue; } #if DEBUG_RX printk(KERN_DEBUG "%s: hss_hdlc_poll all done\n", dev->name); #endif return received; /* all work done */ } desc = rx_desc_ptr(port, n); #if 0 /* FIXME - error_count counts modulo 256, perhaps we should use it */ if (desc->error_count) printk(KERN_DEBUG "%s: hss_hdlc_poll status 0x%02X" " errors %u\n", dev->name, desc->status, desc->error_count); #endif skb = NULL; switch (desc->status) { case 0: #ifdef __ARMEB__ if ((skb = netdev_alloc_skb(dev, RX_SIZE)) != NULL) { phys = dma_map_single(&dev->dev, skb->data, RX_SIZE, DMA_FROM_DEVICE); if (dma_mapping_error(&dev->dev, phys)) { dev_kfree_skb(skb); skb = NULL; } } #else skb = netdev_alloc_skb(dev, desc->pkt_len); #endif if (!skb) dev->stats.rx_dropped++; break; case ERR_HDLC_ALIGN: case ERR_HDLC_ABORT: dev->stats.rx_frame_errors++; dev->stats.rx_errors++; break; case ERR_HDLC_FCS: dev->stats.rx_crc_errors++; dev->stats.rx_errors++; break; case ERR_HDLC_TOO_LONG: dev->stats.rx_length_errors++; dev->stats.rx_errors++; break; default: /* FIXME - remove printk */ netdev_err(dev, "hss_hdlc_poll: status 0x%02X errors %u\n", desc->status, desc->error_count); dev->stats.rx_errors++; } if (!skb) { /* put the desc back on RX-ready queue */ desc->buf_len = RX_SIZE; desc->pkt_len = desc->status = 0; queue_put_desc(rxfreeq, rx_desc_phys(port, n), desc); continue; } /* process received frame */ #ifdef __ARMEB__ temp = skb; skb = port->rx_buff_tab[n]; dma_unmap_single(&dev->dev, desc->data, RX_SIZE, DMA_FROM_DEVICE); #else dma_sync_single_for_cpu(&dev->dev, desc->data, RX_SIZE, DMA_FROM_DEVICE); memcpy_swab32((u32 *)skb->data, (u32 *)port->rx_buff_tab[n], ALIGN(desc->pkt_len, 4) / 4); #endif skb_put(skb, desc->pkt_len); debug_pkt(dev, "hss_hdlc_poll", skb->data, skb->len); skb->protocol = hdlc_type_trans(skb, dev); dev->stats.rx_packets++; dev->stats.rx_bytes += skb->len; netif_receive_skb(skb); /* put the new buffer on RX-free queue */ #ifdef __ARMEB__ port->rx_buff_tab[n] = temp; desc->data = phys; #endif desc->buf_len = RX_SIZE; desc->pkt_len = 0; queue_put_desc(rxfreeq, rx_desc_phys(port, n), desc); received++; } #if DEBUG_RX printk(KERN_DEBUG "hss_hdlc_poll: end, not all work done\n"); #endif return received; /* not all work done */ } static void hss_hdlc_txdone_irq(void *pdev) { struct net_device *dev = pdev; struct port *port = dev_to_port(dev); int n_desc; #if DEBUG_TX printk(KERN_DEBUG DRV_NAME ": hss_hdlc_txdone_irq\n"); #endif while ((n_desc = queue_get_desc(queue_ids[port->id].txdone, port, 1)) >= 0) { struct desc *desc; int start; desc = tx_desc_ptr(port, n_desc); dev->stats.tx_packets++; dev->stats.tx_bytes += desc->pkt_len; dma_unmap_tx(port, desc); #if DEBUG_TX printk(KERN_DEBUG "%s: hss_hdlc_txdone_irq free %p\n", dev->name, port->tx_buff_tab[n_desc]); #endif free_buffer_irq(port->tx_buff_tab[n_desc]); port->tx_buff_tab[n_desc] = NULL; start = qmgr_stat_below_low_watermark(port->plat->txreadyq); queue_put_desc(port->plat->txreadyq, tx_desc_phys(port, n_desc), desc); if (start) { /* TX-ready queue was empty */ #if DEBUG_TX printk(KERN_DEBUG "%s: hss_hdlc_txdone_irq xmit" " ready\n", dev->name); #endif netif_wake_queue(dev); } } } static int hss_hdlc_xmit(struct sk_buff *skb, struct net_device *dev) { struct port *port = dev_to_port(dev); unsigned int txreadyq = port->plat->txreadyq; int len, offset, bytes, n; void *mem; u32 phys; struct desc *desc; #if DEBUG_TX printk(KERN_DEBUG "%s: hss_hdlc_xmit\n", dev->name); #endif if (unlikely(skb->len > HDLC_MAX_MRU)) { dev_kfree_skb(skb); dev->stats.tx_errors++; return NETDEV_TX_OK; } debug_pkt(dev, "hss_hdlc_xmit", skb->data, skb->len); len = skb->len; #ifdef __ARMEB__ offset = 0; /* no need to keep alignment */ bytes = len; mem = skb->data; #else offset = (int)skb->data & 3; /* keep 32-bit alignment */ bytes = ALIGN(offset + len, 4); if (!(mem = kmalloc(bytes, GFP_ATOMIC))) { dev_kfree_skb(skb); dev->stats.tx_dropped++; return NETDEV_TX_OK; } memcpy_swab32(mem, (u32 *)((int)skb->data & ~3), bytes / 4); dev_kfree_skb(skb); #endif phys = dma_map_single(&dev->dev, mem, bytes, DMA_TO_DEVICE); if (dma_mapping_error(&dev->dev, phys)) { #ifdef __ARMEB__ dev_kfree_skb(skb); #else kfree(mem); #endif dev->stats.tx_dropped++; return NETDEV_TX_OK; } n = queue_get_desc(txreadyq, port, 1); BUG_ON(n < 0); desc = tx_desc_ptr(port, n); #ifdef __ARMEB__ port->tx_buff_tab[n] = skb; #else port->tx_buff_tab[n] = mem; #endif desc->data = phys + offset; desc->buf_len = desc->pkt_len = len; wmb(); queue_put_desc(queue_ids[port->id].tx, tx_desc_phys(port, n), desc); if (qmgr_stat_below_low_watermark(txreadyq)) { /* empty */ #if DEBUG_TX printk(KERN_DEBUG "%s: hss_hdlc_xmit queue full\n", dev->name); #endif netif_stop_queue(dev); /* we could miss TX ready interrupt */ if (!qmgr_stat_below_low_watermark(txreadyq)) { #if DEBUG_TX printk(KERN_DEBUG "%s: hss_hdlc_xmit ready again\n", dev->name); #endif netif_wake_queue(dev); } } #if DEBUG_TX printk(KERN_DEBUG "%s: hss_hdlc_xmit end\n", dev->name); #endif return NETDEV_TX_OK; } static int request_hdlc_queues(struct port *port) { int err; err = qmgr_request_queue(queue_ids[port->id].rxfree, RX_DESCS, 0, 0, "%s:RX-free", port->netdev->name); if (err) return err; err = qmgr_request_queue(queue_ids[port->id].rx, RX_DESCS, 0, 0, "%s:RX", port->netdev->name); if (err) goto rel_rxfree; err = qmgr_request_queue(queue_ids[port->id].tx, TX_DESCS, 0, 0, "%s:TX", port->netdev->name); if (err) goto rel_rx; err = qmgr_request_queue(port->plat->txreadyq, TX_DESCS, 0, 0, "%s:TX-ready", port->netdev->name); if (err) goto rel_tx; err = qmgr_request_queue(queue_ids[port->id].txdone, TX_DESCS, 0, 0, "%s:TX-done", port->netdev->name); if (err) goto rel_txready; return 0; rel_txready: qmgr_release_queue(port->plat->txreadyq); rel_tx: qmgr_release_queue(queue_ids[port->id].tx); rel_rx: qmgr_release_queue(queue_ids[port->id].rx); rel_rxfree: qmgr_release_queue(queue_ids[port->id].rxfree); printk(KERN_DEBUG "%s: unable to request hardware queues\n", port->netdev->name); return err; } static void release_hdlc_queues(struct port *port) { qmgr_release_queue(queue_ids[port->id].rxfree); qmgr_release_queue(queue_ids[port->id].rx); qmgr_release_queue(queue_ids[port->id].txdone); qmgr_release_queue(queue_ids[port->id].tx); qmgr_release_queue(port->plat->txreadyq); } static int init_hdlc_queues(struct port *port) { int i; if (!ports_open) { dma_pool = dma_pool_create(DRV_NAME, &port->netdev->dev, POOL_ALLOC_SIZE, 32, 0); if (!dma_pool) return -ENOMEM; } if (!(port->desc_tab = dma_pool_alloc(dma_pool, GFP_KERNEL, &port->desc_tab_phys))) return -ENOMEM; memset(port->desc_tab, 0, POOL_ALLOC_SIZE); memset(port->rx_buff_tab, 0, sizeof(port->rx_buff_tab)); /* tables */ memset(port->tx_buff_tab, 0, sizeof(port->tx_buff_tab)); /* Setup RX buffers */ for (i = 0; i < RX_DESCS; i++) { struct desc *desc = rx_desc_ptr(port, i); buffer_t *buff; void *data; #ifdef __ARMEB__ if (!(buff = netdev_alloc_skb(port->netdev, RX_SIZE))) return -ENOMEM; data = buff->data; #else if (!(buff = kmalloc(RX_SIZE, GFP_KERNEL))) return -ENOMEM; data = buff; #endif desc->buf_len = RX_SIZE; desc->data = dma_map_single(&port->netdev->dev, data, RX_SIZE, DMA_FROM_DEVICE); if (dma_mapping_error(&port->netdev->dev, desc->data)) { free_buffer(buff); return -EIO; } port->rx_buff_tab[i] = buff; } return 0; } static void destroy_hdlc_queues(struct port *port) { int i; if (port->desc_tab) { for (i = 0; i < RX_DESCS; i++) { struct desc *desc = rx_desc_ptr(port, i); buffer_t *buff = port->rx_buff_tab[i]; if (buff) { dma_unmap_single(&port->netdev->dev, desc->data, RX_SIZE, DMA_FROM_DEVICE); free_buffer(buff); } } for (i = 0; i < TX_DESCS; i++) { struct desc *desc = tx_desc_ptr(port, i); buffer_t *buff = port->tx_buff_tab[i]; if (buff) { dma_unmap_tx(port, desc); free_buffer(buff); } } dma_pool_free(dma_pool, port->desc_tab, port->desc_tab_phys); port->desc_tab = NULL; } if (!ports_open && dma_pool) { dma_pool_destroy(dma_pool); dma_pool = NULL; } } static int hss_hdlc_open(struct net_device *dev) { struct port *port = dev_to_port(dev); unsigned long flags; int i, err = 0; if ((err = hdlc_open(dev))) return err; if ((err = hss_load_firmware(port))) goto err_hdlc_close; if ((err = request_hdlc_queues(port))) goto err_hdlc_close; if ((err = init_hdlc_queues(port))) goto err_destroy_queues; spin_lock_irqsave(&npe_lock, flags); if (port->plat->open) if ((err = port->plat->open(port->id, dev, hss_hdlc_set_carrier))) goto err_unlock; spin_unlock_irqrestore(&npe_lock, flags); /* Populate queues with buffers, no failure after this point */ for (i = 0; i < TX_DESCS; i++) queue_put_desc(port->plat->txreadyq, tx_desc_phys(port, i), tx_desc_ptr(port, i)); for (i = 0; i < RX_DESCS; i++) queue_put_desc(queue_ids[port->id].rxfree, rx_desc_phys(port, i), rx_desc_ptr(port, i)); napi_enable(&port->napi); netif_start_queue(dev); qmgr_set_irq(queue_ids[port->id].rx, QUEUE_IRQ_SRC_NOT_EMPTY, hss_hdlc_rx_irq, dev); qmgr_set_irq(queue_ids[port->id].txdone, QUEUE_IRQ_SRC_NOT_EMPTY, hss_hdlc_txdone_irq, dev); qmgr_enable_irq(queue_ids[port->id].txdone); ports_open++; hss_set_hdlc_cfg(port); hss_config(port); hss_start_hdlc(port); /* we may already have RX data, enables IRQ */ napi_schedule(&port->napi); return 0; err_unlock: spin_unlock_irqrestore(&npe_lock, flags); err_destroy_queues: destroy_hdlc_queues(port); release_hdlc_queues(port); err_hdlc_close: hdlc_close(dev); return err; } static int hss_hdlc_close(struct net_device *dev) { struct port *port = dev_to_port(dev); unsigned long flags; int i, buffs = RX_DESCS; /* allocated RX buffers */ spin_lock_irqsave(&npe_lock, flags); ports_open--; qmgr_disable_irq(queue_ids[port->id].rx); netif_stop_queue(dev); napi_disable(&port->napi); hss_stop_hdlc(port); while (queue_get_desc(queue_ids[port->id].rxfree, port, 0) >= 0) buffs--; while (queue_get_desc(queue_ids[port->id].rx, port, 0) >= 0) buffs--; if (buffs) netdev_crit(dev, "unable to drain RX queue, %i buffer(s) left in NPE\n", buffs); buffs = TX_DESCS; while (queue_get_desc(queue_ids[port->id].tx, port, 1) >= 0) buffs--; /* cancel TX */ i = 0; do { while (queue_get_desc(port->plat->txreadyq, port, 1) >= 0) buffs--; if (!buffs) break; } while (++i < MAX_CLOSE_WAIT); if (buffs) netdev_crit(dev, "unable to drain TX queue, %i buffer(s) left in NPE\n", buffs); #if DEBUG_CLOSE if (!buffs) printk(KERN_DEBUG "Draining TX queues took %i cycles\n", i); #endif qmgr_disable_irq(queue_ids[port->id].txdone); if (port->plat->close) port->plat->close(port->id, dev); spin_unlock_irqrestore(&npe_lock, flags); destroy_hdlc_queues(port); release_hdlc_queues(port); hdlc_close(dev); return 0; } static int hss_hdlc_attach(struct net_device *dev, unsigned short encoding, unsigned short parity) { struct port *port = dev_to_port(dev); if (encoding != ENCODING_NRZ) return -EINVAL; switch(parity) { case PARITY_CRC16_PR1_CCITT: port->hdlc_cfg = 0; return 0; case PARITY_CRC32_PR1_CCITT: port->hdlc_cfg = PKT_HDLC_CRC_32; return 0; default: return -EINVAL; } } static u32 check_clock(u32 rate, u32 a, u32 b, u32 c, u32 *best, u32 *best_diff, u32 *reg) { /* a is 10-bit, b is 10-bit, c is 12-bit */ u64 new_rate; u32 new_diff; new_rate = ixp4xx_timer_freq * (u64)(c + 1); do_div(new_rate, a * (c + 1) + b + 1); new_diff = abs((u32)new_rate - rate); if (new_diff < *best_diff) { *best = new_rate; *best_diff = new_diff; *reg = (a << 22) | (b << 12) | c; } return new_diff; } static void find_best_clock(u32 rate, u32 *best, u32 *reg) { u32 a, b, diff = 0xFFFFFFFF; a = ixp4xx_timer_freq / rate; if (a > 0x3FF) { /* 10-bit value - we can go as slow as ca. 65 kb/s */ check_clock(rate, 0x3FF, 1, 1, best, &diff, reg); return; } if (a == 0) { /* > 66.666 MHz */ a = 1; /* minimum divider is 1 (a = 0, b = 1, c = 1) */ rate = ixp4xx_timer_freq; } if (rate * a == ixp4xx_timer_freq) { /* don't divide by 0 later */ check_clock(rate, a - 1, 1, 1, best, &diff, reg); return; } for (b = 0; b < 0x400; b++) { u64 c = (b + 1) * (u64)rate; do_div(c, ixp4xx_timer_freq - rate * a); c--; if (c >= 0xFFF) { /* 12-bit - no need to check more 'b's */ if (b == 0 && /* also try a bit higher rate */ !check_clock(rate, a - 1, 1, 1, best, &diff, reg)) return; check_clock(rate, a, b, 0xFFF, best, &diff, reg); return; } if (!check_clock(rate, a, b, c, best, &diff, reg)) return; if (!check_clock(rate, a, b, c + 1, best, &diff, reg)) return; } } static int hss_hdlc_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd) { const size_t size = sizeof(sync_serial_settings); sync_serial_settings new_line; sync_serial_settings __user *line = ifr->ifr_settings.ifs_ifsu.sync; struct port *port = dev_to_port(dev); unsigned long flags; int clk; if (cmd != SIOCWANDEV) return hdlc_ioctl(dev, ifr, cmd); switch(ifr->ifr_settings.type) { case IF_GET_IFACE: ifr->ifr_settings.type = IF_IFACE_V35; if (ifr->ifr_settings.size < size) { ifr->ifr_settings.size = size; /* data size wanted */ return -ENOBUFS; } memset(&new_line, 0, sizeof(new_line)); new_line.clock_type = port->clock_type; new_line.clock_rate = port->clock_rate; new_line.loopback = port->loopback; if (copy_to_user(line, &new_line, size)) return -EFAULT; return 0; case IF_IFACE_SYNC_SERIAL: case IF_IFACE_V35: if(!capable(CAP_NET_ADMIN)) return -EPERM; if (copy_from_user(&new_line, line, size)) return -EFAULT; clk = new_line.clock_type; if (port->plat->set_clock) clk = port->plat->set_clock(port->id, clk); if (clk != CLOCK_EXT && clk != CLOCK_INT) return -EINVAL; /* No such clock setting */ if (new_line.loopback != 0 && new_line.loopback != 1) return -EINVAL; port->clock_type = clk; /* Update settings */ if (clk == CLOCK_INT) find_best_clock(new_line.clock_rate, &port->clock_rate, &port->clock_reg); else { port->clock_rate = 0; port->clock_reg = CLK42X_SPEED_2048KHZ; } port->loopback = new_line.loopback; spin_lock_irqsave(&npe_lock, flags); if (dev->flags & IFF_UP) hss_config(port); if (port->loopback || port->carrier) netif_carrier_on(port->netdev); else netif_carrier_off(port->netdev); spin_unlock_irqrestore(&npe_lock, flags); return 0; default: return hdlc_ioctl(dev, ifr, cmd); } } /***************************************************************************** * initialization ****************************************************************************/ static const struct net_device_ops hss_hdlc_ops = { .ndo_open = hss_hdlc_open, .ndo_stop = hss_hdlc_close, .ndo_change_mtu = hdlc_change_mtu, .ndo_start_xmit = hdlc_start_xmit, .ndo_do_ioctl = hss_hdlc_ioctl, }; static int hss_init_one(struct platform_device *pdev) { struct port *port; struct net_device *dev; hdlc_device *hdlc; int err; if ((port = kzalloc(sizeof(*port), GFP_KERNEL)) == NULL) return -ENOMEM; if ((port->npe = npe_request(0)) == NULL) { err = -ENODEV; goto err_free; } if ((port->netdev = dev = alloc_hdlcdev(port)) == NULL) { err = -ENOMEM; goto err_plat; } SET_NETDEV_DEV(dev, &pdev->dev); hdlc = dev_to_hdlc(dev); hdlc->attach = hss_hdlc_attach; hdlc->xmit = hss_hdlc_xmit; dev->netdev_ops = &hss_hdlc_ops; dev->tx_queue_len = 100; port->clock_type = CLOCK_EXT; port->clock_rate = 0; port->clock_reg = CLK42X_SPEED_2048KHZ; port->id = pdev->id; port->dev = &pdev->dev; port->plat = pdev->dev.platform_data; netif_napi_add(dev, &port->napi, hss_hdlc_poll, NAPI_WEIGHT); if ((err = register_hdlc_device(dev))) goto err_free_netdev; platform_set_drvdata(pdev, port); netdev_info(dev, "initialized\n"); return 0; err_free_netdev: free_netdev(dev); err_plat: npe_release(port->npe); err_free: kfree(port); return err; } static int hss_remove_one(struct platform_device *pdev) { struct port *port = platform_get_drvdata(pdev); unregister_hdlc_device(port->netdev); free_netdev(port->netdev); npe_release(port->npe); platform_set_drvdata(pdev, NULL); kfree(port); return 0; } static struct platform_driver ixp4xx_hss_driver = { .driver.name = DRV_NAME, .probe = hss_init_one, .remove = hss_remove_one, }; static int __init hss_init_module(void) { if ((ixp4xx_read_feature_bits() & (IXP4XX_FEATURE_HDLC | IXP4XX_FEATURE_HSS)) != (IXP4XX_FEATURE_HDLC | IXP4XX_FEATURE_HSS)) return -ENODEV; spin_lock_init(&npe_lock); return platform_driver_register(&ixp4xx_hss_driver); } static void __exit hss_cleanup_module(void) { platform_driver_unregister(&ixp4xx_hss_driver); } MODULE_AUTHOR("Krzysztof Halasa"); MODULE_DESCRIPTION("Intel IXP4xx HSS driver"); MODULE_LICENSE("GPL v2"); MODULE_ALIAS("platform:ixp4xx_hss"); module_init(hss_init_module); module_exit(hss_cleanup_module);