/* Broadcom B43 wireless driver Transmission (TX/RX) related functions. Copyright (C) 2005 Martin Langer Copyright (C) 2005 Stefano Brivio Copyright (C) 2005, 2006 Michael Buesch Copyright (C) 2005 Danny van Dyk Copyright (C) 2005 Andreas Jaggi This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; see the file COPYING. If not, write to the Free Software Foundation, Inc., 51 Franklin Steet, Fifth Floor, Boston, MA 02110-1301, USA. */ #include "xmit.h" #include "phy_common.h" #include "dma.h" #include "pio.h" static const struct b43_tx_legacy_rate_phy_ctl_entry b43_tx_legacy_rate_phy_ctl[] = { { B43_CCK_RATE_1MB, 0x0, 0x0 }, { B43_CCK_RATE_2MB, 0x0, 0x1 }, { B43_CCK_RATE_5MB, 0x0, 0x2 }, { B43_CCK_RATE_11MB, 0x0, 0x3 }, { B43_OFDM_RATE_6MB, B43_TXH_PHY1_CRATE_1_2, B43_TXH_PHY1_MODUL_BPSK }, { B43_OFDM_RATE_9MB, B43_TXH_PHY1_CRATE_3_4, B43_TXH_PHY1_MODUL_BPSK }, { B43_OFDM_RATE_12MB, B43_TXH_PHY1_CRATE_1_2, B43_TXH_PHY1_MODUL_QPSK }, { B43_OFDM_RATE_18MB, B43_TXH_PHY1_CRATE_3_4, B43_TXH_PHY1_MODUL_QPSK }, { B43_OFDM_RATE_24MB, B43_TXH_PHY1_CRATE_1_2, B43_TXH_PHY1_MODUL_QAM16 }, { B43_OFDM_RATE_36MB, B43_TXH_PHY1_CRATE_3_4, B43_TXH_PHY1_MODUL_QAM16 }, { B43_OFDM_RATE_48MB, B43_TXH_PHY1_CRATE_2_3, B43_TXH_PHY1_MODUL_QAM64 }, { B43_OFDM_RATE_54MB, B43_TXH_PHY1_CRATE_3_4, B43_TXH_PHY1_MODUL_QAM64 }, }; static const struct b43_tx_legacy_rate_phy_ctl_entry * b43_tx_legacy_rate_phy_ctl_ent(u8 bitrate) { const struct b43_tx_legacy_rate_phy_ctl_entry *e; unsigned int i; for (i = 0; i < ARRAY_SIZE(b43_tx_legacy_rate_phy_ctl); i++) { e = &(b43_tx_legacy_rate_phy_ctl[i]); if (e->bitrate == bitrate) return e; } B43_WARN_ON(1); return NULL; } /* Extract the bitrate index out of a CCK PLCP header. */ static int b43_plcp_get_bitrate_idx_cck(struct b43_plcp_hdr6 *plcp) { switch (plcp->raw[0]) { case 0x0A: return 0; case 0x14: return 1; case 0x37: return 2; case 0x6E: return 3; } return -1; } /* Extract the bitrate index out of an OFDM PLCP header. */ static int b43_plcp_get_bitrate_idx_ofdm(struct b43_plcp_hdr6 *plcp, bool aphy) { int base = aphy ? 0 : 4; switch (plcp->raw[0] & 0xF) { case 0xB: return base + 0; case 0xF: return base + 1; case 0xA: return base + 2; case 0xE: return base + 3; case 0x9: return base + 4; case 0xD: return base + 5; case 0x8: return base + 6; case 0xC: return base + 7; } return -1; } u8 b43_plcp_get_ratecode_cck(const u8 bitrate) { switch (bitrate) { case B43_CCK_RATE_1MB: return 0x0A; case B43_CCK_RATE_2MB: return 0x14; case B43_CCK_RATE_5MB: return 0x37; case B43_CCK_RATE_11MB: return 0x6E; } B43_WARN_ON(1); return 0; } u8 b43_plcp_get_ratecode_ofdm(const u8 bitrate) { switch (bitrate) { case B43_OFDM_RATE_6MB: return 0xB; case B43_OFDM_RATE_9MB: return 0xF; case B43_OFDM_RATE_12MB: return 0xA; case B43_OFDM_RATE_18MB: return 0xE; case B43_OFDM_RATE_24MB: return 0x9; case B43_OFDM_RATE_36MB: return 0xD; case B43_OFDM_RATE_48MB: return 0x8; case B43_OFDM_RATE_54MB: return 0xC; } B43_WARN_ON(1); return 0; } void b43_generate_plcp_hdr(struct b43_plcp_hdr4 *plcp, const u16 octets, const u8 bitrate) { __u8 *raw = plcp->raw; if (b43_is_ofdm_rate(bitrate)) { u32 d; d = b43_plcp_get_ratecode_ofdm(bitrate); B43_WARN_ON(octets & 0xF000); d |= (octets << 5); plcp->data = cpu_to_le32(d); } else { u32 plen; plen = octets * 16 / bitrate; if ((octets * 16 % bitrate) > 0) { plen++; if ((bitrate == B43_CCK_RATE_11MB) && ((octets * 8 % 11) < 4)) { raw[1] = 0x84; } else raw[1] = 0x04; } else raw[1] = 0x04; plcp->data |= cpu_to_le32(plen << 16); raw[0] = b43_plcp_get_ratecode_cck(bitrate); } } /* TODO: verify if needed for SSLPN or LCN */ static u16 b43_generate_tx_phy_ctl1(struct b43_wldev *dev, u8 bitrate) { const struct b43_phy *phy = &dev->phy; const struct b43_tx_legacy_rate_phy_ctl_entry *e; u16 control = 0; u16 bw; if (phy->type == B43_PHYTYPE_LP) bw = B43_TXH_PHY1_BW_20; else /* FIXME */ bw = B43_TXH_PHY1_BW_20; if (0) { /* FIXME: MIMO */ } else if (b43_is_cck_rate(bitrate) && phy->type != B43_PHYTYPE_LP) { control = bw; } else { control = bw; e = b43_tx_legacy_rate_phy_ctl_ent(bitrate); if (e) { control |= e->coding_rate; control |= e->modulation; } control |= B43_TXH_PHY1_MODE_SISO; } return control; } static u8 b43_calc_fallback_rate(u8 bitrate) { switch (bitrate) { case B43_CCK_RATE_1MB: return B43_CCK_RATE_1MB; case B43_CCK_RATE_2MB: return B43_CCK_RATE_1MB; case B43_CCK_RATE_5MB: return B43_CCK_RATE_2MB; case B43_CCK_RATE_11MB: return B43_CCK_RATE_5MB; case B43_OFDM_RATE_6MB: return B43_CCK_RATE_5MB; case B43_OFDM_RATE_9MB: return B43_OFDM_RATE_6MB; case B43_OFDM_RATE_12MB: return B43_OFDM_RATE_9MB; case B43_OFDM_RATE_18MB: return B43_OFDM_RATE_12MB; case B43_OFDM_RATE_24MB: return B43_OFDM_RATE_18MB; case B43_OFDM_RATE_36MB: return B43_OFDM_RATE_24MB; case B43_OFDM_RATE_48MB: return B43_OFDM_RATE_36MB; case B43_OFDM_RATE_54MB: return B43_OFDM_RATE_48MB; } B43_WARN_ON(1); return 0; } /* Generate a TX data header. */ int b43_generate_txhdr(struct b43_wldev *dev, u8 *_txhdr, struct sk_buff *skb_frag, struct ieee80211_tx_info *info, u16 cookie) { const unsigned char *fragment_data = skb_frag->data; unsigned int fragment_len = skb_frag->len; struct b43_txhdr *txhdr = (struct b43_txhdr *)_txhdr; const struct b43_phy *phy = &dev->phy; const struct ieee80211_hdr *wlhdr = (const struct ieee80211_hdr *)fragment_data; int use_encryption = !!info->control.hw_key; __le16 fctl = wlhdr->frame_control; struct ieee80211_rate *fbrate; u8 rate, rate_fb; int rate_ofdm, rate_fb_ofdm; unsigned int plcp_fragment_len; u32 mac_ctl = 0; u16 phy_ctl = 0; bool fill_phy_ctl1 = (phy->type == B43_PHYTYPE_LP || phy->type == B43_PHYTYPE_N || phy->type == B43_PHYTYPE_HT); u8 extra_ft = 0; struct ieee80211_rate *txrate; struct ieee80211_tx_rate *rates; memset(txhdr, 0, sizeof(*txhdr)); txrate = ieee80211_get_tx_rate(dev->wl->hw, info); rate = txrate ? txrate->hw_value : B43_CCK_RATE_1MB; rate_ofdm = b43_is_ofdm_rate(rate); fbrate = ieee80211_get_alt_retry_rate(dev->wl->hw, info, 0) ? : txrate; rate_fb = fbrate->hw_value; rate_fb_ofdm = b43_is_ofdm_rate(rate_fb); if (rate_ofdm) txhdr->phy_rate = b43_plcp_get_ratecode_ofdm(rate); else txhdr->phy_rate = b43_plcp_get_ratecode_cck(rate); txhdr->mac_frame_ctl = wlhdr->frame_control; memcpy(txhdr->tx_receiver, wlhdr->addr1, 6); /* Calculate duration for fallback rate */ if ((rate_fb == rate) || (wlhdr->duration_id & cpu_to_le16(0x8000)) || (wlhdr->duration_id == cpu_to_le16(0))) { /* If the fallback rate equals the normal rate or the * dur_id field contains an AID, CFP magic or 0, * use the original dur_id field. */ txhdr->dur_fb = wlhdr->duration_id; } else { txhdr->dur_fb = ieee80211_generic_frame_duration( dev->wl->hw, info->control.vif, info->band, fragment_len, fbrate); } plcp_fragment_len = fragment_len + FCS_LEN; if (use_encryption) { u8 key_idx = info->control.hw_key->hw_key_idx; struct b43_key *key; int wlhdr_len; size_t iv_len; B43_WARN_ON(key_idx >= ARRAY_SIZE(dev->key)); key = &(dev->key[key_idx]); if (unlikely(!key->keyconf)) { /* This key is invalid. This might only happen * in a short timeframe after machine resume before * we were able to reconfigure keys. * Drop this packet completely. Do not transmit it * unencrypted to avoid leaking information. */ return -ENOKEY; } /* Hardware appends ICV. */ plcp_fragment_len += info->control.hw_key->icv_len; key_idx = b43_kidx_to_fw(dev, key_idx); mac_ctl |= (key_idx << B43_TXH_MAC_KEYIDX_SHIFT) & B43_TXH_MAC_KEYIDX; mac_ctl |= (key->algorithm << B43_TXH_MAC_KEYALG_SHIFT) & B43_TXH_MAC_KEYALG; wlhdr_len = ieee80211_hdrlen(fctl); if (key->algorithm == B43_SEC_ALGO_TKIP) { u16 phase1key[5]; int i; /* we give the phase1key and iv16 here, the key is stored in * shm. With that the hardware can do phase 2 and encryption. */ ieee80211_get_tkip_p1k(info->control.hw_key, skb_frag, phase1key); /* phase1key is in host endian. Copy to little-endian txhdr->iv. */ for (i = 0; i < 5; i++) { txhdr->iv[i * 2 + 0] = phase1key[i]; txhdr->iv[i * 2 + 1] = phase1key[i] >> 8; } /* iv16 */ memcpy(txhdr->iv + 10, ((u8 *) wlhdr) + wlhdr_len, 3); } else { iv_len = min((size_t) info->control.hw_key->iv_len, ARRAY_SIZE(txhdr->iv)); memcpy(txhdr->iv, ((u8 *) wlhdr) + wlhdr_len, iv_len); } } switch (dev->fw.hdr_format) { case B43_FW_HDR_598: b43_generate_plcp_hdr((struct b43_plcp_hdr4 *)(&txhdr->format_598.plcp), plcp_fragment_len, rate); break; case B43_FW_HDR_351: b43_generate_plcp_hdr((struct b43_plcp_hdr4 *)(&txhdr->format_351.plcp), plcp_fragment_len, rate); break; case B43_FW_HDR_410: b43_generate_plcp_hdr((struct b43_plcp_hdr4 *)(&txhdr->format_410.plcp), plcp_fragment_len, rate); break; } b43_generate_plcp_hdr((struct b43_plcp_hdr4 *)(&txhdr->plcp_fb), plcp_fragment_len, rate_fb); /* Extra Frame Types */ if (rate_fb_ofdm) extra_ft |= B43_TXH_EFT_FB_OFDM; else extra_ft |= B43_TXH_EFT_FB_CCK; /* Set channel radio code. Note that the micrcode ORs 0x100 to * this value before comparing it to the value in SHM, if this * is a 5Ghz packet. */ txhdr->chan_radio_code = phy->channel; /* PHY TX Control word */ if (rate_ofdm) phy_ctl |= B43_TXH_PHY_ENC_OFDM; else phy_ctl |= B43_TXH_PHY_ENC_CCK; if (info->control.rates[0].flags & IEEE80211_TX_RC_USE_SHORT_PREAMBLE) phy_ctl |= B43_TXH_PHY_SHORTPRMBL; switch (b43_ieee80211_antenna_sanitize(dev, 0)) { case 0: /* Default */ phy_ctl |= B43_TXH_PHY_ANT01AUTO; break; case 1: /* Antenna 0 */ phy_ctl |= B43_TXH_PHY_ANT0; break; case 2: /* Antenna 1 */ phy_ctl |= B43_TXH_PHY_ANT1; break; case 3: /* Antenna 2 */ phy_ctl |= B43_TXH_PHY_ANT2; break; case 4: /* Antenna 3 */ phy_ctl |= B43_TXH_PHY_ANT3; break; default: B43_WARN_ON(1); } rates = info->control.rates; /* MAC control */ if (!(info->flags & IEEE80211_TX_CTL_NO_ACK)) mac_ctl |= B43_TXH_MAC_ACK; /* use hardware sequence counter as the non-TID counter */ if (info->flags & IEEE80211_TX_CTL_ASSIGN_SEQ) mac_ctl |= B43_TXH_MAC_HWSEQ; if (info->flags & IEEE80211_TX_CTL_FIRST_FRAGMENT) mac_ctl |= B43_TXH_MAC_STMSDU; if (phy->type == B43_PHYTYPE_A) mac_ctl |= B43_TXH_MAC_5GHZ; /* Overwrite rates[0].count to make the retry calculation * in the tx status easier. need the actual retry limit to * detect whether the fallback rate was used. */ if ((rates[0].flags & IEEE80211_TX_RC_USE_RTS_CTS) || (rates[0].count <= dev->wl->hw->conf.long_frame_max_tx_count)) { rates[0].count = dev->wl->hw->conf.long_frame_max_tx_count; mac_ctl |= B43_TXH_MAC_LONGFRAME; } else { rates[0].count = dev->wl->hw->conf.short_frame_max_tx_count; } /* Generate the RTS or CTS-to-self frame */ if ((rates[0].flags & IEEE80211_TX_RC_USE_RTS_CTS) || (rates[0].flags & IEEE80211_TX_RC_USE_CTS_PROTECT)) { unsigned int len; struct ieee80211_hdr *uninitialized_var(hdr); int rts_rate, rts_rate_fb; int rts_rate_ofdm, rts_rate_fb_ofdm; struct b43_plcp_hdr6 *uninitialized_var(plcp); struct ieee80211_rate *rts_cts_rate; rts_cts_rate = ieee80211_get_rts_cts_rate(dev->wl->hw, info); rts_rate = rts_cts_rate ? rts_cts_rate->hw_value : B43_CCK_RATE_1MB; rts_rate_ofdm = b43_is_ofdm_rate(rts_rate); rts_rate_fb = b43_calc_fallback_rate(rts_rate); rts_rate_fb_ofdm = b43_is_ofdm_rate(rts_rate_fb); if (rates[0].flags & IEEE80211_TX_RC_USE_CTS_PROTECT) { struct ieee80211_cts *uninitialized_var(cts); switch (dev->fw.hdr_format) { case B43_FW_HDR_598: cts = (struct ieee80211_cts *) (txhdr->format_598.rts_frame); break; case B43_FW_HDR_351: cts = (struct ieee80211_cts *) (txhdr->format_351.rts_frame); break; case B43_FW_HDR_410: cts = (struct ieee80211_cts *) (txhdr->format_410.rts_frame); break; } ieee80211_ctstoself_get(dev->wl->hw, info->control.vif, fragment_data, fragment_len, info, cts); mac_ctl |= B43_TXH_MAC_SENDCTS; len = sizeof(struct ieee80211_cts); } else { struct ieee80211_rts *uninitialized_var(rts); switch (dev->fw.hdr_format) { case B43_FW_HDR_598: rts = (struct ieee80211_rts *) (txhdr->format_598.rts_frame); break; case B43_FW_HDR_351: rts = (struct ieee80211_rts *) (txhdr->format_351.rts_frame); break; case B43_FW_HDR_410: rts = (struct ieee80211_rts *) (txhdr->format_410.rts_frame); break; } ieee80211_rts_get(dev->wl->hw, info->control.vif, fragment_data, fragment_len, info, rts); mac_ctl |= B43_TXH_MAC_SENDRTS; len = sizeof(struct ieee80211_rts); } len += FCS_LEN; /* Generate the PLCP headers for the RTS/CTS frame */ switch (dev->fw.hdr_format) { case B43_FW_HDR_598: plcp = &txhdr->format_598.rts_plcp; break; case B43_FW_HDR_351: plcp = &txhdr->format_351.rts_plcp; break; case B43_FW_HDR_410: plcp = &txhdr->format_410.rts_plcp; break; } b43_generate_plcp_hdr((struct b43_plcp_hdr4 *)plcp, len, rts_rate); plcp = &txhdr->rts_plcp_fb; b43_generate_plcp_hdr((struct b43_plcp_hdr4 *)plcp, len, rts_rate_fb); switch (dev->fw.hdr_format) { case B43_FW_HDR_598: hdr = (struct ieee80211_hdr *) (&txhdr->format_598.rts_frame); break; case B43_FW_HDR_351: hdr = (struct ieee80211_hdr *) (&txhdr->format_351.rts_frame); break; case B43_FW_HDR_410: hdr = (struct ieee80211_hdr *) (&txhdr->format_410.rts_frame); break; } txhdr->rts_dur_fb = hdr->duration_id; if (rts_rate_ofdm) { extra_ft |= B43_TXH_EFT_RTS_OFDM; txhdr->phy_rate_rts = b43_plcp_get_ratecode_ofdm(rts_rate); } else { extra_ft |= B43_TXH_EFT_RTS_CCK; txhdr->phy_rate_rts = b43_plcp_get_ratecode_cck(rts_rate); } if (rts_rate_fb_ofdm) extra_ft |= B43_TXH_EFT_RTSFB_OFDM; else extra_ft |= B43_TXH_EFT_RTSFB_CCK; if (rates[0].flags & IEEE80211_TX_RC_USE_RTS_CTS && fill_phy_ctl1) { txhdr->phy_ctl1_rts = cpu_to_le16( b43_generate_tx_phy_ctl1(dev, rts_rate)); txhdr->phy_ctl1_rts_fb = cpu_to_le16( b43_generate_tx_phy_ctl1(dev, rts_rate_fb)); } } /* Magic cookie */ switch (dev->fw.hdr_format) { case B43_FW_HDR_598: txhdr->format_598.cookie = cpu_to_le16(cookie); break; case B43_FW_HDR_351: txhdr->format_351.cookie = cpu_to_le16(cookie); break; case B43_FW_HDR_410: txhdr->format_410.cookie = cpu_to_le16(cookie); break; } if (fill_phy_ctl1) { txhdr->phy_ctl1 = cpu_to_le16(b43_generate_tx_phy_ctl1(dev, rate)); txhdr->phy_ctl1_fb = cpu_to_le16(b43_generate_tx_phy_ctl1(dev, rate_fb)); } /* Apply the bitfields */ txhdr->mac_ctl = cpu_to_le32(mac_ctl); txhdr->phy_ctl = cpu_to_le16(phy_ctl); txhdr->extra_ft = extra_ft; return 0; } static s8 b43_rssi_postprocess(struct b43_wldev *dev, u8 in_rssi, int ofdm, int adjust_2053, int adjust_2050) { struct b43_phy *phy = &dev->phy; struct b43_phy_g *gphy = phy->g; s32 tmp; switch (phy->radio_ver) { case 0x2050: if (ofdm) { tmp = in_rssi; if (tmp > 127) tmp -= 256; tmp *= 73; tmp /= 64; if (adjust_2050) tmp += 25; else tmp -= 3; } else { if (dev->dev->bus_sprom-> boardflags_lo & B43_BFL_RSSI) { if (in_rssi > 63) in_rssi = 63; B43_WARN_ON(phy->type != B43_PHYTYPE_G); tmp = gphy->nrssi_lt[in_rssi]; tmp = 31 - tmp; tmp *= -131; tmp /= 128; tmp -= 57; } else { tmp = in_rssi; tmp = 31 - tmp; tmp *= -149; tmp /= 128; tmp -= 68; } if (phy->type == B43_PHYTYPE_G && adjust_2050) tmp += 25; } break; case 0x2060: if (in_rssi > 127) tmp = in_rssi - 256; else tmp = in_rssi; break; default: tmp = in_rssi; tmp -= 11; tmp *= 103; tmp /= 64; if (adjust_2053) tmp -= 109; else tmp -= 83; } return (s8) tmp; } //TODO #if 0 static s8 b43_rssinoise_postprocess(struct b43_wldev *dev, u8 in_rssi) { struct b43_phy *phy = &dev->phy; s8 ret; if (phy->type == B43_PHYTYPE_A) { //TODO: Incomplete specs. ret = 0; } else ret = b43_rssi_postprocess(dev, in_rssi, 0, 1, 1); return ret; } #endif void b43_rx(struct b43_wldev *dev, struct sk_buff *skb, const void *_rxhdr) { struct ieee80211_rx_status status; struct b43_plcp_hdr6 *plcp; struct ieee80211_hdr *wlhdr; const struct b43_rxhdr_fw4 *rxhdr = _rxhdr; __le16 fctl; u16 phystat0, phystat3; u16 uninitialized_var(chanstat), uninitialized_var(mactime); u32 uninitialized_var(macstat); u16 chanid; u16 phytype; int padding, rate_idx; memset(&status, 0, sizeof(status)); /* Get metadata about the frame from the header. */ phystat0 = le16_to_cpu(rxhdr->phy_status0); phystat3 = le16_to_cpu(rxhdr->phy_status3); switch (dev->fw.hdr_format) { case B43_FW_HDR_598: macstat = le32_to_cpu(rxhdr->format_598.mac_status); mactime = le16_to_cpu(rxhdr->format_598.mac_time); chanstat = le16_to_cpu(rxhdr->format_598.channel); break; case B43_FW_HDR_410: case B43_FW_HDR_351: macstat = le32_to_cpu(rxhdr->format_351.mac_status); mactime = le16_to_cpu(rxhdr->format_351.mac_time); chanstat = le16_to_cpu(rxhdr->format_351.channel); break; } phytype = chanstat & B43_RX_CHAN_PHYTYPE; if (unlikely(macstat & B43_RX_MAC_FCSERR)) { dev->wl->ieee_stats.dot11FCSErrorCount++; status.flag |= RX_FLAG_FAILED_FCS_CRC; } if (unlikely(phystat0 & (B43_RX_PHYST0_PLCPHCF | B43_RX_PHYST0_PLCPFV))) status.flag |= RX_FLAG_FAILED_PLCP_CRC; if (phystat0 & B43_RX_PHYST0_SHORTPRMBL) status.flag |= RX_FLAG_SHORTPRE; if (macstat & B43_RX_MAC_DECERR) { /* Decryption with the given key failed. * Drop the packet. We also won't be able to decrypt it with * the key in software. */ goto drop; } /* Skip PLCP and padding */ padding = (macstat & B43_RX_MAC_PADDING) ? 2 : 0; if (unlikely(skb->len < (sizeof(struct b43_plcp_hdr6) + padding))) { b43dbg(dev->wl, "RX: Packet size underrun (1)\n"); goto drop; } plcp = (struct b43_plcp_hdr6 *)(skb->data + padding); skb_pull(skb, sizeof(struct b43_plcp_hdr6) + padding); /* The skb contains the Wireless Header + payload data now */ if (unlikely(skb->len < (2 + 2 + 6 /*minimum hdr */ + FCS_LEN))) { b43dbg(dev->wl, "RX: Packet size underrun (2)\n"); goto drop; } wlhdr = (struct ieee80211_hdr *)(skb->data); fctl = wlhdr->frame_control; if (macstat & B43_RX_MAC_DEC) { unsigned int keyidx; int wlhdr_len; keyidx = ((macstat & B43_RX_MAC_KEYIDX) >> B43_RX_MAC_KEYIDX_SHIFT); /* We must adjust the key index here. We want the "physical" * key index, but the ucode passed it slightly different. */ keyidx = b43_kidx_to_raw(dev, keyidx); B43_WARN_ON(keyidx >= ARRAY_SIZE(dev->key)); if (dev->key[keyidx].algorithm != B43_SEC_ALGO_NONE) { wlhdr_len = ieee80211_hdrlen(fctl); if (unlikely(skb->len < (wlhdr_len + 3))) { b43dbg(dev->wl, "RX: Packet size underrun (3)\n"); goto drop; } status.flag |= RX_FLAG_DECRYPTED; } } /* Link quality statistics */ switch (chanstat & B43_RX_CHAN_PHYTYPE) { case B43_PHYTYPE_HT: /* TODO: is max the right choice? */ status.signal = max_t(__s8, max(rxhdr->phy_ht_power0, rxhdr->phy_ht_power1), rxhdr->phy_ht_power2); break; case B43_PHYTYPE_N: /* Broadcom has code for min and avg, but always uses max */ if (rxhdr->power0 == 16 || rxhdr->power0 == 32) status.signal = max(rxhdr->power1, rxhdr->power2); else status.signal = max(rxhdr->power0, rxhdr->power1); break; case B43_PHYTYPE_A: case B43_PHYTYPE_B: case B43_PHYTYPE_G: case B43_PHYTYPE_LP: status.signal = b43_rssi_postprocess(dev, rxhdr->jssi, (phystat0 & B43_RX_PHYST0_OFDM), (phystat0 & B43_RX_PHYST0_GAINCTL), (phystat3 & B43_RX_PHYST3_TRSTATE)); break; } if (phystat0 & B43_RX_PHYST0_OFDM) rate_idx = b43_plcp_get_bitrate_idx_ofdm(plcp, phytype == B43_PHYTYPE_A); else rate_idx = b43_plcp_get_bitrate_idx_cck(plcp); if (unlikely(rate_idx == -1)) { /* PLCP seems to be corrupted. * Drop the frame, if we are not interested in corrupted frames. */ if (!(dev->wl->filter_flags & FIF_PLCPFAIL)) goto drop; } status.rate_idx = rate_idx; status.antenna = !!(phystat0 & B43_RX_PHYST0_ANT); /* * All frames on monitor interfaces and beacons always need a full * 64-bit timestamp. Monitor interfaces need it for diagnostic * purposes and beacons for IBSS merging. * This code assumes we get to process the packet within 16 bits * of timestamp, i.e. about 65 milliseconds after the PHY received * the first symbol. */ if (ieee80211_is_beacon(fctl) || dev->wl->radiotap_enabled) { u16 low_mactime_now; b43_tsf_read(dev, &status.mactime); low_mactime_now = status.mactime; status.mactime = status.mactime & ~0xFFFFULL; status.mactime += mactime; if (low_mactime_now <= mactime) status.mactime -= 0x10000; status.flag |= RX_FLAG_MACTIME_START; } chanid = (chanstat & B43_RX_CHAN_ID) >> B43_RX_CHAN_ID_SHIFT; switch (chanstat & B43_RX_CHAN_PHYTYPE) { case B43_PHYTYPE_A: status.band = IEEE80211_BAND_5GHZ; B43_WARN_ON(1); /* FIXME: We don't really know which value the "chanid" contains. * So the following assignment might be wrong. */ status.freq = b43_channel_to_freq_5ghz(chanid); break; case B43_PHYTYPE_G: status.band = IEEE80211_BAND_2GHZ; /* chanid is the radio channel cookie value as used * to tune the radio. */ status.freq = chanid + 2400; break; case B43_PHYTYPE_N: case B43_PHYTYPE_LP: case B43_PHYTYPE_HT: /* chanid is the SHM channel cookie. Which is the plain * channel number in b43. */ if (chanstat & B43_RX_CHAN_5GHZ) { status.band = IEEE80211_BAND_5GHZ; status.freq = b43_freq_to_channel_5ghz(chanid); } else { status.band = IEEE80211_BAND_2GHZ; status.freq = b43_freq_to_channel_2ghz(chanid); } break; default: B43_WARN_ON(1); goto drop; } memcpy(IEEE80211_SKB_RXCB(skb), &status, sizeof(status)); ieee80211_rx_ni(dev->wl->hw, skb); #if B43_DEBUG dev->rx_count++; #endif return; drop: dev_kfree_skb_any(skb); } void b43_handle_txstatus(struct b43_wldev *dev, const struct b43_txstatus *status) { b43_debugfs_log_txstat(dev, status); if (status->intermediate) return; if (status->for_ampdu) return; if (!status->acked) dev->wl->ieee_stats.dot11ACKFailureCount++; if (status->rts_count) { if (status->rts_count == 0xF) //FIXME dev->wl->ieee_stats.dot11RTSFailureCount++; else dev->wl->ieee_stats.dot11RTSSuccessCount++; } if (b43_using_pio_transfers(dev)) b43_pio_handle_txstatus(dev, status); else b43_dma_handle_txstatus(dev, status); b43_phy_txpower_check(dev, 0); } /* Fill out the mac80211 TXstatus report based on the b43-specific * txstatus report data. This returns a boolean whether the frame was * successfully transmitted. */ bool b43_fill_txstatus_report(struct b43_wldev *dev, struct ieee80211_tx_info *report, const struct b43_txstatus *status) { bool frame_success = true; int retry_limit; /* preserve the confiured retry limit before clearing the status * The xmit function has overwritten the rc's value with the actual * retry limit done by the hardware */ retry_limit = report->status.rates[0].count; ieee80211_tx_info_clear_status(report); if (status->acked) { /* The frame was ACKed. */ report->flags |= IEEE80211_TX_STAT_ACK; } else { /* The frame was not ACKed... */ if (!(report->flags & IEEE80211_TX_CTL_NO_ACK)) { /* ...but we expected an ACK. */ frame_success = false; } } if (status->frame_count == 0) { /* The frame was not transmitted at all. */ report->status.rates[0].count = 0; } else if (status->rts_count > dev->wl->hw->conf.short_frame_max_tx_count) { /* * If the short retries (RTS, not data frame) have exceeded * the limit, the hw will not have tried the selected rate, * but will have used the fallback rate instead. * Don't let the rate control count attempts for the selected * rate in this case, otherwise the statistics will be off. */ report->status.rates[0].count = 0; report->status.rates[1].count = status->frame_count; } else { if (status->frame_count > retry_limit) { report->status.rates[0].count = retry_limit; report->status.rates[1].count = status->frame_count - retry_limit; } else { report->status.rates[0].count = status->frame_count; report->status.rates[1].idx = -1; } } return frame_success; } /* Stop any TX operation on the device (suspend the hardware queues) */ void b43_tx_suspend(struct b43_wldev *dev) { if (b43_using_pio_transfers(dev)) b43_pio_tx_suspend(dev); else b43_dma_tx_suspend(dev); } /* Resume any TX operation on the device (resume the hardware queues) */ void b43_tx_resume(struct b43_wldev *dev) { if (b43_using_pio_transfers(dev)) b43_pio_tx_resume(dev); else b43_dma_tx_resume(dev); }