/* * Copyright (c) 2011 Broadcom Corporation * * Permission to use, copy, modify, and/or distribute this software for any * purpose with or without fee is hereby granted, provided that the above * copyright notice and this permission notice appear in all copies. * * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY * SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION * OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN * CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. */ /* ***** SDIO interface chip backplane handle functions ***** */ #include #include #include #include #include #include #include #include #include #include #include "dhd_dbg.h" #include "sdio_host.h" #include "sdio_chip.h" /* chip core base & ramsize */ /* bcm4329 */ /* SDIO device core, ID 0x829 */ #define BCM4329_CORE_BUS_BASE 0x18011000 /* internal memory core, ID 0x80e */ #define BCM4329_CORE_SOCRAM_BASE 0x18003000 /* ARM Cortex M3 core, ID 0x82a */ #define BCM4329_CORE_ARM_BASE 0x18002000 #define BCM4329_RAMSIZE 0x48000 /* bcm43143 */ /* SDIO device core */ #define BCM43143_CORE_BUS_BASE 0x18002000 /* internal memory core */ #define BCM43143_CORE_SOCRAM_BASE 0x18004000 /* ARM Cortex M3 core, ID 0x82a */ #define BCM43143_CORE_ARM_BASE 0x18003000 #define BCM43143_RAMSIZE 0x70000 #define SBCOREREV(sbidh) \ ((((sbidh) & SSB_IDHIGH_RCHI) >> SSB_IDHIGH_RCHI_SHIFT) | \ ((sbidh) & SSB_IDHIGH_RCLO)) /* SOC Interconnect types (aka chip types) */ #define SOCI_SB 0 #define SOCI_AI 1 /* EROM CompIdentB */ #define CIB_REV_MASK 0xff000000 #define CIB_REV_SHIFT 24 /* ARM CR4 core specific control flag bits */ #define ARMCR4_BCMA_IOCTL_CPUHALT 0x0020 #define SDIOD_DRVSTR_KEY(chip, pmu) (((chip) << 16) | (pmu)) /* SDIO Pad drive strength to select value mappings */ struct sdiod_drive_str { u8 strength; /* Pad Drive Strength in mA */ u8 sel; /* Chip-specific select value */ }; /* SDIO Drive Strength to sel value table for PMU Rev 11 (1.8V) */ static const struct sdiod_drive_str sdiod_drvstr_tab1_1v8[] = { {32, 0x6}, {26, 0x7}, {22, 0x4}, {16, 0x5}, {12, 0x2}, {8, 0x3}, {4, 0x0}, {0, 0x1} }; /* SDIO Drive Strength to sel value table for 43143 PMU Rev 17 (3.3V) */ static const struct sdiod_drive_str sdiod_drvstr_tab2_3v3[] = { {16, 0x7}, {12, 0x5}, {8, 0x3}, {4, 0x1} }; u8 brcmf_sdio_chip_getinfidx(struct chip_info *ci, u16 coreid) { u8 idx; for (idx = 0; idx < BRCMF_MAX_CORENUM; idx++) if (coreid == ci->c_inf[idx].id) return idx; return BRCMF_MAX_CORENUM; } static u32 brcmf_sdio_sb_corerev(struct brcmf_sdio_dev *sdiodev, struct chip_info *ci, u16 coreid) { u32 regdata; u8 idx; idx = brcmf_sdio_chip_getinfidx(ci, coreid); regdata = brcmf_sdio_regrl(sdiodev, CORE_SB(ci->c_inf[idx].base, sbidhigh), NULL); return SBCOREREV(regdata); } static u32 brcmf_sdio_ai_corerev(struct brcmf_sdio_dev *sdiodev, struct chip_info *ci, u16 coreid) { u8 idx; idx = brcmf_sdio_chip_getinfidx(ci, coreid); return (ci->c_inf[idx].cib & CIB_REV_MASK) >> CIB_REV_SHIFT; } static bool brcmf_sdio_sb_iscoreup(struct brcmf_sdio_dev *sdiodev, struct chip_info *ci, u16 coreid) { u32 regdata; u8 idx; idx = brcmf_sdio_chip_getinfidx(ci, coreid); regdata = brcmf_sdio_regrl(sdiodev, CORE_SB(ci->c_inf[idx].base, sbtmstatelow), NULL); regdata &= (SSB_TMSLOW_RESET | SSB_TMSLOW_REJECT | SSB_IMSTATE_REJECT | SSB_TMSLOW_CLOCK); return (SSB_TMSLOW_CLOCK == regdata); } static bool brcmf_sdio_ai_iscoreup(struct brcmf_sdio_dev *sdiodev, struct chip_info *ci, u16 coreid) { u32 regdata; u8 idx; bool ret; idx = brcmf_sdio_chip_getinfidx(ci, coreid); regdata = brcmf_sdio_regrl(sdiodev, ci->c_inf[idx].wrapbase+BCMA_IOCTL, NULL); ret = (regdata & (BCMA_IOCTL_FGC | BCMA_IOCTL_CLK)) == BCMA_IOCTL_CLK; regdata = brcmf_sdio_regrl(sdiodev, ci->c_inf[idx].wrapbase+BCMA_RESET_CTL, NULL); ret = ret && ((regdata & BCMA_RESET_CTL_RESET) == 0); return ret; } static void brcmf_sdio_sb_coredisable(struct brcmf_sdio_dev *sdiodev, struct chip_info *ci, u16 coreid, u32 core_bits) { u32 regdata, base; u8 idx; idx = brcmf_sdio_chip_getinfidx(ci, coreid); base = ci->c_inf[idx].base; regdata = brcmf_sdio_regrl(sdiodev, CORE_SB(base, sbtmstatelow), NULL); if (regdata & SSB_TMSLOW_RESET) return; regdata = brcmf_sdio_regrl(sdiodev, CORE_SB(base, sbtmstatelow), NULL); if ((regdata & SSB_TMSLOW_CLOCK) != 0) { /* * set target reject and spin until busy is clear * (preserve core-specific bits) */ regdata = brcmf_sdio_regrl(sdiodev, CORE_SB(base, sbtmstatelow), NULL); brcmf_sdio_regwl(sdiodev, CORE_SB(base, sbtmstatelow), regdata | SSB_TMSLOW_REJECT, NULL); regdata = brcmf_sdio_regrl(sdiodev, CORE_SB(base, sbtmstatelow), NULL); udelay(1); SPINWAIT((brcmf_sdio_regrl(sdiodev, CORE_SB(base, sbtmstatehigh), NULL) & SSB_TMSHIGH_BUSY), 100000); regdata = brcmf_sdio_regrl(sdiodev, CORE_SB(base, sbtmstatehigh), NULL); if (regdata & SSB_TMSHIGH_BUSY) brcmf_err("core state still busy\n"); regdata = brcmf_sdio_regrl(sdiodev, CORE_SB(base, sbidlow), NULL); if (regdata & SSB_IDLOW_INITIATOR) { regdata = brcmf_sdio_regrl(sdiodev, CORE_SB(base, sbimstate), NULL); regdata |= SSB_IMSTATE_REJECT; brcmf_sdio_regwl(sdiodev, CORE_SB(base, sbimstate), regdata, NULL); regdata = brcmf_sdio_regrl(sdiodev, CORE_SB(base, sbimstate), NULL); udelay(1); SPINWAIT((brcmf_sdio_regrl(sdiodev, CORE_SB(base, sbimstate), NULL) & SSB_IMSTATE_BUSY), 100000); } /* set reset and reject while enabling the clocks */ regdata = SSB_TMSLOW_FGC | SSB_TMSLOW_CLOCK | SSB_TMSLOW_REJECT | SSB_TMSLOW_RESET; brcmf_sdio_regwl(sdiodev, CORE_SB(base, sbtmstatelow), regdata, NULL); regdata = brcmf_sdio_regrl(sdiodev, CORE_SB(base, sbtmstatelow), NULL); udelay(10); /* clear the initiator reject bit */ regdata = brcmf_sdio_regrl(sdiodev, CORE_SB(base, sbidlow), NULL); if (regdata & SSB_IDLOW_INITIATOR) { regdata = brcmf_sdio_regrl(sdiodev, CORE_SB(base, sbimstate), NULL); regdata &= ~SSB_IMSTATE_REJECT; brcmf_sdio_regwl(sdiodev, CORE_SB(base, sbimstate), regdata, NULL); } } /* leave reset and reject asserted */ brcmf_sdio_regwl(sdiodev, CORE_SB(base, sbtmstatelow), (SSB_TMSLOW_REJECT | SSB_TMSLOW_RESET), NULL); udelay(1); } static void brcmf_sdio_ai_coredisable(struct brcmf_sdio_dev *sdiodev, struct chip_info *ci, u16 coreid, u32 core_bits) { u8 idx; u32 regdata; idx = brcmf_sdio_chip_getinfidx(ci, coreid); /* if core is already in reset, just return */ regdata = brcmf_sdio_regrl(sdiodev, ci->c_inf[idx].wrapbase+BCMA_RESET_CTL, NULL); if ((regdata & BCMA_RESET_CTL_RESET) != 0) return; /* ensure no pending backplane operation * 300uc should be sufficient for backplane ops to be finish * extra 10ms is taken into account for firmware load stage * after 10300us carry on disabling the core anyway */ SPINWAIT(brcmf_sdio_regrl(sdiodev, ci->c_inf[idx].wrapbase+BCMA_RESET_ST, NULL), 10300); regdata = brcmf_sdio_regrl(sdiodev, ci->c_inf[idx].wrapbase+BCMA_RESET_ST, NULL); if (regdata) brcmf_err("disabling core 0x%x with reset status %x\n", coreid, regdata); brcmf_sdio_regwl(sdiodev, ci->c_inf[idx].wrapbase+BCMA_RESET_CTL, BCMA_RESET_CTL_RESET, NULL); udelay(1); brcmf_sdio_regwl(sdiodev, ci->c_inf[idx].wrapbase+BCMA_IOCTL, core_bits, NULL); regdata = brcmf_sdio_regrl(sdiodev, ci->c_inf[idx].wrapbase+BCMA_IOCTL, NULL); usleep_range(10, 20); } static void brcmf_sdio_sb_resetcore(struct brcmf_sdio_dev *sdiodev, struct chip_info *ci, u16 coreid, u32 core_bits) { u32 regdata; u8 idx; idx = brcmf_sdio_chip_getinfidx(ci, coreid); /* * Must do the disable sequence first to work for * arbitrary current core state. */ brcmf_sdio_sb_coredisable(sdiodev, ci, coreid, 0); /* * Now do the initialization sequence. * set reset while enabling the clock and * forcing them on throughout the core */ brcmf_sdio_regwl(sdiodev, CORE_SB(ci->c_inf[idx].base, sbtmstatelow), SSB_TMSLOW_FGC | SSB_TMSLOW_CLOCK | SSB_TMSLOW_RESET, NULL); regdata = brcmf_sdio_regrl(sdiodev, CORE_SB(ci->c_inf[idx].base, sbtmstatelow), NULL); udelay(1); /* clear any serror */ regdata = brcmf_sdio_regrl(sdiodev, CORE_SB(ci->c_inf[idx].base, sbtmstatehigh), NULL); if (regdata & SSB_TMSHIGH_SERR) brcmf_sdio_regwl(sdiodev, CORE_SB(ci->c_inf[idx].base, sbtmstatehigh), 0, NULL); regdata = brcmf_sdio_regrl(sdiodev, CORE_SB(ci->c_inf[idx].base, sbimstate), NULL); if (regdata & (SSB_IMSTATE_IBE | SSB_IMSTATE_TO)) brcmf_sdio_regwl(sdiodev, CORE_SB(ci->c_inf[idx].base, sbimstate), regdata & ~(SSB_IMSTATE_IBE | SSB_IMSTATE_TO), NULL); /* clear reset and allow it to propagate throughout the core */ brcmf_sdio_regwl(sdiodev, CORE_SB(ci->c_inf[idx].base, sbtmstatelow), SSB_TMSLOW_FGC | SSB_TMSLOW_CLOCK, NULL); regdata = brcmf_sdio_regrl(sdiodev, CORE_SB(ci->c_inf[idx].base, sbtmstatelow), NULL); udelay(1); /* leave clock enabled */ brcmf_sdio_regwl(sdiodev, CORE_SB(ci->c_inf[idx].base, sbtmstatelow), SSB_TMSLOW_CLOCK, NULL); regdata = brcmf_sdio_regrl(sdiodev, CORE_SB(ci->c_inf[idx].base, sbtmstatelow), NULL); udelay(1); } static void brcmf_sdio_ai_resetcore(struct brcmf_sdio_dev *sdiodev, struct chip_info *ci, u16 coreid, u32 core_bits) { u8 idx; u32 regdata; idx = brcmf_sdio_chip_getinfidx(ci, coreid); /* must disable first to work for arbitrary current core state */ brcmf_sdio_ai_coredisable(sdiodev, ci, coreid, core_bits); /* now do initialization sequence */ brcmf_sdio_regwl(sdiodev, ci->c_inf[idx].wrapbase+BCMA_IOCTL, core_bits | BCMA_IOCTL_FGC | BCMA_IOCTL_CLK, NULL); regdata = brcmf_sdio_regrl(sdiodev, ci->c_inf[idx].wrapbase+BCMA_IOCTL, NULL); brcmf_sdio_regwl(sdiodev, ci->c_inf[idx].wrapbase+BCMA_RESET_CTL, 0, NULL); regdata = brcmf_sdio_regrl(sdiodev, ci->c_inf[idx].wrapbase+BCMA_RESET_CTL, NULL); udelay(1); brcmf_sdio_regwl(sdiodev, ci->c_inf[idx].wrapbase+BCMA_IOCTL, core_bits | BCMA_IOCTL_CLK, NULL); regdata = brcmf_sdio_regrl(sdiodev, ci->c_inf[idx].wrapbase+BCMA_IOCTL, NULL); udelay(1); } #ifdef DEBUG /* safety check for chipinfo */ static int brcmf_sdio_chip_cichk(struct chip_info *ci) { u8 core_idx; /* check RAM core presence for ARM CM3 core */ core_idx = brcmf_sdio_chip_getinfidx(ci, BCMA_CORE_ARM_CM3); if (BRCMF_MAX_CORENUM != core_idx) { core_idx = brcmf_sdio_chip_getinfidx(ci, BCMA_CORE_INTERNAL_MEM); if (BRCMF_MAX_CORENUM == core_idx) { brcmf_err("RAM core not provided with ARM CM3 core\n"); return -ENODEV; } } /* check RAM base for ARM CR4 core */ core_idx = brcmf_sdio_chip_getinfidx(ci, BCMA_CORE_ARM_CR4); if (BRCMF_MAX_CORENUM != core_idx) { if (ci->rambase == 0) { brcmf_err("RAM base not provided with ARM CR4 core\n"); return -ENOMEM; } } return 0; } #else /* DEBUG */ static inline int brcmf_sdio_chip_cichk(struct chip_info *ci) { return 0; } #endif static int brcmf_sdio_chip_recognition(struct brcmf_sdio_dev *sdiodev, struct chip_info *ci, u32 regs) { u32 regdata; int ret; /* Get CC core rev * Chipid is assume to be at offset 0 from regs arg * For different chiptypes or old sdio hosts w/o chipcommon, * other ways of recognition should be added here. */ ci->c_inf[0].id = BCMA_CORE_CHIPCOMMON; ci->c_inf[0].base = regs; regdata = brcmf_sdio_regrl(sdiodev, CORE_CC_REG(ci->c_inf[0].base, chipid), NULL); ci->chip = regdata & CID_ID_MASK; ci->chiprev = (regdata & CID_REV_MASK) >> CID_REV_SHIFT; ci->socitype = (regdata & CID_TYPE_MASK) >> CID_TYPE_SHIFT; brcmf_dbg(INFO, "chipid=0x%x chiprev=%d\n", ci->chip, ci->chiprev); /* Address of cores for new chips should be added here */ switch (ci->chip) { case BCM43143_CHIP_ID: ci->c_inf[0].wrapbase = ci->c_inf[0].base + 0x00100000; ci->c_inf[0].cib = 0x2b000000; ci->c_inf[1].id = BCMA_CORE_SDIO_DEV; ci->c_inf[1].base = BCM43143_CORE_BUS_BASE; ci->c_inf[1].wrapbase = ci->c_inf[1].base + 0x00100000; ci->c_inf[1].cib = 0x18000000; ci->c_inf[2].id = BCMA_CORE_INTERNAL_MEM; ci->c_inf[2].base = BCM43143_CORE_SOCRAM_BASE; ci->c_inf[2].wrapbase = ci->c_inf[2].base + 0x00100000; ci->c_inf[2].cib = 0x14000000; ci->c_inf[3].id = BCMA_CORE_ARM_CM3; ci->c_inf[3].base = BCM43143_CORE_ARM_BASE; ci->c_inf[3].wrapbase = ci->c_inf[3].base + 0x00100000; ci->c_inf[3].cib = 0x07000000; ci->ramsize = BCM43143_RAMSIZE; break; case BCM43241_CHIP_ID: ci->c_inf[0].wrapbase = 0x18100000; ci->c_inf[0].cib = 0x2a084411; ci->c_inf[1].id = BCMA_CORE_SDIO_DEV; ci->c_inf[1].base = 0x18002000; ci->c_inf[1].wrapbase = 0x18102000; ci->c_inf[1].cib = 0x0e004211; ci->c_inf[2].id = BCMA_CORE_INTERNAL_MEM; ci->c_inf[2].base = 0x18004000; ci->c_inf[2].wrapbase = 0x18104000; ci->c_inf[2].cib = 0x14080401; ci->c_inf[3].id = BCMA_CORE_ARM_CM3; ci->c_inf[3].base = 0x18003000; ci->c_inf[3].wrapbase = 0x18103000; ci->c_inf[3].cib = 0x07004211; ci->ramsize = 0x90000; break; case BCM4329_CHIP_ID: ci->c_inf[1].id = BCMA_CORE_SDIO_DEV; ci->c_inf[1].base = BCM4329_CORE_BUS_BASE; ci->c_inf[2].id = BCMA_CORE_INTERNAL_MEM; ci->c_inf[2].base = BCM4329_CORE_SOCRAM_BASE; ci->c_inf[3].id = BCMA_CORE_ARM_CM3; ci->c_inf[3].base = BCM4329_CORE_ARM_BASE; ci->ramsize = BCM4329_RAMSIZE; break; case BCM4330_CHIP_ID: ci->c_inf[0].wrapbase = 0x18100000; ci->c_inf[0].cib = 0x27004211; ci->c_inf[1].id = BCMA_CORE_SDIO_DEV; ci->c_inf[1].base = 0x18002000; ci->c_inf[1].wrapbase = 0x18102000; ci->c_inf[1].cib = 0x07004211; ci->c_inf[2].id = BCMA_CORE_INTERNAL_MEM; ci->c_inf[2].base = 0x18004000; ci->c_inf[2].wrapbase = 0x18104000; ci->c_inf[2].cib = 0x0d080401; ci->c_inf[3].id = BCMA_CORE_ARM_CM3; ci->c_inf[3].base = 0x18003000; ci->c_inf[3].wrapbase = 0x18103000; ci->c_inf[3].cib = 0x03004211; ci->ramsize = 0x48000; break; case BCM4334_CHIP_ID: ci->c_inf[0].wrapbase = 0x18100000; ci->c_inf[0].cib = 0x29004211; ci->c_inf[1].id = BCMA_CORE_SDIO_DEV; ci->c_inf[1].base = 0x18002000; ci->c_inf[1].wrapbase = 0x18102000; ci->c_inf[1].cib = 0x0d004211; ci->c_inf[2].id = BCMA_CORE_INTERNAL_MEM; ci->c_inf[2].base = 0x18004000; ci->c_inf[2].wrapbase = 0x18104000; ci->c_inf[2].cib = 0x13080401; ci->c_inf[3].id = BCMA_CORE_ARM_CM3; ci->c_inf[3].base = 0x18003000; ci->c_inf[3].wrapbase = 0x18103000; ci->c_inf[3].cib = 0x07004211; ci->ramsize = 0x80000; break; case BCM4335_CHIP_ID: ci->c_inf[0].wrapbase = 0x18100000; ci->c_inf[0].cib = 0x2b084411; ci->c_inf[1].id = BCMA_CORE_SDIO_DEV; ci->c_inf[1].base = 0x18005000; ci->c_inf[1].wrapbase = 0x18105000; ci->c_inf[1].cib = 0x0f004211; ci->c_inf[2].id = BCMA_CORE_ARM_CR4; ci->c_inf[2].base = 0x18002000; ci->c_inf[2].wrapbase = 0x18102000; ci->c_inf[2].cib = 0x01084411; ci->ramsize = 0xc0000; ci->rambase = 0x180000; break; default: brcmf_err("chipid 0x%x is not supported\n", ci->chip); return -ENODEV; } ret = brcmf_sdio_chip_cichk(ci); if (ret) return ret; switch (ci->socitype) { case SOCI_SB: ci->iscoreup = brcmf_sdio_sb_iscoreup; ci->corerev = brcmf_sdio_sb_corerev; ci->coredisable = brcmf_sdio_sb_coredisable; ci->resetcore = brcmf_sdio_sb_resetcore; break; case SOCI_AI: ci->iscoreup = brcmf_sdio_ai_iscoreup; ci->corerev = brcmf_sdio_ai_corerev; ci->coredisable = brcmf_sdio_ai_coredisable; ci->resetcore = brcmf_sdio_ai_resetcore; break; default: brcmf_err("socitype %u not supported\n", ci->socitype); return -ENODEV; } return 0; } static int brcmf_sdio_chip_buscoreprep(struct brcmf_sdio_dev *sdiodev) { int err = 0; u8 clkval, clkset; /* Try forcing SDIO core to do ALPAvail request only */ clkset = SBSDIO_FORCE_HW_CLKREQ_OFF | SBSDIO_ALP_AVAIL_REQ; brcmf_sdio_regwb(sdiodev, SBSDIO_FUNC1_CHIPCLKCSR, clkset, &err); if (err) { brcmf_err("error writing for HT off\n"); return err; } /* If register supported, wait for ALPAvail and then force ALP */ /* This may take up to 15 milliseconds */ clkval = brcmf_sdio_regrb(sdiodev, SBSDIO_FUNC1_CHIPCLKCSR, NULL); if ((clkval & ~SBSDIO_AVBITS) != clkset) { brcmf_err("ChipClkCSR access: wrote 0x%02x read 0x%02x\n", clkset, clkval); return -EACCES; } SPINWAIT(((clkval = brcmf_sdio_regrb(sdiodev, SBSDIO_FUNC1_CHIPCLKCSR, NULL)), !SBSDIO_ALPAV(clkval)), PMU_MAX_TRANSITION_DLY); if (!SBSDIO_ALPAV(clkval)) { brcmf_err("timeout on ALPAV wait, clkval 0x%02x\n", clkval); return -EBUSY; } clkset = SBSDIO_FORCE_HW_CLKREQ_OFF | SBSDIO_FORCE_ALP; brcmf_sdio_regwb(sdiodev, SBSDIO_FUNC1_CHIPCLKCSR, clkset, &err); udelay(65); /* Also, disable the extra SDIO pull-ups */ brcmf_sdio_regwb(sdiodev, SBSDIO_FUNC1_SDIOPULLUP, 0, NULL); return 0; } static void brcmf_sdio_chip_buscoresetup(struct brcmf_sdio_dev *sdiodev, struct chip_info *ci) { u32 base = ci->c_inf[0].base; /* get chipcommon rev */ ci->c_inf[0].rev = ci->corerev(sdiodev, ci, ci->c_inf[0].id); /* get chipcommon capabilites */ ci->c_inf[0].caps = brcmf_sdio_regrl(sdiodev, CORE_CC_REG(base, capabilities), NULL); /* get pmu caps & rev */ if (ci->c_inf[0].caps & CC_CAP_PMU) { ci->pmucaps = brcmf_sdio_regrl(sdiodev, CORE_CC_REG(base, pmucapabilities), NULL); ci->pmurev = ci->pmucaps & PCAP_REV_MASK; } ci->c_inf[1].rev = ci->corerev(sdiodev, ci, ci->c_inf[1].id); brcmf_dbg(INFO, "ccrev=%d, pmurev=%d, buscore rev/type=%d/0x%x\n", ci->c_inf[0].rev, ci->pmurev, ci->c_inf[1].rev, ci->c_inf[1].id); /* * Make sure any on-chip ARM is off (in case strapping is wrong), * or downloaded code was already running. */ ci->coredisable(sdiodev, ci, BCMA_CORE_ARM_CM3, 0); } int brcmf_sdio_chip_attach(struct brcmf_sdio_dev *sdiodev, struct chip_info **ci_ptr, u32 regs) { int ret; struct chip_info *ci; brcmf_dbg(TRACE, "Enter\n"); /* alloc chip_info_t */ ci = kzalloc(sizeof(struct chip_info), GFP_ATOMIC); if (!ci) return -ENOMEM; ret = brcmf_sdio_chip_buscoreprep(sdiodev); if (ret != 0) goto err; ret = brcmf_sdio_chip_recognition(sdiodev, ci, regs); if (ret != 0) goto err; brcmf_sdio_chip_buscoresetup(sdiodev, ci); brcmf_sdio_regwl(sdiodev, CORE_CC_REG(ci->c_inf[0].base, gpiopullup), 0, NULL); brcmf_sdio_regwl(sdiodev, CORE_CC_REG(ci->c_inf[0].base, gpiopulldown), 0, NULL); *ci_ptr = ci; return 0; err: kfree(ci); return ret; } void brcmf_sdio_chip_detach(struct chip_info **ci_ptr) { brcmf_dbg(TRACE, "Enter\n"); kfree(*ci_ptr); *ci_ptr = NULL; } static char *brcmf_sdio_chip_name(uint chipid, char *buf, uint len) { const char *fmt; fmt = ((chipid > 0xa000) || (chipid < 0x4000)) ? "%d" : "%x"; snprintf(buf, len, fmt, chipid); return buf; } void brcmf_sdio_chip_drivestrengthinit(struct brcmf_sdio_dev *sdiodev, struct chip_info *ci, u32 drivestrength) { const struct sdiod_drive_str *str_tab = NULL; u32 str_mask; u32 str_shift; char chn[8]; u32 base = ci->c_inf[0].base; u32 i; u32 drivestrength_sel = 0; u32 cc_data_temp; u32 addr; if (!(ci->c_inf[0].caps & CC_CAP_PMU)) return; switch (SDIOD_DRVSTR_KEY(ci->chip, ci->pmurev)) { case SDIOD_DRVSTR_KEY(BCM4330_CHIP_ID, 12): str_tab = sdiod_drvstr_tab1_1v8; str_mask = 0x00003800; str_shift = 11; break; case SDIOD_DRVSTR_KEY(BCM43143_CHIP_ID, 17): /* note: 43143 does not support tristate */ i = ARRAY_SIZE(sdiod_drvstr_tab2_3v3) - 1; if (drivestrength >= sdiod_drvstr_tab2_3v3[i].strength) { str_tab = sdiod_drvstr_tab2_3v3; str_mask = 0x00000007; str_shift = 0; } else brcmf_err("Invalid SDIO Drive strength for chip %s, strength=%d\n", brcmf_sdio_chip_name(ci->chip, chn, 8), drivestrength); break; default: brcmf_err("No SDIO Drive strength init done for chip %s rev %d pmurev %d\n", brcmf_sdio_chip_name(ci->chip, chn, 8), ci->chiprev, ci->pmurev); break; } if (str_tab != NULL) { for (i = 0; str_tab[i].strength != 0; i++) { if (drivestrength >= str_tab[i].strength) { drivestrength_sel = str_tab[i].sel; break; } } addr = CORE_CC_REG(base, chipcontrol_addr); brcmf_sdio_regwl(sdiodev, addr, 1, NULL); cc_data_temp = brcmf_sdio_regrl(sdiodev, addr, NULL); cc_data_temp &= ~str_mask; drivestrength_sel <<= str_shift; cc_data_temp |= drivestrength_sel; brcmf_sdio_regwl(sdiodev, addr, cc_data_temp, NULL); brcmf_dbg(INFO, "SDIO: %d mA (req=%d mA) drive strength selected, set to 0x%08x\n", str_tab[i].strength, drivestrength, cc_data_temp); } } #ifdef DEBUG static bool brcmf_sdio_chip_verifynvram(struct brcmf_sdio_dev *sdiodev, u32 nvram_addr, char *nvram_dat, uint nvram_sz) { char *nvram_ularray; int err; bool ret = true; /* read back and verify */ brcmf_dbg(INFO, "Compare NVRAM dl & ul; size=%d\n", nvram_sz); nvram_ularray = kmalloc(nvram_sz, GFP_KERNEL); /* do not proceed while no memory but */ if (!nvram_ularray) return true; /* Upload image to verify downloaded contents. */ memset(nvram_ularray, 0xaa, nvram_sz); /* Read the vars list to temp buffer for comparison */ err = brcmf_sdio_ramrw(sdiodev, false, nvram_addr, nvram_ularray, nvram_sz); if (err) { brcmf_err("error %d on reading %d nvram bytes at 0x%08x\n", err, nvram_sz, nvram_addr); } else if (memcmp(nvram_dat, nvram_ularray, nvram_sz)) { brcmf_err("Downloaded NVRAM image is corrupted\n"); ret = false; } kfree(nvram_ularray); return ret; } #else /* DEBUG */ static inline bool brcmf_sdio_chip_verifynvram(struct brcmf_sdio_dev *sdiodev, u32 nvram_addr, char *nvram_dat, uint nvram_sz) { return true; } #endif /* DEBUG */ static bool brcmf_sdio_chip_writenvram(struct brcmf_sdio_dev *sdiodev, struct chip_info *ci, char *nvram_dat, uint nvram_sz) { int err; u32 nvram_addr; u32 token; __le32 token_le; nvram_addr = (ci->ramsize - 4) - nvram_sz + ci->rambase; /* Write the vars list */ err = brcmf_sdio_ramrw(sdiodev, true, nvram_addr, nvram_dat, nvram_sz); if (err) { brcmf_err("error %d on writing %d nvram bytes at 0x%08x\n", err, nvram_sz, nvram_addr); return false; } if (!brcmf_sdio_chip_verifynvram(sdiodev, nvram_addr, nvram_dat, nvram_sz)) return false; /* generate token: * nvram size, converted to words, in lower 16-bits, checksum * in upper 16-bits. */ token = nvram_sz / 4; token = (~token << 16) | (token & 0x0000FFFF); token_le = cpu_to_le32(token); brcmf_dbg(INFO, "RAM size: %d\n", ci->ramsize); brcmf_dbg(INFO, "nvram is placed at %d, size %d, token=0x%08x\n", nvram_addr, nvram_sz, token); /* Write the length token to the last word */ if (brcmf_sdio_ramrw(sdiodev, true, (ci->ramsize - 4 + ci->rambase), (u8 *)&token_le, 4)) return false; return true; } static void brcmf_sdio_chip_cm3_enterdl(struct brcmf_sdio_dev *sdiodev, struct chip_info *ci) { u32 zeros = 0; ci->coredisable(sdiodev, ci, BCMA_CORE_ARM_CM3, 0); ci->resetcore(sdiodev, ci, BCMA_CORE_INTERNAL_MEM, 0); /* clear length token */ brcmf_sdio_ramrw(sdiodev, true, ci->ramsize - 4, (u8 *)&zeros, 4); } static bool brcmf_sdio_chip_cm3_exitdl(struct brcmf_sdio_dev *sdiodev, struct chip_info *ci, char *nvram_dat, uint nvram_sz) { u8 core_idx; u32 reg_addr; if (!ci->iscoreup(sdiodev, ci, BCMA_CORE_INTERNAL_MEM)) { brcmf_err("SOCRAM core is down after reset?\n"); return false; } if (!brcmf_sdio_chip_writenvram(sdiodev, ci, nvram_dat, nvram_sz)) return false; /* clear all interrupts */ core_idx = brcmf_sdio_chip_getinfidx(ci, BCMA_CORE_SDIO_DEV); reg_addr = ci->c_inf[core_idx].base; reg_addr += offsetof(struct sdpcmd_regs, intstatus); brcmf_sdio_regwl(sdiodev, reg_addr, 0xFFFFFFFF, NULL); ci->resetcore(sdiodev, ci, BCMA_CORE_ARM_CM3, 0); return true; } static inline void brcmf_sdio_chip_cr4_enterdl(struct brcmf_sdio_dev *sdiodev, struct chip_info *ci) { ci->resetcore(sdiodev, ci, BCMA_CORE_ARM_CR4, ARMCR4_BCMA_IOCTL_CPUHALT); } static bool brcmf_sdio_chip_cr4_exitdl(struct brcmf_sdio_dev *sdiodev, struct chip_info *ci, char *nvram_dat, uint nvram_sz) { u8 core_idx; u32 reg_addr; if (!brcmf_sdio_chip_writenvram(sdiodev, ci, nvram_dat, nvram_sz)) return false; /* clear all interrupts */ core_idx = brcmf_sdio_chip_getinfidx(ci, BCMA_CORE_SDIO_DEV); reg_addr = ci->c_inf[core_idx].base; reg_addr += offsetof(struct sdpcmd_regs, intstatus); brcmf_sdio_regwl(sdiodev, reg_addr, 0xFFFFFFFF, NULL); /* Write reset vector to address 0 */ brcmf_sdio_ramrw(sdiodev, true, 0, (void *)&ci->rst_vec, sizeof(ci->rst_vec)); /* restore ARM */ ci->resetcore(sdiodev, ci, BCMA_CORE_ARM_CR4, 0); return true; } void brcmf_sdio_chip_enter_download(struct brcmf_sdio_dev *sdiodev, struct chip_info *ci) { u8 arm_core_idx; arm_core_idx = brcmf_sdio_chip_getinfidx(ci, BCMA_CORE_ARM_CM3); if (BRCMF_MAX_CORENUM != arm_core_idx) { brcmf_sdio_chip_cm3_enterdl(sdiodev, ci); return; } brcmf_sdio_chip_cr4_enterdl(sdiodev, ci); } bool brcmf_sdio_chip_exit_download(struct brcmf_sdio_dev *sdiodev, struct chip_info *ci, char *nvram_dat, uint nvram_sz) { u8 arm_core_idx; arm_core_idx = brcmf_sdio_chip_getinfidx(ci, BCMA_CORE_ARM_CM3); if (BRCMF_MAX_CORENUM != arm_core_idx) return brcmf_sdio_chip_cm3_exitdl(sdiodev, ci, nvram_dat, nvram_sz); return brcmf_sdio_chip_cr4_exitdl(sdiodev, ci, nvram_dat, nvram_sz); }