/* Low-level parallel-port routines for 8255-based PC-style hardware. * * Authors: Phil Blundell * Tim Waugh * Jose Renau * David Campbell * Andrea Arcangeli * * based on work by Grant Guenther and Phil Blundell. * * Cleaned up include files - Russell King * DMA support - Bert De Jonghe * Many ECP bugs fixed. Fred Barnes & Jamie Lokier, 1999 * More PCI support now conditional on CONFIG_PCI, 03/2001, Paul G. * Various hacks, Fred Barnes, 04/2001 * Updated probing logic - Adam Belay */ /* This driver should work with any hardware that is broadly compatible * with that in the IBM PC. This applies to the majority of integrated * I/O chipsets that are commonly available. The expected register * layout is: * * base+0 data * base+1 status * base+2 control * * In addition, there are some optional registers: * * base+3 EPP address * base+4 EPP data * base+0x400 ECP config A * base+0x401 ECP config B * base+0x402 ECP control * * All registers are 8 bits wide and read/write. If your hardware differs * only in register addresses (eg because your registers are on 32-bit * word boundaries) then you can alter the constants in parport_pc.h to * accommodate this. * * Note that the ECP registers may not start at offset 0x400 for PCI cards, * but rather will start at port->base_hi. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #define PARPORT_PC_MAX_PORTS PARPORT_MAX #ifdef CONFIG_ISA_DMA_API #define HAS_DMA #endif /* ECR modes */ #define ECR_SPP 00 #define ECR_PS2 01 #define ECR_PPF 02 #define ECR_ECP 03 #define ECR_EPP 04 #define ECR_VND 05 #define ECR_TST 06 #define ECR_CNF 07 #define ECR_MODE_MASK 0xe0 #define ECR_WRITE(p, v) frob_econtrol((p), 0xff, (v)) #undef DEBUG #ifdef DEBUG #define DPRINTK printk #else #define DPRINTK(stuff...) #endif #define NR_SUPERIOS 3 static struct superio_struct { /* For Super-IO chips autodetection */ int io; int irq; int dma; } superios[NR_SUPERIOS] = { {0,},}; static int user_specified; #if defined(CONFIG_PARPORT_PC_SUPERIO) || \ (defined(CONFIG_PARPORT_1284) && defined(CONFIG_PARPORT_PC_FIFO)) static int verbose_probing; #endif static int pci_registered_parport; static int pnp_registered_parport; /* frob_control, but for ECR */ static void frob_econtrol(struct parport *pb, unsigned char m, unsigned char v) { unsigned char ectr = 0; if (m != 0xff) ectr = inb(ECONTROL(pb)); DPRINTK(KERN_DEBUG "frob_econtrol(%02x,%02x): %02x -> %02x\n", m, v, ectr, (ectr & ~m) ^ v); outb((ectr & ~m) ^ v, ECONTROL(pb)); } static inline void frob_set_mode(struct parport *p, int mode) { frob_econtrol(p, ECR_MODE_MASK, mode << 5); } #ifdef CONFIG_PARPORT_PC_FIFO /* Safely change the mode bits in the ECR Returns: 0 : Success -EBUSY: Could not drain FIFO in some finite amount of time, mode not changed! */ static int change_mode(struct parport *p, int m) { const struct parport_pc_private *priv = p->physport->private_data; unsigned char oecr; int mode; DPRINTK(KERN_INFO "parport change_mode ECP-ISA to mode 0x%02x\n", m); if (!priv->ecr) { printk(KERN_DEBUG "change_mode: but there's no ECR!\n"); return 0; } /* Bits <7:5> contain the mode. */ oecr = inb(ECONTROL(p)); mode = (oecr >> 5) & 0x7; if (mode == m) return 0; if (mode >= 2 && !(priv->ctr & 0x20)) { /* This mode resets the FIFO, so we may * have to wait for it to drain first. */ unsigned long expire = jiffies + p->physport->cad->timeout; int counter; switch (mode) { case ECR_PPF: /* Parallel Port FIFO mode */ case ECR_ECP: /* ECP Parallel Port mode */ /* Busy wait for 200us */ for (counter = 0; counter < 40; counter++) { if (inb(ECONTROL(p)) & 0x01) break; if (signal_pending(current)) break; udelay(5); } /* Poll slowly. */ while (!(inb(ECONTROL(p)) & 0x01)) { if (time_after_eq(jiffies, expire)) /* The FIFO is stuck. */ return -EBUSY; schedule_timeout_interruptible( msecs_to_jiffies(10)); if (signal_pending(current)) break; } } } if (mode >= 2 && m >= 2) { /* We have to go through mode 001 */ oecr &= ~(7 << 5); oecr |= ECR_PS2 << 5; ECR_WRITE(p, oecr); } /* Set the mode. */ oecr &= ~(7 << 5); oecr |= m << 5; ECR_WRITE(p, oecr); return 0; } #ifdef CONFIG_PARPORT_1284 /* Find FIFO lossage; FIFO is reset */ #if 0 static int get_fifo_residue(struct parport *p) { int residue; int cnfga; const struct parport_pc_private *priv = p->physport->private_data; /* Adjust for the contents of the FIFO. */ for (residue = priv->fifo_depth; ; residue--) { if (inb(ECONTROL(p)) & 0x2) /* Full up. */ break; outb(0, FIFO(p)); } printk(KERN_DEBUG "%s: %d PWords were left in FIFO\n", p->name, residue); /* Reset the FIFO. */ frob_set_mode(p, ECR_PS2); /* Now change to config mode and clean up. FIXME */ frob_set_mode(p, ECR_CNF); cnfga = inb(CONFIGA(p)); printk(KERN_DEBUG "%s: cnfgA contains 0x%02x\n", p->name, cnfga); if (!(cnfga & (1<<2))) { printk(KERN_DEBUG "%s: Accounting for extra byte\n", p->name); residue++; } /* Don't care about partial PWords until support is added for * PWord != 1 byte. */ /* Back to PS2 mode. */ frob_set_mode(p, ECR_PS2); DPRINTK(KERN_DEBUG "*** get_fifo_residue: done residue collecting (ecr = 0x%2.2x)\n", inb(ECONTROL(p))); return residue; } #endif /* 0 */ #endif /* IEEE 1284 support */ #endif /* FIFO support */ /* * Clear TIMEOUT BIT in EPP MODE * * This is also used in SPP detection. */ static int clear_epp_timeout(struct parport *pb) { unsigned char r; if (!(parport_pc_read_status(pb) & 0x01)) return 1; /* To clear timeout some chips require double read */ parport_pc_read_status(pb); r = parport_pc_read_status(pb); outb(r | 0x01, STATUS(pb)); /* Some reset by writing 1 */ outb(r & 0xfe, STATUS(pb)); /* Others by writing 0 */ r = parport_pc_read_status(pb); return !(r & 0x01); } /* * Access functions. * * Most of these aren't static because they may be used by the * parport_xxx_yyy macros. extern __inline__ versions of several * of these are in parport_pc.h. */ static void parport_pc_init_state(struct pardevice *dev, struct parport_state *s) { s->u.pc.ctr = 0xc; if (dev->irq_func && dev->port->irq != PARPORT_IRQ_NONE) /* Set ackIntEn */ s->u.pc.ctr |= 0x10; s->u.pc.ecr = 0x34; /* NetMos chip can cause problems 0x24; * D.Gruszka VScom */ } static void parport_pc_save_state(struct parport *p, struct parport_state *s) { const struct parport_pc_private *priv = p->physport->private_data; s->u.pc.ctr = priv->ctr; if (priv->ecr) s->u.pc.ecr = inb(ECONTROL(p)); } static void parport_pc_restore_state(struct parport *p, struct parport_state *s) { struct parport_pc_private *priv = p->physport->private_data; register unsigned char c = s->u.pc.ctr & priv->ctr_writable; outb(c, CONTROL(p)); priv->ctr = c; if (priv->ecr) ECR_WRITE(p, s->u.pc.ecr); } #ifdef CONFIG_PARPORT_1284 static size_t parport_pc_epp_read_data(struct parport *port, void *buf, size_t length, int flags) { size_t got = 0; if (flags & PARPORT_W91284PIC) { unsigned char status; size_t left = length; /* use knowledge about data lines..: * nFault is 0 if there is at least 1 byte in the Warp's FIFO * pError is 1 if there are 16 bytes in the Warp's FIFO */ status = inb(STATUS(port)); while (!(status & 0x08) && got < length) { if (left >= 16 && (status & 0x20) && !(status & 0x08)) { /* can grab 16 bytes from warp fifo */ if (!((long)buf & 0x03)) insl(EPPDATA(port), buf, 4); else insb(EPPDATA(port), buf, 16); buf += 16; got += 16; left -= 16; } else { /* grab single byte from the warp fifo */ *((char *)buf) = inb(EPPDATA(port)); buf++; got++; left--; } status = inb(STATUS(port)); if (status & 0x01) { /* EPP timeout should never occur... */ printk(KERN_DEBUG "%s: EPP timeout occurred while talking to w91284pic (should not have done)\n", port->name); clear_epp_timeout(port); } } return got; } if ((flags & PARPORT_EPP_FAST) && (length > 1)) { if (!(((long)buf | length) & 0x03)) insl(EPPDATA(port), buf, (length >> 2)); else insb(EPPDATA(port), buf, length); if (inb(STATUS(port)) & 0x01) { clear_epp_timeout(port); return -EIO; } return length; } for (; got < length; got++) { *((char *)buf) = inb(EPPDATA(port)); buf++; if (inb(STATUS(port)) & 0x01) { /* EPP timeout */ clear_epp_timeout(port); break; } } return got; } static size_t parport_pc_epp_write_data(struct parport *port, const void *buf, size_t length, int flags) { size_t written = 0; if ((flags & PARPORT_EPP_FAST) && (length > 1)) { if (!(((long)buf | length) & 0x03)) outsl(EPPDATA(port), buf, (length >> 2)); else outsb(EPPDATA(port), buf, length); if (inb(STATUS(port)) & 0x01) { clear_epp_timeout(port); return -EIO; } return length; } for (; written < length; written++) { outb(*((char *)buf), EPPDATA(port)); buf++; if (inb(STATUS(port)) & 0x01) { clear_epp_timeout(port); break; } } return written; } static size_t parport_pc_epp_read_addr(struct parport *port, void *buf, size_t length, int flags) { size_t got = 0; if ((flags & PARPORT_EPP_FAST) && (length > 1)) { insb(EPPADDR(port), buf, length); if (inb(STATUS(port)) & 0x01) { clear_epp_timeout(port); return -EIO; } return length; } for (; got < length; got++) { *((char *)buf) = inb(EPPADDR(port)); buf++; if (inb(STATUS(port)) & 0x01) { clear_epp_timeout(port); break; } } return got; } static size_t parport_pc_epp_write_addr(struct parport *port, const void *buf, size_t length, int flags) { size_t written = 0; if ((flags & PARPORT_EPP_FAST) && (length > 1)) { outsb(EPPADDR(port), buf, length); if (inb(STATUS(port)) & 0x01) { clear_epp_timeout(port); return -EIO; } return length; } for (; written < length; written++) { outb(*((char *)buf), EPPADDR(port)); buf++; if (inb(STATUS(port)) & 0x01) { clear_epp_timeout(port); break; } } return written; } static size_t parport_pc_ecpepp_read_data(struct parport *port, void *buf, size_t length, int flags) { size_t got; frob_set_mode(port, ECR_EPP); parport_pc_data_reverse(port); parport_pc_write_control(port, 0x4); got = parport_pc_epp_read_data(port, buf, length, flags); frob_set_mode(port, ECR_PS2); return got; } static size_t parport_pc_ecpepp_write_data(struct parport *port, const void *buf, size_t length, int flags) { size_t written; frob_set_mode(port, ECR_EPP); parport_pc_write_control(port, 0x4); parport_pc_data_forward(port); written = parport_pc_epp_write_data(port, buf, length, flags); frob_set_mode(port, ECR_PS2); return written; } static size_t parport_pc_ecpepp_read_addr(struct parport *port, void *buf, size_t length, int flags) { size_t got; frob_set_mode(port, ECR_EPP); parport_pc_data_reverse(port); parport_pc_write_control(port, 0x4); got = parport_pc_epp_read_addr(port, buf, length, flags); frob_set_mode(port, ECR_PS2); return got; } static size_t parport_pc_ecpepp_write_addr(struct parport *port, const void *buf, size_t length, int flags) { size_t written; frob_set_mode(port, ECR_EPP); parport_pc_write_control(port, 0x4); parport_pc_data_forward(port); written = parport_pc_epp_write_addr(port, buf, length, flags); frob_set_mode(port, ECR_PS2); return written; } #endif /* IEEE 1284 support */ #ifdef CONFIG_PARPORT_PC_FIFO static size_t parport_pc_fifo_write_block_pio(struct parport *port, const void *buf, size_t length) { int ret = 0; const unsigned char *bufp = buf; size_t left = length; unsigned long expire = jiffies + port->physport->cad->timeout; const int fifo = FIFO(port); int poll_for = 8; /* 80 usecs */ const struct parport_pc_private *priv = port->physport->private_data; const int fifo_depth = priv->fifo_depth; port = port->physport; /* We don't want to be interrupted every character. */ parport_pc_disable_irq(port); /* set nErrIntrEn and serviceIntr */ frob_econtrol(port, (1<<4) | (1<<2), (1<<4) | (1<<2)); /* Forward mode. */ parport_pc_data_forward(port); /* Must be in PS2 mode */ while (left) { unsigned char byte; unsigned char ecrval = inb(ECONTROL(port)); int i = 0; if (need_resched() && time_before(jiffies, expire)) /* Can't yield the port. */ schedule(); /* Anyone else waiting for the port? */ if (port->waithead) { printk(KERN_DEBUG "Somebody wants the port\n"); break; } if (ecrval & 0x02) { /* FIFO is full. Wait for interrupt. */ /* Clear serviceIntr */ ECR_WRITE(port, ecrval & ~(1<<2)); false_alarm: ret = parport_wait_event(port, HZ); if (ret < 0) break; ret = 0; if (!time_before(jiffies, expire)) { /* Timed out. */ printk(KERN_DEBUG "FIFO write timed out\n"); break; } ecrval = inb(ECONTROL(port)); if (!(ecrval & (1<<2))) { if (need_resched() && time_before(jiffies, expire)) schedule(); goto false_alarm; } continue; } /* Can't fail now. */ expire = jiffies + port->cad->timeout; poll: if (signal_pending(current)) break; if (ecrval & 0x01) { /* FIFO is empty. Blast it full. */ const int n = left < fifo_depth ? left : fifo_depth; outsb(fifo, bufp, n); bufp += n; left -= n; /* Adjust the poll time. */ if (i < (poll_for - 2)) poll_for--; continue; } else if (i++ < poll_for) { udelay(10); ecrval = inb(ECONTROL(port)); goto poll; } /* Half-full(call me an optimist) */ byte = *bufp++; outb(byte, fifo); left--; } dump_parport_state("leave fifo_write_block_pio", port); return length - left; } #ifdef HAS_DMA static size_t parport_pc_fifo_write_block_dma(struct parport *port, const void *buf, size_t length) { int ret = 0; unsigned long dmaflag; size_t left = length; const struct parport_pc_private *priv = port->physport->private_data; struct device *dev = port->physport->dev; dma_addr_t dma_addr, dma_handle; size_t maxlen = 0x10000; /* max 64k per DMA transfer */ unsigned long start = (unsigned long) buf; unsigned long end = (unsigned long) buf + length - 1; dump_parport_state("enter fifo_write_block_dma", port); if (end < MAX_DMA_ADDRESS) { /* If it would cross a 64k boundary, cap it at the end. */ if ((start ^ end) & ~0xffffUL) maxlen = 0x10000 - (start & 0xffff); dma_addr = dma_handle = dma_map_single(dev, (void *)buf, length, DMA_TO_DEVICE); } else { /* above 16 MB we use a bounce buffer as ISA-DMA is not possible */ maxlen = PAGE_SIZE; /* sizeof(priv->dma_buf) */ dma_addr = priv->dma_handle; dma_handle = 0; } port = port->physport; /* We don't want to be interrupted every character. */ parport_pc_disable_irq(port); /* set nErrIntrEn and serviceIntr */ frob_econtrol(port, (1<<4) | (1<<2), (1<<4) | (1<<2)); /* Forward mode. */ parport_pc_data_forward(port); /* Must be in PS2 mode */ while (left) { unsigned long expire = jiffies + port->physport->cad->timeout; size_t count = left; if (count > maxlen) count = maxlen; if (!dma_handle) /* bounce buffer ! */ memcpy(priv->dma_buf, buf, count); dmaflag = claim_dma_lock(); disable_dma(port->dma); clear_dma_ff(port->dma); set_dma_mode(port->dma, DMA_MODE_WRITE); set_dma_addr(port->dma, dma_addr); set_dma_count(port->dma, count); /* Set DMA mode */ frob_econtrol(port, 1<<3, 1<<3); /* Clear serviceIntr */ frob_econtrol(port, 1<<2, 0); enable_dma(port->dma); release_dma_lock(dmaflag); /* assume DMA will be successful */ left -= count; buf += count; if (dma_handle) dma_addr += count; /* Wait for interrupt. */ false_alarm: ret = parport_wait_event(port, HZ); if (ret < 0) break; ret = 0; if (!time_before(jiffies, expire)) { /* Timed out. */ printk(KERN_DEBUG "DMA write timed out\n"); break; } /* Is serviceIntr set? */ if (!(inb(ECONTROL(port)) & (1<<2))) { cond_resched(); goto false_alarm; } dmaflag = claim_dma_lock(); disable_dma(port->dma); clear_dma_ff(port->dma); count = get_dma_residue(port->dma); release_dma_lock(dmaflag); cond_resched(); /* Can't yield the port. */ /* Anyone else waiting for the port? */ if (port->waithead) { printk(KERN_DEBUG "Somebody wants the port\n"); break; } /* update for possible DMA residue ! */ buf -= count; left += count; if (dma_handle) dma_addr -= count; } /* Maybe got here through break, so adjust for DMA residue! */ dmaflag = claim_dma_lock(); disable_dma(port->dma); clear_dma_ff(port->dma); left += get_dma_residue(port->dma); release_dma_lock(dmaflag); /* Turn off DMA mode */ frob_econtrol(port, 1<<3, 0); if (dma_handle) dma_unmap_single(dev, dma_handle, length, DMA_TO_DEVICE); dump_parport_state("leave fifo_write_block_dma", port); return length - left; } #endif static inline size_t parport_pc_fifo_write_block(struct parport *port, const void *buf, size_t length) { #ifdef HAS_DMA if (port->dma != PARPORT_DMA_NONE) return parport_pc_fifo_write_block_dma(port, buf, length); #endif return parport_pc_fifo_write_block_pio(port, buf, length); } /* Parallel Port FIFO mode (ECP chipsets) */ static size_t parport_pc_compat_write_block_pio(struct parport *port, const void *buf, size_t length, int flags) { size_t written; int r; unsigned long expire; const struct parport_pc_private *priv = port->physport->private_data; /* Special case: a timeout of zero means we cannot call schedule(). * Also if O_NONBLOCK is set then use the default implementation. */ if (port->physport->cad->timeout <= PARPORT_INACTIVITY_O_NONBLOCK) return parport_ieee1284_write_compat(port, buf, length, flags); /* Set up parallel port FIFO mode.*/ parport_pc_data_forward(port); /* Must be in PS2 mode */ parport_pc_frob_control(port, PARPORT_CONTROL_STROBE, 0); r = change_mode(port, ECR_PPF); /* Parallel port FIFO */ if (r) printk(KERN_DEBUG "%s: Warning change_mode ECR_PPF failed\n", port->name); port->physport->ieee1284.phase = IEEE1284_PH_FWD_DATA; /* Write the data to the FIFO. */ written = parport_pc_fifo_write_block(port, buf, length); /* Finish up. */ /* For some hardware we don't want to touch the mode until * the FIFO is empty, so allow 4 seconds for each position * in the fifo. */ expire = jiffies + (priv->fifo_depth * HZ * 4); do { /* Wait for the FIFO to empty */ r = change_mode(port, ECR_PS2); if (r != -EBUSY) break; } while (time_before(jiffies, expire)); if (r == -EBUSY) { printk(KERN_DEBUG "%s: FIFO is stuck\n", port->name); /* Prevent further data transfer. */ frob_set_mode(port, ECR_TST); /* Adjust for the contents of the FIFO. */ for (written -= priv->fifo_depth; ; written++) { if (inb(ECONTROL(port)) & 0x2) { /* Full up. */ break; } outb(0, FIFO(port)); } /* Reset the FIFO and return to PS2 mode. */ frob_set_mode(port, ECR_PS2); } r = parport_wait_peripheral(port, PARPORT_STATUS_BUSY, PARPORT_STATUS_BUSY); if (r) printk(KERN_DEBUG "%s: BUSY timeout (%d) in compat_write_block_pio\n", port->name, r); port->physport->ieee1284.phase = IEEE1284_PH_FWD_IDLE; return written; } /* ECP */ #ifdef CONFIG_PARPORT_1284 static size_t parport_pc_ecp_write_block_pio(struct parport *port, const void *buf, size_t length, int flags) { size_t written; int r; unsigned long expire; const struct parport_pc_private *priv = port->physport->private_data; /* Special case: a timeout of zero means we cannot call schedule(). * Also if O_NONBLOCK is set then use the default implementation. */ if (port->physport->cad->timeout <= PARPORT_INACTIVITY_O_NONBLOCK) return parport_ieee1284_ecp_write_data(port, buf, length, flags); /* Switch to forward mode if necessary. */ if (port->physport->ieee1284.phase != IEEE1284_PH_FWD_IDLE) { /* Event 47: Set nInit high. */ parport_frob_control(port, PARPORT_CONTROL_INIT | PARPORT_CONTROL_AUTOFD, PARPORT_CONTROL_INIT | PARPORT_CONTROL_AUTOFD); /* Event 49: PError goes high. */ r = parport_wait_peripheral(port, PARPORT_STATUS_PAPEROUT, PARPORT_STATUS_PAPEROUT); if (r) { printk(KERN_DEBUG "%s: PError timeout (%d) " "in ecp_write_block_pio\n", port->name, r); } } /* Set up ECP parallel port mode.*/ parport_pc_data_forward(port); /* Must be in PS2 mode */ parport_pc_frob_control(port, PARPORT_CONTROL_STROBE | PARPORT_CONTROL_AUTOFD, 0); r = change_mode(port, ECR_ECP); /* ECP FIFO */ if (r) printk(KERN_DEBUG "%s: Warning change_mode ECR_ECP failed\n", port->name); port->physport->ieee1284.phase = IEEE1284_PH_FWD_DATA; /* Write the data to the FIFO. */ written = parport_pc_fifo_write_block(port, buf, length); /* Finish up. */ /* For some hardware we don't want to touch the mode until * the FIFO is empty, so allow 4 seconds for each position * in the fifo. */ expire = jiffies + (priv->fifo_depth * (HZ * 4)); do { /* Wait for the FIFO to empty */ r = change_mode(port, ECR_PS2); if (r != -EBUSY) break; } while (time_before(jiffies, expire)); if (r == -EBUSY) { printk(KERN_DEBUG "%s: FIFO is stuck\n", port->name); /* Prevent further data transfer. */ frob_set_mode(port, ECR_TST); /* Adjust for the contents of the FIFO. */ for (written -= priv->fifo_depth; ; written++) { if (inb(ECONTROL(port)) & 0x2) { /* Full up. */ break; } outb(0, FIFO(port)); } /* Reset the FIFO and return to PS2 mode. */ frob_set_mode(port, ECR_PS2); /* Host transfer recovery. */ parport_pc_data_reverse(port); /* Must be in PS2 mode */ udelay(5); parport_frob_control(port, PARPORT_CONTROL_INIT, 0); r = parport_wait_peripheral(port, PARPORT_STATUS_PAPEROUT, 0); if (r) printk(KERN_DEBUG "%s: PE,1 timeout (%d) " "in ecp_write_block_pio\n", port->name, r); parport_frob_control(port, PARPORT_CONTROL_INIT, PARPORT_CONTROL_INIT); r = parport_wait_peripheral(port, PARPORT_STATUS_PAPEROUT, PARPORT_STATUS_PAPEROUT); if (r) printk(KERN_DEBUG "%s: PE,2 timeout (%d) " "in ecp_write_block_pio\n", port->name, r); } r = parport_wait_peripheral(port, PARPORT_STATUS_BUSY, PARPORT_STATUS_BUSY); if (r) printk(KERN_DEBUG "%s: BUSY timeout (%d) in ecp_write_block_pio\n", port->name, r); port->physport->ieee1284.phase = IEEE1284_PH_FWD_IDLE; return written; } #if 0 static size_t parport_pc_ecp_read_block_pio(struct parport *port, void *buf, size_t length, int flags) { size_t left = length; size_t fifofull; int r; const int fifo = FIFO(port); const struct parport_pc_private *priv = port->physport->private_data; const int fifo_depth = priv->fifo_depth; char *bufp = buf; port = port->physport; DPRINTK(KERN_DEBUG "parport_pc: parport_pc_ecp_read_block_pio\n"); dump_parport_state("enter fcn", port); /* Special case: a timeout of zero means we cannot call schedule(). * Also if O_NONBLOCK is set then use the default implementation. */ if (port->cad->timeout <= PARPORT_INACTIVITY_O_NONBLOCK) return parport_ieee1284_ecp_read_data(port, buf, length, flags); if (port->ieee1284.mode == IEEE1284_MODE_ECPRLE) { /* If the peripheral is allowed to send RLE compressed * data, it is possible for a byte to expand to 128 * bytes in the FIFO. */ fifofull = 128; } else { fifofull = fifo_depth; } /* If the caller wants less than a full FIFO's worth of data, * go through software emulation. Otherwise we may have to throw * away data. */ if (length < fifofull) return parport_ieee1284_ecp_read_data(port, buf, length, flags); if (port->ieee1284.phase != IEEE1284_PH_REV_IDLE) { /* change to reverse-idle phase (must be in forward-idle) */ /* Event 38: Set nAutoFd low (also make sure nStrobe is high) */ parport_frob_control(port, PARPORT_CONTROL_AUTOFD | PARPORT_CONTROL_STROBE, PARPORT_CONTROL_AUTOFD); parport_pc_data_reverse(port); /* Must be in PS2 mode */ udelay(5); /* Event 39: Set nInit low to initiate bus reversal */ parport_frob_control(port, PARPORT_CONTROL_INIT, 0); /* Event 40: Wait for nAckReverse (PError) to go low */ r = parport_wait_peripheral(port, PARPORT_STATUS_PAPEROUT, 0); if (r) { printk(KERN_DEBUG "%s: PE timeout Event 40 (%d) " "in ecp_read_block_pio\n", port->name, r); return 0; } } /* Set up ECP FIFO mode.*/ /* parport_pc_frob_control(port, PARPORT_CONTROL_STROBE | PARPORT_CONTROL_AUTOFD, PARPORT_CONTROL_AUTOFD); */ r = change_mode(port, ECR_ECP); /* ECP FIFO */ if (r) printk(KERN_DEBUG "%s: Warning change_mode ECR_ECP failed\n", port->name); port->ieee1284.phase = IEEE1284_PH_REV_DATA; /* the first byte must be collected manually */ dump_parport_state("pre 43", port); /* Event 43: Wait for nAck to go low */ r = parport_wait_peripheral(port, PARPORT_STATUS_ACK, 0); if (r) { /* timed out while reading -- no data */ printk(KERN_DEBUG "PIO read timed out (initial byte)\n"); goto out_no_data; } /* read byte */ *bufp++ = inb(DATA(port)); left--; dump_parport_state("43-44", port); /* Event 44: nAutoFd (HostAck) goes high to acknowledge */ parport_pc_frob_control(port, PARPORT_CONTROL_AUTOFD, 0); dump_parport_state("pre 45", port); /* Event 45: Wait for nAck to go high */ /* r = parport_wait_peripheral(port, PARPORT_STATUS_ACK, PARPORT_STATUS_ACK); */ dump_parport_state("post 45", port); r = 0; if (r) { /* timed out while waiting for peripheral to respond to ack */ printk(KERN_DEBUG "ECP PIO read timed out (waiting for nAck)\n"); /* keep hold of the byte we've got already */ goto out_no_data; } /* Event 46: nAutoFd (HostAck) goes low to accept more data */ parport_pc_frob_control(port, PARPORT_CONTROL_AUTOFD, PARPORT_CONTROL_AUTOFD); dump_parport_state("rev idle", port); /* Do the transfer. */ while (left > fifofull) { int ret; unsigned long expire = jiffies + port->cad->timeout; unsigned char ecrval = inb(ECONTROL(port)); if (need_resched() && time_before(jiffies, expire)) /* Can't yield the port. */ schedule(); /* At this point, the FIFO may already be full. In * that case ECP is already holding back the * peripheral (assuming proper design) with a delayed * handshake. Work fast to avoid a peripheral * timeout. */ if (ecrval & 0x01) { /* FIFO is empty. Wait for interrupt. */ dump_parport_state("FIFO empty", port); /* Anyone else waiting for the port? */ if (port->waithead) { printk(KERN_DEBUG "Somebody wants the port\n"); break; } /* Clear serviceIntr */ ECR_WRITE(port, ecrval & ~(1<<2)); false_alarm: dump_parport_state("waiting", port); ret = parport_wait_event(port, HZ); DPRINTK(KERN_DEBUG "parport_wait_event returned %d\n", ret); if (ret < 0) break; ret = 0; if (!time_before(jiffies, expire)) { /* Timed out. */ dump_parport_state("timeout", port); printk(KERN_DEBUG "PIO read timed out\n"); break; } ecrval = inb(ECONTROL(port)); if (!(ecrval & (1<<2))) { if (need_resched() && time_before(jiffies, expire)) { schedule(); } goto false_alarm; } /* Depending on how the FIFO threshold was * set, how long interrupt service took, and * how fast the peripheral is, we might be * lucky and have a just filled FIFO. */ continue; } if (ecrval & 0x02) { /* FIFO is full. */ dump_parport_state("FIFO full", port); insb(fifo, bufp, fifo_depth); bufp += fifo_depth; left -= fifo_depth; continue; } DPRINTK(KERN_DEBUG "*** ecp_read_block_pio: reading one byte from the FIFO\n"); /* FIFO not filled. We will cycle this loop for a while * and either the peripheral will fill it faster, * tripping a fast empty with insb, or we empty it. */ *bufp++ = inb(fifo); left--; } /* scoop up anything left in the FIFO */ while (left && !(inb(ECONTROL(port) & 0x01))) { *bufp++ = inb(fifo); left--; } port->ieee1284.phase = IEEE1284_PH_REV_IDLE; dump_parport_state("rev idle2", port); out_no_data: /* Go to forward idle mode to shut the peripheral up (event 47). */ parport_frob_control(port, PARPORT_CONTROL_INIT, PARPORT_CONTROL_INIT); /* event 49: PError goes high */ r = parport_wait_peripheral(port, PARPORT_STATUS_PAPEROUT, PARPORT_STATUS_PAPEROUT); if (r) { printk(KERN_DEBUG "%s: PE timeout FWDIDLE (%d) in ecp_read_block_pio\n", port->name, r); } port->ieee1284.phase = IEEE1284_PH_FWD_IDLE; /* Finish up. */ { int lost = get_fifo_residue(port); if (lost) /* Shouldn't happen with compliant peripherals. */ printk(KERN_DEBUG "%s: DATA LOSS (%d bytes)!\n", port->name, lost); } dump_parport_state("fwd idle", port); return length - left; } #endif /* 0 */ #endif /* IEEE 1284 support */ #endif /* Allowed to use FIFO/DMA */ /* * ****************************************** * INITIALISATION AND MODULE STUFF BELOW HERE * ****************************************** */ /* GCC is not inlining extern inline function later overwriten to non-inline, so we use outlined_ variants here. */ static const struct parport_operations parport_pc_ops = { .write_data = parport_pc_write_data, .read_data = parport_pc_read_data, .write_control = parport_pc_write_control, .read_control = parport_pc_read_control, .frob_control = parport_pc_frob_control, .read_status = parport_pc_read_status, .enable_irq = parport_pc_enable_irq, .disable_irq = parport_pc_disable_irq, .data_forward = parport_pc_data_forward, .data_reverse = parport_pc_data_reverse, .init_state = parport_pc_init_state, .save_state = parport_pc_save_state, .restore_state = parport_pc_restore_state, .epp_write_data = parport_ieee1284_epp_write_data, .epp_read_data = parport_ieee1284_epp_read_data, .epp_write_addr = parport_ieee1284_epp_write_addr, .epp_read_addr = parport_ieee1284_epp_read_addr, .ecp_write_data = parport_ieee1284_ecp_write_data, .ecp_read_data = parport_ieee1284_ecp_read_data, .ecp_write_addr = parport_ieee1284_ecp_write_addr, .compat_write_data = parport_ieee1284_write_compat, .nibble_read_data = parport_ieee1284_read_nibble, .byte_read_data = parport_ieee1284_read_byte, .owner = THIS_MODULE, }; #ifdef CONFIG_PARPORT_PC_SUPERIO static struct superio_struct *find_free_superio(void) { int i; for (i = 0; i < NR_SUPERIOS; i++) if (superios[i].io == 0) return &superios[i]; return NULL; } /* Super-IO chipset detection, Winbond, SMSC */ static void __devinit show_parconfig_smsc37c669(int io, int key) { int cr1, cr4, cra, cr23, cr26, cr27; struct superio_struct *s; static const char *const modes[] = { "SPP and Bidirectional (PS/2)", "EPP and SPP", "ECP", "ECP and EPP" }; outb(key, io); outb(key, io); outb(1, io); cr1 = inb(io + 1); outb(4, io); cr4 = inb(io + 1); outb(0x0a, io); cra = inb(io + 1); outb(0x23, io); cr23 = inb(io + 1); outb(0x26, io); cr26 = inb(io + 1); outb(0x27, io); cr27 = inb(io + 1); outb(0xaa, io); if (verbose_probing) { printk(KERN_INFO "SMSC 37c669 LPT Config: cr_1=0x%02x, 4=0x%02x, " "A=0x%2x, 23=0x%02x, 26=0x%02x, 27=0x%02x\n", cr1, cr4, cra, cr23, cr26, cr27); /* The documentation calls DMA and IRQ-Lines by letters, so the board maker can/will wire them appropriately/randomly... G=reserved H=IDE-irq, */ printk(KERN_INFO "SMSC LPT Config: io=0x%04x, irq=%c, dma=%c, fifo threshold=%d\n", cr23 * 4, (cr27 & 0x0f) ? 'A' - 1 + (cr27 & 0x0f) : '-', (cr26 & 0x0f) ? 'A' - 1 + (cr26 & 0x0f) : '-', cra & 0x0f); printk(KERN_INFO "SMSC LPT Config: enabled=%s power=%s\n", (cr23 * 4 >= 0x100) ? "yes" : "no", (cr1 & 4) ? "yes" : "no"); printk(KERN_INFO "SMSC LPT Config: Port mode=%s, EPP version =%s\n", (cr1 & 0x08) ? "Standard mode only (SPP)" : modes[cr4 & 0x03], (cr4 & 0x40) ? "1.7" : "1.9"); } /* Heuristics ! BIOS setup for this mainboard device limits the choices to standard settings, i.e. io-address and IRQ are related, however DMA can be 1 or 3, assume DMA_A=DMA1, DMA_C=DMA3 (this is true e.g. for TYAN 1564D Tomcat IV) */ if (cr23 * 4 >= 0x100) { /* if active */ s = find_free_superio(); if (s == NULL) printk(KERN_INFO "Super-IO: too many chips!\n"); else { int d; switch (cr23 * 4) { case 0x3bc: s->io = 0x3bc; s->irq = 7; break; case 0x378: s->io = 0x378; s->irq = 7; break; case 0x278: s->io = 0x278; s->irq = 5; } d = (cr26 & 0x0f); if (d == 1 || d == 3) s->dma = d; else s->dma = PARPORT_DMA_NONE; } } } static void __devinit show_parconfig_winbond(int io, int key) { int cr30, cr60, cr61, cr70, cr74, crf0; struct superio_struct *s; static const char *const modes[] = { "Standard (SPP) and Bidirectional(PS/2)", /* 0 */ "EPP-1.9 and SPP", "ECP", "ECP and EPP-1.9", "Standard (SPP)", "EPP-1.7 and SPP", /* 5 */ "undefined!", "ECP and EPP-1.7" }; static char *const irqtypes[] = { "pulsed low, high-Z", "follows nACK" }; /* The registers are called compatible-PnP because the register layout is modelled after ISA-PnP, the access method is just another ... */ outb(key, io); outb(key, io); outb(0x07, io); /* Register 7: Select Logical Device */ outb(0x01, io + 1); /* LD1 is Parallel Port */ outb(0x30, io); cr30 = inb(io + 1); outb(0x60, io); cr60 = inb(io + 1); outb(0x61, io); cr61 = inb(io + 1); outb(0x70, io); cr70 = inb(io + 1); outb(0x74, io); cr74 = inb(io + 1); outb(0xf0, io); crf0 = inb(io + 1); outb(0xaa, io); if (verbose_probing) { printk(KERN_INFO "Winbond LPT Config: cr_30=%02x 60,61=%02x%02x 70=%02x 74=%02x, f0=%02x\n", cr30, cr60, cr61, cr70, cr74, crf0); printk(KERN_INFO "Winbond LPT Config: active=%s, io=0x%02x%02x irq=%d, ", (cr30 & 0x01) ? "yes" : "no", cr60, cr61, cr70 & 0x0f); if ((cr74 & 0x07) > 3) printk("dma=none\n"); else printk("dma=%d\n", cr74 & 0x07); printk(KERN_INFO "Winbond LPT Config: irqtype=%s, ECP fifo threshold=%d\n", irqtypes[crf0>>7], (crf0>>3)&0x0f); printk(KERN_INFO "Winbond LPT Config: Port mode=%s\n", modes[crf0 & 0x07]); } if (cr30 & 0x01) { /* the settings can be interrogated later ... */ s = find_free_superio(); if (s == NULL) printk(KERN_INFO "Super-IO: too many chips!\n"); else { s->io = (cr60 << 8) | cr61; s->irq = cr70 & 0x0f; s->dma = (((cr74 & 0x07) > 3) ? PARPORT_DMA_NONE : (cr74 & 0x07)); } } } static void __devinit decode_winbond(int efer, int key, int devid, int devrev, int oldid) { const char *type = "unknown"; int id, progif = 2; if (devid == devrev) /* simple heuristics, we happened to read some non-winbond register */ return; id = (devid << 8) | devrev; /* Values are from public data sheets pdf files, I can just confirm 83977TF is correct :-) */ if (id == 0x9771) type = "83977F/AF"; else if (id == 0x9773) type = "83977TF / SMSC 97w33x/97w34x"; else if (id == 0x9774) type = "83977ATF"; else if ((id & ~0x0f) == 0x5270) type = "83977CTF / SMSC 97w36x"; else if ((id & ~0x0f) == 0x52f0) type = "83977EF / SMSC 97w35x"; else if ((id & ~0x0f) == 0x5210) type = "83627"; else if ((id & ~0x0f) == 0x6010) type = "83697HF"; else if ((oldid & 0x0f) == 0x0a) { type = "83877F"; progif = 1; } else if ((oldid & 0x0f) == 0x0b) { type = "83877AF"; progif = 1; } else if ((oldid & 0x0f) == 0x0c) { type = "83877TF"; progif = 1; } else if ((oldid & 0x0f) == 0x0d) { type = "83877ATF"; progif = 1; } else progif = 0; if (verbose_probing) printk(KERN_INFO "Winbond chip at EFER=0x%x key=0x%02x " "devid=%02x devrev=%02x oldid=%02x type=%s\n", efer, key, devid, devrev, oldid, type); if (progif == 2) show_parconfig_winbond(efer, key); } static void __devinit decode_smsc(int efer, int key, int devid, int devrev) { const char *type = "unknown"; void (*func)(int io, int key); int id; if (devid == devrev) /* simple heuristics, we happened to read some non-smsc register */ return; func = NULL; id = (devid << 8) | devrev; if (id == 0x0302) { type = "37c669"; func = show_parconfig_smsc37c669; } else if (id == 0x6582) type = "37c665IR"; else if (devid == 0x65) type = "37c665GT"; else if (devid == 0x66) type = "37c666GT"; if (verbose_probing) printk(KERN_INFO "SMSC chip at EFER=0x%x " "key=0x%02x devid=%02x devrev=%02x type=%s\n", efer, key, devid, devrev, type); if (func) func(efer, key); } static void __devinit winbond_check(int io, int key) { int origval, devid, devrev, oldid, x_devid, x_devrev, x_oldid; if (!request_region(io, 3, __func__)) return; origval = inb(io); /* Save original value */ /* First probe without key */ outb(0x20, io); x_devid = inb(io + 1); outb(0x21, io); x_devrev = inb(io + 1); outb(0x09, io); x_oldid = inb(io + 1); outb(key, io); outb(key, io); /* Write Magic Sequence to EFER, extended function enable register */ outb(0x20, io); /* Write EFIR, extended function index register */ devid = inb(io + 1); /* Read EFDR, extended function data register */ outb(0x21, io); devrev = inb(io + 1); outb(0x09, io); oldid = inb(io + 1); outb(0xaa, io); /* Magic Seal */ outb(origval, io); /* in case we poked some entirely different hardware */ if ((x_devid == devid) && (x_devrev == devrev) && (x_oldid == oldid)) goto out; /* protection against false positives */ decode_winbond(io, key, devid, devrev, oldid); out: release_region(io, 3); } static void __devinit winbond_check2(int io, int key) { int origval[3], devid, devrev, oldid, x_devid, x_devrev, x_oldid; if (!request_region(io, 3, __func__)) return; origval[0] = inb(io); /* Save original values */ origval[1] = inb(io + 1); origval[2] = inb(io + 2); /* First probe without the key */ outb(0x20, io + 2); x_devid = inb(io + 2); outb(0x21, io + 1); x_devrev = inb(io + 2); outb(0x09, io + 1); x_oldid = inb(io + 2); outb(key, io); /* Write Magic Byte to EFER, extended function enable register */ outb(0x20, io + 2); /* Write EFIR, extended function index register */ devid = inb(io + 2); /* Read EFDR, extended function data register */ outb(0x21, io + 1); devrev = inb(io + 2); outb(0x09, io + 1); oldid = inb(io + 2); outb(0xaa, io); /* Magic Seal */ outb(origval[0], io); /* in case we poked some entirely different hardware */ outb(origval[1], io + 1); outb(origval[2], io + 2); if (x_devid == devid && x_devrev == devrev && x_oldid == oldid) goto out; /* protection against false positives */ decode_winbond(io, key, devid, devrev, oldid); out: release_region(io, 3); } static void __devinit smsc_check(int io, int key) { int origval, id, rev, oldid, oldrev, x_id, x_rev, x_oldid, x_oldrev; if (!request_region(io, 3, __func__)) return; origval = inb(io); /* Save original value */ /* First probe without the key */ outb(0x0d, io); x_oldid = inb(io + 1); outb(0x0e, io); x_oldrev = inb(io + 1); outb(0x20, io); x_id = inb(io + 1); outb(0x21, io); x_rev = inb(io + 1); outb(key, io); outb(key, io); /* Write Magic Sequence to EFER, extended function enable register */ outb(0x0d, io); /* Write EFIR, extended function index register */ oldid = inb(io + 1); /* Read EFDR, extended function data register */ outb(0x0e, io); oldrev = inb(io + 1); outb(0x20, io); id = inb(io + 1); outb(0x21, io); rev = inb(io + 1); outb(0xaa, io); /* Magic Seal */ outb(origval, io); /* in case we poked some entirely different hardware */ if (x_id == id && x_oldrev == oldrev && x_oldid == oldid && x_rev == rev) goto out; /* protection against false positives */ decode_smsc(io, key, oldid, oldrev); out: release_region(io, 3); } static void __devinit detect_and_report_winbond(void) { if (verbose_probing) printk(KERN_DEBUG "Winbond Super-IO detection, now testing ports 3F0,370,250,4E,2E ...\n"); winbond_check(0x3f0, 0x87); winbond_check(0x370, 0x87); winbond_check(0x2e , 0x87); winbond_check(0x4e , 0x87); winbond_check(0x3f0, 0x86); winbond_check2(0x250, 0x88); winbond_check2(0x250, 0x89); } static void __devinit detect_and_report_smsc(void) { if (verbose_probing) printk(KERN_DEBUG "SMSC Super-IO detection, now testing Ports 2F0, 370 ...\n"); smsc_check(0x3f0, 0x55); smsc_check(0x370, 0x55); smsc_check(0x3f0, 0x44); smsc_check(0x370, 0x44); } static void __devinit detect_and_report_it87(void) { u16 dev; u8 origval, r; if (verbose_probing) printk(KERN_DEBUG "IT8705 Super-IO detection, now testing port 2E ...\n"); if (!request_muxed_region(0x2e, 2, __func__)) return; origval = inb(0x2e); /* Save original value */ outb(0x87, 0x2e); outb(0x01, 0x2e); outb(0x55, 0x2e); outb(0x55, 0x2e); outb(0x20, 0x2e); dev = inb(0x2f) << 8; outb(0x21, 0x2e); dev |= inb(0x2f); if (dev == 0x8712 || dev == 0x8705 || dev == 0x8715 || dev == 0x8716 || dev == 0x8718 || dev == 0x8726) { printk(KERN_INFO "IT%04X SuperIO detected.\n", dev); outb(0x07, 0x2E); /* Parallel Port */ outb(0x03, 0x2F); outb(0xF0, 0x2E); /* BOOT 0x80 off */ r = inb(0x2f); outb(0xF0, 0x2E); outb(r | 8, 0x2F); outb(0x02, 0x2E); /* Lock */ outb(0x02, 0x2F); } else { outb(origval, 0x2e); /* Oops, sorry to disturb */ } release_region(0x2e, 2); } #endif /* CONFIG_PARPORT_PC_SUPERIO */ static struct superio_struct *find_superio(struct parport *p) { int i; for (i = 0; i < NR_SUPERIOS; i++) if (superios[i].io != p->base) return &superios[i]; return NULL; } static int get_superio_dma(struct parport *p) { struct superio_struct *s = find_superio(p); if (s) return s->dma; return PARPORT_DMA_NONE; } static int get_superio_irq(struct parport *p) { struct superio_struct *s = find_superio(p); if (s) return s->irq; return PARPORT_IRQ_NONE; } /* --- Mode detection ------------------------------------- */ /* * Checks for port existence, all ports support SPP MODE * Returns: * 0 : No parallel port at this address * PARPORT_MODE_PCSPP : SPP port detected * (if the user specified an ioport himself, * this shall always be the case!) * */ static int parport_SPP_supported(struct parport *pb) { unsigned char r, w; /* * first clear an eventually pending EPP timeout * I (sailer@ife.ee.ethz.ch) have an SMSC chipset * that does not even respond to SPP cycles if an EPP * timeout is pending */ clear_epp_timeout(pb); /* Do a simple read-write test to make sure the port exists. */ w = 0xc; outb(w, CONTROL(pb)); /* Is there a control register that we can read from? Some * ports don't allow reads, so read_control just returns a * software copy. Some ports _do_ allow reads, so bypass the * software copy here. In addition, some bits aren't * writable. */ r = inb(CONTROL(pb)); if ((r & 0xf) == w) { w = 0xe; outb(w, CONTROL(pb)); r = inb(CONTROL(pb)); outb(0xc, CONTROL(pb)); if ((r & 0xf) == w) return PARPORT_MODE_PCSPP; } if (user_specified) /* That didn't work, but the user thinks there's a * port here. */ printk(KERN_INFO "parport 0x%lx (WARNING): CTR: " "wrote 0x%02x, read 0x%02x\n", pb->base, w, r); /* Try the data register. The data lines aren't tri-stated at * this stage, so we expect back what we wrote. */ w = 0xaa; parport_pc_write_data(pb, w); r = parport_pc_read_data(pb); if (r == w) { w = 0x55; parport_pc_write_data(pb, w); r = parport_pc_read_data(pb); if (r == w) return PARPORT_MODE_PCSPP; } if (user_specified) { /* Didn't work, but the user is convinced this is the * place. */ printk(KERN_INFO "parport 0x%lx (WARNING): DATA: " "wrote 0x%02x, read 0x%02x\n", pb->base, w, r); printk(KERN_INFO "parport 0x%lx: You gave this address, " "but there is probably no parallel port there!\n", pb->base); } /* It's possible that we can't read the control register or * the data register. In that case just believe the user. */ if (user_specified) return PARPORT_MODE_PCSPP; return 0; } /* Check for ECR * * Old style XT ports alias io ports every 0x400, hence accessing ECR * on these cards actually accesses the CTR. * * Modern cards don't do this but reading from ECR will return 0xff * regardless of what is written here if the card does NOT support * ECP. * * We first check to see if ECR is the same as CTR. If not, the low * two bits of ECR aren't writable, so we check by writing ECR and * reading it back to see if it's what we expect. */ static int parport_ECR_present(struct parport *pb) { struct parport_pc_private *priv = pb->private_data; unsigned char r = 0xc; outb(r, CONTROL(pb)); if ((inb(ECONTROL(pb)) & 0x3) == (r & 0x3)) { outb(r ^ 0x2, CONTROL(pb)); /* Toggle bit 1 */ r = inb(CONTROL(pb)); if ((inb(ECONTROL(pb)) & 0x2) == (r & 0x2)) goto no_reg; /* Sure that no ECR register exists */ } if ((inb(ECONTROL(pb)) & 0x3) != 0x1) goto no_reg; ECR_WRITE(pb, 0x34); if (inb(ECONTROL(pb)) != 0x35) goto no_reg; priv->ecr = 1; outb(0xc, CONTROL(pb)); /* Go to mode 000 */ frob_set_mode(pb, ECR_SPP); return 1; no_reg: outb(0xc, CONTROL(pb)); return 0; } #ifdef CONFIG_PARPORT_1284 /* Detect PS/2 support. * * Bit 5 (0x20) sets the PS/2 data direction; setting this high * allows us to read data from the data lines. In theory we would get back * 0xff but any peripheral attached to the port may drag some or all of the * lines down to zero. So if we get back anything that isn't the contents * of the data register we deem PS/2 support to be present. * * Some SPP ports have "half PS/2" ability - you can't turn off the line * drivers, but an external peripheral with sufficiently beefy drivers of * its own can overpower them and assert its own levels onto the bus, from * where they can then be read back as normal. Ports with this property * and the right type of device attached are likely to fail the SPP test, * (as they will appear to have stuck bits) and so the fact that they might * be misdetected here is rather academic. */ static int parport_PS2_supported(struct parport *pb) { int ok = 0; clear_epp_timeout(pb); /* try to tri-state the buffer */ parport_pc_data_reverse(pb); parport_pc_write_data(pb, 0x55); if (parport_pc_read_data(pb) != 0x55) ok++; parport_pc_write_data(pb, 0xaa); if (parport_pc_read_data(pb) != 0xaa) ok++; /* cancel input mode */ parport_pc_data_forward(pb); if (ok) { pb->modes |= PARPORT_MODE_TRISTATE; } else { struct parport_pc_private *priv = pb->private_data; priv->ctr_writable &= ~0x20; } return ok; } #ifdef CONFIG_PARPORT_PC_FIFO static int parport_ECP_supported(struct parport *pb) { int i; int config, configb; int pword; struct parport_pc_private *priv = pb->private_data; /* Translate ECP intrLine to ISA irq value */ static const int intrline[] = { 0, 7, 9, 10, 11, 14, 15, 5 }; /* If there is no ECR, we have no hope of supporting ECP. */ if (!priv->ecr) return 0; /* Find out FIFO depth */ ECR_WRITE(pb, ECR_SPP << 5); /* Reset FIFO */ ECR_WRITE(pb, ECR_TST << 5); /* TEST FIFO */ for (i = 0; i < 1024 && !(inb(ECONTROL(pb)) & 0x02); i++) outb(0xaa, FIFO(pb)); /* * Using LGS chipset it uses ECR register, but * it doesn't support ECP or FIFO MODE */ if (i == 1024) { ECR_WRITE(pb, ECR_SPP << 5); return 0; } priv->fifo_depth = i; if (verbose_probing) printk(KERN_DEBUG "0x%lx: FIFO is %d bytes\n", pb->base, i); /* Find out writeIntrThreshold */ frob_econtrol(pb, 1<<2, 1<<2); frob_econtrol(pb, 1<<2, 0); for (i = 1; i <= priv->fifo_depth; i++) { inb(FIFO(pb)); udelay(50); if (inb(ECONTROL(pb)) & (1<<2)) break; } if (i <= priv->fifo_depth) { if (verbose_probing) printk(KERN_DEBUG "0x%lx: writeIntrThreshold is %d\n", pb->base, i); } else /* Number of bytes we know we can write if we get an interrupt. */ i = 0; priv->writeIntrThreshold = i; /* Find out readIntrThreshold */ frob_set_mode(pb, ECR_PS2); /* Reset FIFO and enable PS2 */ parport_pc_data_reverse(pb); /* Must be in PS2 mode */ frob_set_mode(pb, ECR_TST); /* Test FIFO */ frob_econtrol(pb, 1<<2, 1<<2); frob_econtrol(pb, 1<<2, 0); for (i = 1; i <= priv->fifo_depth; i++) { outb(0xaa, FIFO(pb)); if (inb(ECONTROL(pb)) & (1<<2)) break; } if (i <= priv->fifo_depth) { if (verbose_probing) printk(KERN_INFO "0x%lx: readIntrThreshold is %d\n", pb->base, i); } else /* Number of bytes we can read if we get an interrupt. */ i = 0; priv->readIntrThreshold = i; ECR_WRITE(pb, ECR_SPP << 5); /* Reset FIFO */ ECR_WRITE(pb, 0xf4); /* Configuration mode */ config = inb(CONFIGA(pb)); pword = (config >> 4) & 0x7; switch (pword) { case 0: pword = 2; printk(KERN_WARNING "0x%lx: Unsupported pword size!\n", pb->base); break; case 2: pword = 4; printk(KERN_WARNING "0x%lx: Unsupported pword size!\n", pb->base); break; default: printk(KERN_WARNING "0x%lx: Unknown implementation ID\n", pb->base); /* Assume 1 */ case 1: pword = 1; } priv->pword = pword; if (verbose_probing) { printk(KERN_DEBUG "0x%lx: PWord is %d bits\n", pb->base, 8 * pword); printk(KERN_DEBUG "0x%lx: Interrupts are ISA-%s\n", pb->base, config & 0x80 ? "Level" : "Pulses"); configb = inb(CONFIGB(pb)); printk(KERN_DEBUG "0x%lx: ECP port cfgA=0x%02x cfgB=0x%02x\n", pb->base, config, configb); printk(KERN_DEBUG "0x%lx: ECP settings irq=", pb->base); if ((configb >> 3) & 0x07) printk("%d", intrline[(configb >> 3) & 0x07]); else printk(""); printk(" dma="); if ((configb & 0x03) == 0x00) printk("\n"); else printk("%d\n", configb & 0x07); } /* Go back to mode 000 */ frob_set_mode(pb, ECR_SPP); return 1; } #endif static int parport_ECPPS2_supported(struct parport *pb) { const struct parport_pc_private *priv = pb->private_data; int result; unsigned char oecr; if (!priv->ecr) return 0; oecr = inb(ECONTROL(pb)); ECR_WRITE(pb, ECR_PS2 << 5); result = parport_PS2_supported(pb); ECR_WRITE(pb, oecr); return result; } /* EPP mode detection */ static int parport_EPP_supported(struct parport *pb) { const struct parport_pc_private *priv = pb->private_data; /* * Theory: * Bit 0 of STR is the EPP timeout bit, this bit is 0 * when EPP is possible and is set high when an EPP timeout * occurs (EPP uses the HALT line to stop the CPU while it does * the byte transfer, an EPP timeout occurs if the attached * device fails to respond after 10 micro seconds). * * This bit is cleared by either reading it (National Semi) * or writing a 1 to the bit (SMC, UMC, WinBond), others ??? * This bit is always high in non EPP modes. */ /* If EPP timeout bit clear then EPP available */ if (!clear_epp_timeout(pb)) return 0; /* No way to clear timeout */ /* Check for Intel bug. */ if (priv->ecr) { unsigned char i; for (i = 0x00; i < 0x80; i += 0x20) { ECR_WRITE(pb, i); if (clear_epp_timeout(pb)) { /* Phony EPP in ECP. */ return 0; } } } pb->modes |= PARPORT_MODE_EPP; /* Set up access functions to use EPP hardware. */ pb->ops->epp_read_data = parport_pc_epp_read_data; pb->ops->epp_write_data = parport_pc_epp_write_data; pb->ops->epp_read_addr = parport_pc_epp_read_addr; pb->ops->epp_write_addr = parport_pc_epp_write_addr; return 1; } static int parport_ECPEPP_supported(struct parport *pb) { struct parport_pc_private *priv = pb->private_data; int result; unsigned char oecr; if (!priv->ecr) return 0; oecr = inb(ECONTROL(pb)); /* Search for SMC style EPP+ECP mode */ ECR_WRITE(pb, 0x80); outb(0x04, CONTROL(pb)); result = parport_EPP_supported(pb); ECR_WRITE(pb, oecr); if (result) { /* Set up access functions to use ECP+EPP hardware. */ pb->ops->epp_read_data = parport_pc_ecpepp_read_data; pb->ops->epp_write_data = parport_pc_ecpepp_write_data; pb->ops->epp_read_addr = parport_pc_ecpepp_read_addr; pb->ops->epp_write_addr = parport_pc_ecpepp_write_addr; } return result; } #else /* No IEEE 1284 support */ /* Don't bother probing for modes we know we won't use. */ static int __devinit parport_PS2_supported(struct parport *pb) { return 0; } #ifdef CONFIG_PARPORT_PC_FIFO static int parport_ECP_supported(struct parport *pb) { return 0; } #endif static int __devinit parport_EPP_supported(struct parport *pb) { return 0; } static int __devinit parport_ECPEPP_supported(struct parport *pb) { return 0; } static int __devinit parport_ECPPS2_supported(struct parport *pb) { return 0; } #endif /* No IEEE 1284 support */ /* --- IRQ detection -------------------------------------- */ /* Only if supports ECP mode */ static int programmable_irq_support(struct parport *pb) { int irq, intrLine; unsigned char oecr = inb(ECONTROL(pb)); static const int lookup[8] = { PARPORT_IRQ_NONE, 7, 9, 10, 11, 14, 15, 5 }; ECR_WRITE(pb, ECR_CNF << 5); /* Configuration MODE */ intrLine = (inb(CONFIGB(pb)) >> 3) & 0x07; irq = lookup[intrLine]; ECR_WRITE(pb, oecr); return irq; } static int irq_probe_ECP(struct parport *pb) { int i; unsigned long irqs; irqs = probe_irq_on(); ECR_WRITE(pb, ECR_SPP << 5); /* Reset FIFO */ ECR_WRITE(pb, (ECR_TST << 5) | 0x04); ECR_WRITE(pb, ECR_TST << 5); /* If Full FIFO sure that writeIntrThreshold is generated */ for (i = 0; i < 1024 && !(inb(ECONTROL(pb)) & 0x02) ; i++) outb(0xaa, FIFO(pb)); pb->irq = probe_irq_off(irqs); ECR_WRITE(pb, ECR_SPP << 5); if (pb->irq <= 0) pb->irq = PARPORT_IRQ_NONE; return pb->irq; } /* * This detection seems that only works in National Semiconductors * This doesn't work in SMC, LGS, and Winbond */ static int irq_probe_EPP(struct parport *pb) { #ifndef ADVANCED_DETECT return PARPORT_IRQ_NONE; #else int irqs; unsigned char oecr; if (pb->modes & PARPORT_MODE_PCECR) oecr = inb(ECONTROL(pb)); irqs = probe_irq_on(); if (pb->modes & PARPORT_MODE_PCECR) frob_econtrol(pb, 0x10, 0x10); clear_epp_timeout(pb); parport_pc_frob_control(pb, 0x20, 0x20); parport_pc_frob_control(pb, 0x10, 0x10); clear_epp_timeout(pb); /* Device isn't expecting an EPP read * and generates an IRQ. */ parport_pc_read_epp(pb); udelay(20); pb->irq = probe_irq_off(irqs); if (pb->modes & PARPORT_MODE_PCECR) ECR_WRITE(pb, oecr); parport_pc_write_control(pb, 0xc); if (pb->irq <= 0) pb->irq = PARPORT_IRQ_NONE; return pb->irq; #endif /* Advanced detection */ } static int irq_probe_SPP(struct parport *pb) { /* Don't even try to do this. */ return PARPORT_IRQ_NONE; } /* We will attempt to share interrupt requests since other devices * such as sound cards and network cards seem to like using the * printer IRQs. * * When ECP is available we can autoprobe for IRQs. * NOTE: If we can autoprobe it, we can register the IRQ. */ static int parport_irq_probe(struct parport *pb) { struct parport_pc_private *priv = pb->private_data; if (priv->ecr) { pb->irq = programmable_irq_support(pb); if (pb->irq == PARPORT_IRQ_NONE) pb->irq = irq_probe_ECP(pb); } if ((pb->irq == PARPORT_IRQ_NONE) && priv->ecr && (pb->modes & PARPORT_MODE_EPP)) pb->irq = irq_probe_EPP(pb); clear_epp_timeout(pb); if (pb->irq == PARPORT_IRQ_NONE && (pb->modes & PARPORT_MODE_EPP)) pb->irq = irq_probe_EPP(pb); clear_epp_timeout(pb); if (pb->irq == PARPORT_IRQ_NONE) pb->irq = irq_probe_SPP(pb); if (pb->irq == PARPORT_IRQ_NONE) pb->irq = get_superio_irq(pb); return pb->irq; } /* --- DMA detection -------------------------------------- */ /* Only if chipset conforms to ECP ISA Interface Standard */ static int programmable_dma_support(struct parport *p) { unsigned char oecr = inb(ECONTROL(p)); int dma; frob_set_mode(p, ECR_CNF); dma = inb(CONFIGB(p)) & 0x07; /* 000: Indicates jumpered 8-bit DMA if read-only. 100: Indicates jumpered 16-bit DMA if read-only. */ if ((dma & 0x03) == 0) dma = PARPORT_DMA_NONE; ECR_WRITE(p, oecr); return dma; } static int parport_dma_probe(struct parport *p) { const struct parport_pc_private *priv = p->private_data; if (priv->ecr) /* ask ECP chipset first */ p->dma = programmable_dma_support(p); if (p->dma == PARPORT_DMA_NONE) { /* ask known Super-IO chips proper, although these claim ECP compatible, some don't report their DMA conforming to ECP standards */ p->dma = get_superio_dma(p); } return p->dma; } /* --- Initialisation code -------------------------------- */ static LIST_HEAD(ports_list); static DEFINE_SPINLOCK(ports_lock); struct parport *parport_pc_probe_port(unsigned long int base, unsigned long int base_hi, int irq, int dma, struct device *dev, int irqflags) { struct parport_pc_private *priv; struct parport_operations *ops; struct parport *p; int probedirq = PARPORT_IRQ_NONE; struct resource *base_res; struct resource *ECR_res = NULL; struct resource *EPP_res = NULL; struct platform_device *pdev = NULL; if (!dev) { /* We need a physical device to attach to, but none was * provided. Create our own. */ pdev = platform_device_register_simple("parport_pc", base, NULL, 0); if (IS_ERR(pdev)) return NULL; dev = &pdev->dev; dev->coherent_dma_mask = DMA_BIT_MASK(24); dev->dma_mask = &dev->coherent_dma_mask; } ops = kmalloc(sizeof(struct parport_operations), GFP_KERNEL); if (!ops) goto out1; priv = kmalloc(sizeof(struct parport_pc_private), GFP_KERNEL); if (!priv) goto out2; /* a misnomer, actually - it's allocate and reserve parport number */ p = parport_register_port(base, irq, dma, ops); if (!p) goto out3; base_res = request_region(base, 3, p->name); if (!base_res) goto out4; memcpy(ops, &parport_pc_ops, sizeof(struct parport_operations)); priv->ctr = 0xc; priv->ctr_writable = ~0x10; priv->ecr = 0; priv->fifo_depth = 0; priv->dma_buf = NULL; priv->dma_handle = 0; INIT_LIST_HEAD(&priv->list); priv->port = p; p->dev = dev; p->base_hi = base_hi; p->modes = PARPORT_MODE_PCSPP | PARPORT_MODE_SAFEININT; p->private_data = priv; if (base_hi) { ECR_res = request_region(base_hi, 3, p->name); if (ECR_res) parport_ECR_present(p); } if (base != 0x3bc) { EPP_res = request_region(base+0x3, 5, p->name); if (EPP_res) if (!parport_EPP_supported(p)) parport_ECPEPP_supported(p); } if (!parport_SPP_supported(p)) /* No port. */ goto out5; if (priv->ecr) parport_ECPPS2_supported(p); else parport_PS2_supported(p); p->size = (p->modes & PARPORT_MODE_EPP) ? 8 : 3; printk(KERN_INFO "%s: PC-style at 0x%lx", p->name, p->base); if (p->base_hi && priv->ecr) printk(" (0x%lx)", p->base_hi); if (p->irq == PARPORT_IRQ_AUTO) { p->irq = PARPORT_IRQ_NONE; parport_irq_probe(p); } else if (p->irq == PARPORT_IRQ_PROBEONLY) { p->irq = PARPORT_IRQ_NONE; parport_irq_probe(p); probedirq = p->irq; p->irq = PARPORT_IRQ_NONE; } if (p->irq != PARPORT_IRQ_NONE) { printk(", irq %d", p->irq); priv->ctr_writable |= 0x10; if (p->dma == PARPORT_DMA_AUTO) { p->dma = PARPORT_DMA_NONE; parport_dma_probe(p); } } if (p->dma == PARPORT_DMA_AUTO) /* To use DMA, giving the irq is mandatory (see above) */ p->dma = PARPORT_DMA_NONE; #ifdef CONFIG_PARPORT_PC_FIFO if (parport_ECP_supported(p) && p->dma != PARPORT_DMA_NOFIFO && priv->fifo_depth > 0 && p->irq != PARPORT_IRQ_NONE) { p->modes |= PARPORT_MODE_ECP | PARPORT_MODE_COMPAT; p->ops->compat_write_data = parport_pc_compat_write_block_pio; #ifdef CONFIG_PARPORT_1284 p->ops->ecp_write_data = parport_pc_ecp_write_block_pio; /* currently broken, but working on it.. (FB) */ /* p->ops->ecp_read_data = parport_pc_ecp_read_block_pio; */ #endif /* IEEE 1284 support */ if (p->dma != PARPORT_DMA_NONE) { printk(", dma %d", p->dma); p->modes |= PARPORT_MODE_DMA; } else printk(", using FIFO"); } else /* We can't use the DMA channel after all. */ p->dma = PARPORT_DMA_NONE; #endif /* Allowed to use FIFO/DMA */ printk(" ["); #define printmode(x) \ {\ if (p->modes & PARPORT_MODE_##x) {\ printk("%s%s", f ? "," : "", #x);\ f++;\ } \ } { int f = 0; printmode(PCSPP); printmode(TRISTATE); printmode(COMPAT) printmode(EPP); printmode(ECP); printmode(DMA); } #undef printmode #ifndef CONFIG_PARPORT_1284 printk("(,...)"); #endif /* CONFIG_PARPORT_1284 */ printk("]\n"); if (probedirq != PARPORT_IRQ_NONE) printk(KERN_INFO "%s: irq %d detected\n", p->name, probedirq); /* If No ECP release the ports grabbed above. */ if (ECR_res && (p->modes & PARPORT_MODE_ECP) == 0) { release_region(base_hi, 3); ECR_res = NULL; } /* Likewise for EEP ports */ if (EPP_res && (p->modes & PARPORT_MODE_EPP) == 0) { release_region(base+3, 5); EPP_res = NULL; } if (p->irq != PARPORT_IRQ_NONE) { if (request_irq(p->irq, parport_irq_handler, irqflags, p->name, p)) { printk(KERN_WARNING "%s: irq %d in use, " "resorting to polled operation\n", p->name, p->irq); p->irq = PARPORT_IRQ_NONE; p->dma = PARPORT_DMA_NONE; } #ifdef CONFIG_PARPORT_PC_FIFO #ifdef HAS_DMA if (p->dma != PARPORT_DMA_NONE) { if (request_dma(p->dma, p->name)) { printk(KERN_WARNING "%s: dma %d in use, " "resorting to PIO operation\n", p->name, p->dma); p->dma = PARPORT_DMA_NONE; } else { priv->dma_buf = dma_alloc_coherent(dev, PAGE_SIZE, &priv->dma_handle, GFP_KERNEL); if (!priv->dma_buf) { printk(KERN_WARNING "%s: " "cannot get buffer for DMA, " "resorting to PIO operation\n", p->name); free_dma(p->dma); p->dma = PARPORT_DMA_NONE; } } } #endif #endif } /* Done probing. Now put the port into a sensible start-up state. */ if (priv->ecr) /* * Put the ECP detected port in PS2 mode. * Do this also for ports that have ECR but don't do ECP. */ ECR_WRITE(p, 0x34); parport_pc_write_data(p, 0); parport_pc_data_forward(p); /* Now that we've told the sharing engine about the port, and found out its characteristics, let the high-level drivers know about it. */ spin_lock(&ports_lock); list_add(&priv->list, &ports_list); spin_unlock(&ports_lock); parport_announce_port(p); return p; out5: if (ECR_res) release_region(base_hi, 3); if (EPP_res) release_region(base+0x3, 5); release_region(base, 3); out4: parport_put_port(p); out3: kfree(priv); out2: kfree(ops); out1: if (pdev) platform_device_unregister(pdev); return NULL; } EXPORT_SYMBOL(parport_pc_probe_port); void parport_pc_unregister_port(struct parport *p) { struct parport_pc_private *priv = p->private_data; struct parport_operations *ops = p->ops; parport_remove_port(p); spin_lock(&ports_lock); list_del_init(&priv->list); spin_unlock(&ports_lock); #if defined(CONFIG_PARPORT_PC_FIFO) && defined(HAS_DMA) if (p->dma != PARPORT_DMA_NONE) free_dma(p->dma); #endif if (p->irq != PARPORT_IRQ_NONE) free_irq(p->irq, p); release_region(p->base, 3); if (p->size > 3) release_region(p->base + 3, p->size - 3); if (p->modes & PARPORT_MODE_ECP) release_region(p->base_hi, 3); #if defined(CONFIG_PARPORT_PC_FIFO) && defined(HAS_DMA) if (priv->dma_buf) dma_free_coherent(p->physport->dev, PAGE_SIZE, priv->dma_buf, priv->dma_handle); #endif kfree(p->private_data); parport_put_port(p); kfree(ops); /* hope no-one cached it */ } EXPORT_SYMBOL(parport_pc_unregister_port); #ifdef CONFIG_PCI /* ITE support maintained by Rich Liu */ static int __devinit sio_ite_8872_probe(struct pci_dev *pdev, int autoirq, int autodma, const struct parport_pc_via_data *via) { short inta_addr[6] = { 0x2A0, 0x2C0, 0x220, 0x240, 0x1E0 }; u32 ite8872set; u32 ite8872_lpt, ite8872_lpthi; u8 ite8872_irq, type; int irq; int i; DPRINTK(KERN_DEBUG "sio_ite_8872_probe()\n"); /* make sure which one chip */ for (i = 0; i < 5; i++) { if (request_region(inta_addr[i], 32, "it887x")) { int test; pci_write_config_dword(pdev, 0x60, 0xe5000000 | inta_addr[i]); pci_write_config_dword(pdev, 0x78, 0x00000000 | inta_addr[i]); test = inb(inta_addr[i]); if (test != 0xff) break; release_region(inta_addr[i], 32); } } if (i >= 5) { printk(KERN_INFO "parport_pc: cannot find ITE8872 INTA\n"); return 0; } type = inb(inta_addr[i] + 0x18); type &= 0x0f; switch (type) { case 0x2: printk(KERN_INFO "parport_pc: ITE8871 found (1P)\n"); ite8872set = 0x64200000; break; case 0xa: printk(KERN_INFO "parport_pc: ITE8875 found (1P)\n"); ite8872set = 0x64200000; break; case 0xe: printk(KERN_INFO "parport_pc: ITE8872 found (2S1P)\n"); ite8872set = 0x64e00000; break; case 0x6: printk(KERN_INFO "parport_pc: ITE8873 found (1S)\n"); release_region(inta_addr[i], 32); return 0; case 0x8: printk(KERN_INFO "parport_pc: ITE8874 found (2S)\n"); release_region(inta_addr[i], 32); return 0; default: printk(KERN_INFO "parport_pc: unknown ITE887x\n"); printk(KERN_INFO "parport_pc: please mail 'lspci -nvv' " "output to Rich.Liu@ite.com.tw\n"); release_region(inta_addr[i], 32); return 0; } pci_read_config_byte(pdev, 0x3c, &ite8872_irq); pci_read_config_dword(pdev, 0x1c, &ite8872_lpt); ite8872_lpt &= 0x0000ff00; pci_read_config_dword(pdev, 0x20, &ite8872_lpthi); ite8872_lpthi &= 0x0000ff00; pci_write_config_dword(pdev, 0x6c, 0xe3000000 | ite8872_lpt); pci_write_config_dword(pdev, 0x70, 0xe3000000 | ite8872_lpthi); pci_write_config_dword(pdev, 0x80, (ite8872_lpthi<<16) | ite8872_lpt); /* SET SPP&EPP , Parallel Port NO DMA , Enable All Function */ /* SET Parallel IRQ */ pci_write_config_dword(pdev, 0x9c, ite8872set | (ite8872_irq * 0x11111)); DPRINTK(KERN_DEBUG "ITE887x: The IRQ is %d.\n", ite8872_irq); DPRINTK(KERN_DEBUG "ITE887x: The PARALLEL I/O port is 0x%x.\n", ite8872_lpt); DPRINTK(KERN_DEBUG "ITE887x: The PARALLEL I/O porthi is 0x%x.\n", ite8872_lpthi); /* Let the user (or defaults) steer us away from interrupts */ irq = ite8872_irq; if (autoirq != PARPORT_IRQ_AUTO) irq = PARPORT_IRQ_NONE; /* * Release the resource so that parport_pc_probe_port can get it. */ release_region(inta_addr[i], 32); if (parport_pc_probe_port(ite8872_lpt, ite8872_lpthi, irq, PARPORT_DMA_NONE, &pdev->dev, 0)) { printk(KERN_INFO "parport_pc: ITE 8872 parallel port: io=0x%X", ite8872_lpt); if (irq != PARPORT_IRQ_NONE) printk(", irq=%d", irq); printk("\n"); return 1; } return 0; } /* VIA 8231 support by Pavel Fedin based on VIA 686a support code by Jeff Garzik */ static int __devinitdata parport_init_mode; /* Data for two known VIA chips */ static struct parport_pc_via_data via_686a_data __devinitdata = { 0x51, 0x50, 0x85, 0x02, 0xE2, 0xF0, 0xE6 }; static struct parport_pc_via_data via_8231_data __devinitdata = { 0x45, 0x44, 0x50, 0x04, 0xF2, 0xFA, 0xF6 }; static int __devinit sio_via_probe(struct pci_dev *pdev, int autoirq, int autodma, const struct parport_pc_via_data *via) { u8 tmp, tmp2, siofunc; u8 ppcontrol = 0; int dma, irq; unsigned port1, port2; unsigned have_epp = 0; printk(KERN_DEBUG "parport_pc: VIA 686A/8231 detected\n"); switch (parport_init_mode) { case 1: printk(KERN_DEBUG "parport_pc: setting SPP mode\n"); siofunc = VIA_FUNCTION_PARPORT_SPP; break; case 2: printk(KERN_DEBUG "parport_pc: setting PS/2 mode\n"); siofunc = VIA_FUNCTION_PARPORT_SPP; ppcontrol = VIA_PARPORT_BIDIR; break; case 3: printk(KERN_DEBUG "parport_pc: setting EPP mode\n"); siofunc = VIA_FUNCTION_PARPORT_EPP; ppcontrol = VIA_PARPORT_BIDIR; have_epp = 1; break; case 4: printk(KERN_DEBUG "parport_pc: setting ECP mode\n"); siofunc = VIA_FUNCTION_PARPORT_ECP; ppcontrol = VIA_PARPORT_BIDIR; break; case 5: printk(KERN_DEBUG "parport_pc: setting EPP+ECP mode\n"); siofunc = VIA_FUNCTION_PARPORT_ECP; ppcontrol = VIA_PARPORT_BIDIR|VIA_PARPORT_ECPEPP; have_epp = 1; break; default: printk(KERN_DEBUG "parport_pc: probing current configuration\n"); siofunc = VIA_FUNCTION_PROBE; break; } /* * unlock super i/o configuration */ pci_read_config_byte(pdev, via->via_pci_superio_config_reg, &tmp); tmp |= via->via_pci_superio_config_data; pci_write_config_byte(pdev, via->via_pci_superio_config_reg, tmp); /* Bits 1-0: Parallel Port Mode / Enable */ outb(via->viacfg_function, VIA_CONFIG_INDEX); tmp = inb(VIA_CONFIG_DATA); /* Bit 5: EPP+ECP enable; bit 7: PS/2 bidirectional port enable */ outb(via->viacfg_parport_control, VIA_CONFIG_INDEX); tmp2 = inb(VIA_CONFIG_DATA); if (siofunc == VIA_FUNCTION_PROBE) { siofunc = tmp & VIA_FUNCTION_PARPORT_DISABLE; ppcontrol = tmp2; } else { tmp &= ~VIA_FUNCTION_PARPORT_DISABLE; tmp |= siofunc; outb(via->viacfg_function, VIA_CONFIG_INDEX); outb(tmp, VIA_CONFIG_DATA); tmp2 &= ~(VIA_PARPORT_BIDIR|VIA_PARPORT_ECPEPP); tmp2 |= ppcontrol; outb(via->viacfg_parport_control, VIA_CONFIG_INDEX); outb(tmp2, VIA_CONFIG_DATA); } /* Parallel Port I/O Base Address, bits 9-2 */ outb(via->viacfg_parport_base, VIA_CONFIG_INDEX); port1 = inb(VIA_CONFIG_DATA) << 2; printk(KERN_DEBUG "parport_pc: Current parallel port base: 0x%X\n", port1); if (port1 == 0x3BC && have_epp) { outb(via->viacfg_parport_base, VIA_CONFIG_INDEX); outb((0x378 >> 2), VIA_CONFIG_DATA); printk(KERN_DEBUG "parport_pc: Parallel port base changed to 0x378\n"); port1 = 0x378; } /* * lock super i/o configuration */ pci_read_config_byte(pdev, via->via_pci_superio_config_reg, &tmp); tmp &= ~via->via_pci_superio_config_data; pci_write_config_byte(pdev, via->via_pci_superio_config_reg, tmp); if (siofunc == VIA_FUNCTION_PARPORT_DISABLE) { printk(KERN_INFO "parport_pc: VIA parallel port disabled in BIOS\n"); return 0; } /* Bits 7-4: PnP Routing for Parallel Port IRQ */ pci_read_config_byte(pdev, via->via_pci_parport_irq_reg, &tmp); irq = ((tmp & VIA_IRQCONTROL_PARALLEL) >> 4); if (siofunc == VIA_FUNCTION_PARPORT_ECP) { /* Bits 3-2: PnP Routing for Parallel Port DMA */ pci_read_config_byte(pdev, via->via_pci_parport_dma_reg, &tmp); dma = ((tmp & VIA_DMACONTROL_PARALLEL) >> 2); } else /* if ECP not enabled, DMA is not enabled, assumed bogus 'dma' value */ dma = PARPORT_DMA_NONE; /* Let the user (or defaults) steer us away from interrupts and DMA */ if (autoirq == PARPORT_IRQ_NONE) { irq = PARPORT_IRQ_NONE; dma = PARPORT_DMA_NONE; } if (autodma == PARPORT_DMA_NONE) dma = PARPORT_DMA_NONE; switch (port1) { case 0x3bc: port2 = 0x7bc; break; case 0x378: port2 = 0x778; break; case 0x278: port2 = 0x678; break; default: printk(KERN_INFO "parport_pc: Weird VIA parport base 0x%X, ignoring\n", port1); return 0; } /* filter bogus IRQs */ switch (irq) { case 0: case 2: case 8: case 13: irq = PARPORT_IRQ_NONE; break; default: /* do nothing */ break; } /* finally, do the probe with values obtained */ if (parport_pc_probe_port(port1, port2, irq, dma, &pdev->dev, 0)) { printk(KERN_INFO "parport_pc: VIA parallel port: io=0x%X", port1); if (irq != PARPORT_IRQ_NONE) printk(", irq=%d", irq); if (dma != PARPORT_DMA_NONE) printk(", dma=%d", dma); printk("\n"); return 1; } printk(KERN_WARNING "parport_pc: Strange, can't probe VIA parallel port: io=0x%X, irq=%d, dma=%d\n", port1, irq, dma); return 0; } enum parport_pc_sio_types { sio_via_686a = 0, /* Via VT82C686A motherboard Super I/O */ sio_via_8231, /* Via VT8231 south bridge integrated Super IO */ sio_ite_8872, last_sio }; /* each element directly indexed from enum list, above */ static struct parport_pc_superio { int (*probe) (struct pci_dev *pdev, int autoirq, int autodma, const struct parport_pc_via_data *via); const struct parport_pc_via_data *via; } parport_pc_superio_info[] __devinitdata = { { sio_via_probe, &via_686a_data, }, { sio_via_probe, &via_8231_data, }, { sio_ite_8872_probe, NULL, }, }; enum parport_pc_pci_cards { siig_1p_10x = last_sio, siig_2p_10x, siig_1p_20x, siig_2p_20x, lava_parallel, lava_parallel_dual_a, lava_parallel_dual_b, boca_ioppar, plx_9050, timedia_4006a, timedia_4014, timedia_4008a, timedia_4018, timedia_9018a, syba_2p_epp, syba_1p_ecp, titan_010l, titan_1284p1, titan_1284p2, avlab_1p, avlab_2p, oxsemi_952, oxsemi_954, oxsemi_840, oxsemi_pcie_pport, aks_0100, mobility_pp, netmos_9705, netmos_9715, netmos_9755, netmos_9805, netmos_9815, netmos_9901, netmos_9865, quatech_sppxp100, }; /* each element directly indexed from enum list, above * (but offset by last_sio) */ static struct parport_pc_pci { int numports; struct { /* BAR (base address registers) numbers in the config space header */ int lo; int hi; /* -1 if not there, >6 for offset-method (max BAR is 6) */ } addr[4]; /* If set, this is called immediately after pci_enable_device. * If it returns non-zero, no probing will take place and the * ports will not be used. */ int (*preinit_hook) (struct pci_dev *pdev, int autoirq, int autodma); /* If set, this is called after probing for ports. If 'failed' * is non-zero we couldn't use any of the ports. */ void (*postinit_hook) (struct pci_dev *pdev, int failed); } cards[] = { /* siig_1p_10x */ { 1, { { 2, 3 }, } }, /* siig_2p_10x */ { 2, { { 2, 3 }, { 4, 5 }, } }, /* siig_1p_20x */ { 1, { { 0, 1 }, } }, /* siig_2p_20x */ { 2, { { 0, 1 }, { 2, 3 }, } }, /* lava_parallel */ { 1, { { 0, -1 }, } }, /* lava_parallel_dual_a */ { 1, { { 0, -1 }, } }, /* lava_parallel_dual_b */ { 1, { { 0, -1 }, } }, /* boca_ioppar */ { 1, { { 0, -1 }, } }, /* plx_9050 */ { 2, { { 4, -1 }, { 5, -1 }, } }, /* timedia_4006a */ { 1, { { 0, -1 }, } }, /* timedia_4014 */ { 2, { { 0, -1 }, { 2, -1 }, } }, /* timedia_4008a */ { 1, { { 0, 1 }, } }, /* timedia_4018 */ { 2, { { 0, 1 }, { 2, 3 }, } }, /* timedia_9018a */ { 2, { { 0, 1 }, { 2, 3 }, } }, /* SYBA uses fixed offsets in a 1K io window */ /* syba_2p_epp AP138B */ { 2, { { 0, 0x078 }, { 0, 0x178 }, } }, /* syba_1p_ecp W83787 */ { 1, { { 0, 0x078 }, } }, /* titan_010l */ { 1, { { 3, -1 }, } }, /* titan_1284p1 */ { 1, { { 0, 1 }, } }, /* titan_1284p2 */ { 2, { { 0, 1 }, { 2, 3 }, } }, /* avlab_1p */ { 1, { { 0, 1}, } }, /* avlab_2p */ { 2, { { 0, 1}, { 2, 3 },} }, /* The Oxford Semi cards are unusual: 954 doesn't support ECP, * and 840 locks up if you write 1 to bit 2! */ /* oxsemi_952 */ { 1, { { 0, 1 }, } }, /* oxsemi_954 */ { 1, { { 0, -1 }, } }, /* oxsemi_840 */ { 1, { { 0, 1 }, } }, /* oxsemi_pcie_pport */ { 1, { { 0, 1 }, } }, /* aks_0100 */ { 1, { { 0, -1 }, } }, /* mobility_pp */ { 1, { { 0, 1 }, } }, /* The netmos entries below are untested */ /* netmos_9705 */ { 1, { { 0, -1 }, } }, /* netmos_9715 */ { 2, { { 0, 1 }, { 2, 3 },} }, /* netmos_9755 */ { 2, { { 0, 1 }, { 2, 3 },} }, /* netmos_9805 */ { 1, { { 0, -1 }, } }, /* netmos_9815 */ { 2, { { 0, -1 }, { 2, -1 }, } }, /* netmos_9901 */ { 1, { { 0, -1 }, } }, /* netmos_9865 */ { 1, { { 0, -1 }, } }, /* quatech_sppxp100 */ { 1, { { 0, 1 }, } }, }; static const struct pci_device_id parport_pc_pci_tbl[] = { /* Super-IO onboard chips */ { 0x1106, 0x0686, PCI_ANY_ID, PCI_ANY_ID, 0, 0, sio_via_686a }, { 0x1106, 0x8231, PCI_ANY_ID, PCI_ANY_ID, 0, 0, sio_via_8231 }, { PCI_VENDOR_ID_ITE, PCI_DEVICE_ID_ITE_8872, PCI_ANY_ID, PCI_ANY_ID, 0, 0, sio_ite_8872 }, /* PCI cards */ { PCI_VENDOR_ID_SIIG, PCI_DEVICE_ID_SIIG_1P_10x, PCI_ANY_ID, PCI_ANY_ID, 0, 0, siig_1p_10x }, { PCI_VENDOR_ID_SIIG, PCI_DEVICE_ID_SIIG_2P_10x, PCI_ANY_ID, PCI_ANY_ID, 0, 0, siig_2p_10x }, { PCI_VENDOR_ID_SIIG, PCI_DEVICE_ID_SIIG_1P_20x, PCI_ANY_ID, PCI_ANY_ID, 0, 0, siig_1p_20x }, { PCI_VENDOR_ID_SIIG, PCI_DEVICE_ID_SIIG_2P_20x, PCI_ANY_ID, PCI_ANY_ID, 0, 0, siig_2p_20x }, { PCI_VENDOR_ID_LAVA, PCI_DEVICE_ID_LAVA_PARALLEL, PCI_ANY_ID, PCI_ANY_ID, 0, 0, lava_parallel }, { PCI_VENDOR_ID_LAVA, PCI_DEVICE_ID_LAVA_DUAL_PAR_A, PCI_ANY_ID, PCI_ANY_ID, 0, 0, lava_parallel_dual_a }, { PCI_VENDOR_ID_LAVA, PCI_DEVICE_ID_LAVA_DUAL_PAR_B, PCI_ANY_ID, PCI_ANY_ID, 0, 0, lava_parallel_dual_b }, { PCI_VENDOR_ID_LAVA, PCI_DEVICE_ID_LAVA_BOCA_IOPPAR, PCI_ANY_ID, PCI_ANY_ID, 0, 0, boca_ioppar }, { PCI_VENDOR_ID_PLX, PCI_DEVICE_ID_PLX_9050, PCI_SUBVENDOR_ID_EXSYS, PCI_SUBDEVICE_ID_EXSYS_4014, 0, 0, plx_9050 }, /* PCI_VENDOR_ID_TIMEDIA/SUNIX has many differing cards ...*/ { 0x1409, 0x7268, 0x1409, 0x0101, 0, 0, timedia_4006a }, { 0x1409, 0x7268, 0x1409, 0x0102, 0, 0, timedia_4014 }, { 0x1409, 0x7268, 0x1409, 0x0103, 0, 0, timedia_4008a }, { 0x1409, 0x7268, 0x1409, 0x0104, 0, 0, timedia_4018 }, { 0x1409, 0x7268, 0x1409, 0x9018, 0, 0, timedia_9018a }, { PCI_VENDOR_ID_SYBA, PCI_DEVICE_ID_SYBA_2P_EPP, PCI_ANY_ID, PCI_ANY_ID, 0, 0, syba_2p_epp }, { PCI_VENDOR_ID_SYBA, PCI_DEVICE_ID_SYBA_1P_ECP, PCI_ANY_ID, PCI_ANY_ID, 0, 0, syba_1p_ecp }, { PCI_VENDOR_ID_TITAN, PCI_DEVICE_ID_TITAN_010L, PCI_ANY_ID, PCI_ANY_ID, 0, 0, titan_010l }, { 0x9710, 0x9805, 0x1000, 0x0010, 0, 0, titan_1284p1 }, { 0x9710, 0x9815, 0x1000, 0x0020, 0, 0, titan_1284p2 }, /* PCI_VENDOR_ID_AVLAB/Intek21 has another bunch of cards ...*/ /* AFAVLAB_TK9902 */ { 0x14db, 0x2120, PCI_ANY_ID, PCI_ANY_ID, 0, 0, avlab_1p}, { 0x14db, 0x2121, PCI_ANY_ID, PCI_ANY_ID, 0, 0, avlab_2p}, { PCI_VENDOR_ID_OXSEMI, PCI_DEVICE_ID_OXSEMI_16PCI952PP, PCI_ANY_ID, PCI_ANY_ID, 0, 0, oxsemi_952 }, { PCI_VENDOR_ID_OXSEMI, PCI_DEVICE_ID_OXSEMI_16PCI954PP, PCI_ANY_ID, PCI_ANY_ID, 0, 0, oxsemi_954 }, { PCI_VENDOR_ID_OXSEMI, PCI_DEVICE_ID_OXSEMI_12PCI840, PCI_ANY_ID, PCI_ANY_ID, 0, 0, oxsemi_840 }, { PCI_VENDOR_ID_OXSEMI, PCI_DEVICE_ID_OXSEMI_PCIe840, PCI_ANY_ID, PCI_ANY_ID, 0, 0, oxsemi_pcie_pport }, { PCI_VENDOR_ID_OXSEMI, PCI_DEVICE_ID_OXSEMI_PCIe840_G, PCI_ANY_ID, PCI_ANY_ID, 0, 0, oxsemi_pcie_pport }, { PCI_VENDOR_ID_OXSEMI, PCI_DEVICE_ID_OXSEMI_PCIe952_0, PCI_ANY_ID, PCI_ANY_ID, 0, 0, oxsemi_pcie_pport }, { PCI_VENDOR_ID_OXSEMI, PCI_DEVICE_ID_OXSEMI_PCIe952_0_G, PCI_ANY_ID, PCI_ANY_ID, 0, 0, oxsemi_pcie_pport }, { PCI_VENDOR_ID_OXSEMI, PCI_DEVICE_ID_OXSEMI_PCIe952_1, PCI_ANY_ID, PCI_ANY_ID, 0, 0, oxsemi_pcie_pport }, { PCI_VENDOR_ID_OXSEMI, PCI_DEVICE_ID_OXSEMI_PCIe952_1_G, PCI_ANY_ID, PCI_ANY_ID, 0, 0, oxsemi_pcie_pport }, { PCI_VENDOR_ID_OXSEMI, PCI_DEVICE_ID_OXSEMI_PCIe952_1_U, PCI_ANY_ID, PCI_ANY_ID, 0, 0, oxsemi_pcie_pport }, { PCI_VENDOR_ID_OXSEMI, PCI_DEVICE_ID_OXSEMI_PCIe952_1_GU, PCI_ANY_ID, PCI_ANY_ID, 0, 0, oxsemi_pcie_pport }, { PCI_VENDOR_ID_AKS, PCI_DEVICE_ID_AKS_ALADDINCARD, PCI_ANY_ID, PCI_ANY_ID, 0, 0, aks_0100 }, { 0x14f2, 0x0121, PCI_ANY_ID, PCI_ANY_ID, 0, 0, mobility_pp }, /* NetMos communication controllers */ { PCI_VENDOR_ID_NETMOS, PCI_DEVICE_ID_NETMOS_9705, PCI_ANY_ID, PCI_ANY_ID, 0, 0, netmos_9705 }, { PCI_VENDOR_ID_NETMOS, PCI_DEVICE_ID_NETMOS_9715, PCI_ANY_ID, PCI_ANY_ID, 0, 0, netmos_9715 }, { PCI_VENDOR_ID_NETMOS, PCI_DEVICE_ID_NETMOS_9755, PCI_ANY_ID, PCI_ANY_ID, 0, 0, netmos_9755 }, { PCI_VENDOR_ID_NETMOS, PCI_DEVICE_ID_NETMOS_9805, PCI_ANY_ID, PCI_ANY_ID, 0, 0, netmos_9805 }, { PCI_VENDOR_ID_NETMOS, PCI_DEVICE_ID_NETMOS_9815, PCI_ANY_ID, PCI_ANY_ID, 0, 0, netmos_9815 }, { PCI_VENDOR_ID_NETMOS, PCI_DEVICE_ID_NETMOS_9901, 0xA000, 0x2000, 0, 0, netmos_9901 }, { PCI_VENDOR_ID_NETMOS, PCI_DEVICE_ID_NETMOS_9865, 0xA000, 0x1000, 0, 0, netmos_9865 }, { PCI_VENDOR_ID_NETMOS, PCI_DEVICE_ID_NETMOS_9865, 0xA000, 0x2000, 0, 0, netmos_9865 }, /* Quatech SPPXP-100 Parallel port PCI ExpressCard */ { PCI_VENDOR_ID_QUATECH, PCI_DEVICE_ID_QUATECH_SPPXP_100, PCI_ANY_ID, PCI_ANY_ID, 0, 0, quatech_sppxp100 }, { 0, } /* terminate list */ }; MODULE_DEVICE_TABLE(pci, parport_pc_pci_tbl); struct pci_parport_data { int num; struct parport *ports[2]; }; static int parport_pc_pci_probe(struct pci_dev *dev, const struct pci_device_id *id) { int err, count, n, i = id->driver_data; struct pci_parport_data *data; if (i < last_sio) /* This is an onboard Super-IO and has already been probed */ return 0; /* This is a PCI card */ i -= last_sio; count = 0; err = pci_enable_device(dev); if (err) return err; data = kmalloc(sizeof(struct pci_parport_data), GFP_KERNEL); if (!data) return -ENOMEM; if (cards[i].preinit_hook && cards[i].preinit_hook(dev, PARPORT_IRQ_NONE, PARPORT_DMA_NONE)) { kfree(data); return -ENODEV; } for (n = 0; n < cards[i].numports; n++) { int lo = cards[i].addr[n].lo; int hi = cards[i].addr[n].hi; int irq; unsigned long io_lo, io_hi; io_lo = pci_resource_start(dev, lo); io_hi = 0; if ((hi >= 0) && (hi <= 6)) io_hi = pci_resource_start(dev, hi); else if (hi > 6) io_lo += hi; /* Reinterpret the meaning of "hi" as an offset (see SYBA def.) */ /* TODO: test if sharing interrupts works */ irq = dev->irq; if (irq == IRQ_NONE) { printk(KERN_DEBUG "PCI parallel port detected: %04x:%04x, I/O at %#lx(%#lx)\n", parport_pc_pci_tbl[i + last_sio].vendor, parport_pc_pci_tbl[i + last_sio].device, io_lo, io_hi); irq = PARPORT_IRQ_NONE; } else { printk(KERN_DEBUG "PCI parallel port detected: %04x:%04x, I/O at %#lx(%#lx), IRQ %d\n", parport_pc_pci_tbl[i + last_sio].vendor, parport_pc_pci_tbl[i + last_sio].device, io_lo, io_hi, irq); } data->ports[count] = parport_pc_probe_port(io_lo, io_hi, irq, PARPORT_DMA_NONE, &dev->dev, IRQF_SHARED); if (data->ports[count]) count++; } data->num = count; if (cards[i].postinit_hook) cards[i].postinit_hook(dev, count == 0); if (count) { pci_set_drvdata(dev, data); return 0; } kfree(data); return -ENODEV; } static void __devexit parport_pc_pci_remove(struct pci_dev *dev) { struct pci_parport_data *data = pci_get_drvdata(dev); int i; pci_set_drvdata(dev, NULL); if (data) { for (i = data->num - 1; i >= 0; i--) parport_pc_unregister_port(data->ports[i]); kfree(data); } } static struct pci_driver parport_pc_pci_driver = { .name = "parport_pc", .id_table = parport_pc_pci_tbl, .probe = parport_pc_pci_probe, .remove = __devexit_p(parport_pc_pci_remove), }; static int __init parport_pc_init_superio(int autoirq, int autodma) { const struct pci_device_id *id; struct pci_dev *pdev = NULL; int ret = 0; for_each_pci_dev(pdev) { id = pci_match_id(parport_pc_pci_tbl, pdev); if (id == NULL || id->driver_data >= last_sio) continue; if (parport_pc_superio_info[id->driver_data].probe( pdev, autoirq, autodma, parport_pc_superio_info[id->driver_data].via)) { ret++; } } return ret; /* number of devices found */ } #else static struct pci_driver parport_pc_pci_driver; static int __init parport_pc_init_superio(int autoirq, int autodma) { return 0; } #endif /* CONFIG_PCI */ #ifdef CONFIG_PNP static const struct pnp_device_id parport_pc_pnp_tbl[] = { /* Standard LPT Printer Port */ {.id = "PNP0400", .driver_data = 0}, /* ECP Printer Port */ {.id = "PNP0401", .driver_data = 0}, { } }; MODULE_DEVICE_TABLE(pnp, parport_pc_pnp_tbl); static int parport_pc_pnp_probe(struct pnp_dev *dev, const struct pnp_device_id *id) { struct parport *pdata; unsigned long io_lo, io_hi; int dma, irq; if (pnp_port_valid(dev, 0) && !(pnp_port_flags(dev, 0) & IORESOURCE_DISABLED)) { io_lo = pnp_port_start(dev, 0); } else return -EINVAL; if (pnp_port_valid(dev, 1) && !(pnp_port_flags(dev, 1) & IORESOURCE_DISABLED)) { io_hi = pnp_port_start(dev, 1); } else io_hi = 0; if (pnp_irq_valid(dev, 0) && !(pnp_irq_flags(dev, 0) & IORESOURCE_DISABLED)) { irq = pnp_irq(dev, 0); } else irq = PARPORT_IRQ_NONE; if (pnp_dma_valid(dev, 0) && !(pnp_dma_flags(dev, 0) & IORESOURCE_DISABLED)) { dma = pnp_dma(dev, 0); } else dma = PARPORT_DMA_NONE; dev_info(&dev->dev, "reported by %s\n", dev->protocol->name); pdata = parport_pc_probe_port(io_lo, io_hi, irq, dma, &dev->dev, 0); if (pdata == NULL) return -ENODEV; pnp_set_drvdata(dev, pdata); return 0; } static void parport_pc_pnp_remove(struct pnp_dev *dev) { struct parport *pdata = (struct parport *)pnp_get_drvdata(dev); if (!pdata) return; parport_pc_unregister_port(pdata); } /* we only need the pnp layer to activate the device, at least for now */ static struct pnp_driver parport_pc_pnp_driver = { .name = "parport_pc", .id_table = parport_pc_pnp_tbl, .probe = parport_pc_pnp_probe, .remove = parport_pc_pnp_remove, }; #else static struct pnp_driver parport_pc_pnp_driver; #endif /* CONFIG_PNP */ static int __devinit parport_pc_platform_probe(struct platform_device *pdev) { /* Always succeed, the actual probing is done in * parport_pc_probe_port(). */ return 0; } static struct platform_driver parport_pc_platform_driver = { .driver = { .owner = THIS_MODULE, .name = "parport_pc", }, .probe = parport_pc_platform_probe, }; /* This is called by parport_pc_find_nonpci_ports (in asm/parport.h) */ static int __devinit __attribute__((unused)) parport_pc_find_isa_ports(int autoirq, int autodma) { int count = 0; if (parport_pc_probe_port(0x3bc, 0x7bc, autoirq, autodma, NULL, 0)) count++; if (parport_pc_probe_port(0x378, 0x778, autoirq, autodma, NULL, 0)) count++; if (parport_pc_probe_port(0x278, 0x678, autoirq, autodma, NULL, 0)) count++; return count; } /* This function is called by parport_pc_init if the user didn't * specify any ports to probe. Its job is to find some ports. Order * is important here -- we want ISA ports to be registered first, * followed by PCI cards (for least surprise), but before that we want * to do chipset-specific tests for some onboard ports that we know * about. * * autoirq is PARPORT_IRQ_NONE, PARPORT_IRQ_AUTO, or PARPORT_IRQ_PROBEONLY * autodma is PARPORT_DMA_NONE or PARPORT_DMA_AUTO */ static void __init parport_pc_find_ports(int autoirq, int autodma) { int count = 0, err; #ifdef CONFIG_PARPORT_PC_SUPERIO detect_and_report_it87(); detect_and_report_winbond(); detect_and_report_smsc(); #endif /* Onboard SuperIO chipsets that show themselves on the PCI bus. */ count += parport_pc_init_superio(autoirq, autodma); /* PnP ports, skip detection if SuperIO already found them */ if (!count) { err = pnp_register_driver(&parport_pc_pnp_driver); if (!err) pnp_registered_parport = 1; } /* ISA ports and whatever (see asm/parport.h). */ parport_pc_find_nonpci_ports(autoirq, autodma); err = pci_register_driver(&parport_pc_pci_driver); if (!err) pci_registered_parport = 1; } /* * Piles of crap below pretend to be a parser for module and kernel * parameters. Say "thank you" to whoever had come up with that * syntax and keep in mind that code below is a cleaned up version. */ static int __initdata io[PARPORT_PC_MAX_PORTS+1] = { [0 ... PARPORT_PC_MAX_PORTS] = 0 }; static int __initdata io_hi[PARPORT_PC_MAX_PORTS+1] = { [0 ... PARPORT_PC_MAX_PORTS] = PARPORT_IOHI_AUTO }; static int __initdata dmaval[PARPORT_PC_MAX_PORTS] = { [0 ... PARPORT_PC_MAX_PORTS-1] = PARPORT_DMA_NONE }; static int __initdata irqval[PARPORT_PC_MAX_PORTS] = { [0 ... PARPORT_PC_MAX_PORTS-1] = PARPORT_IRQ_PROBEONLY }; static int __init parport_parse_param(const char *s, int *val, int automatic, int none, int nofifo) { if (!s) return 0; if (!strncmp(s, "auto", 4)) *val = automatic; else if (!strncmp(s, "none", 4)) *val = none; else if (nofifo && !strncmp(s, "nofifo", 6)) *val = nofifo; else { char *ep; unsigned long r = simple_strtoul(s, &ep, 0); if (ep != s) *val = r; else { printk(KERN_ERR "parport: bad specifier `%s'\n", s); return -1; } } return 0; } static int __init parport_parse_irq(const char *irqstr, int *val) { return parport_parse_param(irqstr, val, PARPORT_IRQ_AUTO, PARPORT_IRQ_NONE, 0); } static int __init parport_parse_dma(const char *dmastr, int *val) { return parport_parse_param(dmastr, val, PARPORT_DMA_AUTO, PARPORT_DMA_NONE, PARPORT_DMA_NOFIFO); } #ifdef CONFIG_PCI static int __init parport_init_mode_setup(char *str) { printk(KERN_DEBUG "parport_pc.c: Specified parameter parport_init_mode=%s\n", str); if (!strcmp(str, "spp")) parport_init_mode = 1; if (!strcmp(str, "ps2")) parport_init_mode = 2; if (!strcmp(str, "epp")) parport_init_mode = 3; if (!strcmp(str, "ecp")) parport_init_mode = 4; if (!strcmp(str, "ecpepp")) parport_init_mode = 5; return 1; } #endif #ifdef MODULE static const char *irq[PARPORT_PC_MAX_PORTS]; static const char *dma[PARPORT_PC_MAX_PORTS]; MODULE_PARM_DESC(io, "Base I/O address (SPP regs)"); module_param_array(io, int, NULL, 0); MODULE_PARM_DESC(io_hi, "Base I/O address (ECR)"); module_param_array(io_hi, int, NULL, 0); MODULE_PARM_DESC(irq, "IRQ line"); module_param_array(irq, charp, NULL, 0); MODULE_PARM_DESC(dma, "DMA channel"); module_param_array(dma, charp, NULL, 0); #if defined(CONFIG_PARPORT_PC_SUPERIO) || \ (defined(CONFIG_PARPORT_1284) && defined(CONFIG_PARPORT_PC_FIFO)) MODULE_PARM_DESC(verbose_probing, "Log chit-chat during initialisation"); module_param(verbose_probing, int, 0644); #endif #ifdef CONFIG_PCI static char *init_mode; MODULE_PARM_DESC(init_mode, "Initialise mode for VIA VT8231 port (spp, ps2, epp, ecp or ecpepp)"); module_param(init_mode, charp, 0); #endif static int __init parse_parport_params(void) { unsigned int i; int val; #ifdef CONFIG_PCI if (init_mode) parport_init_mode_setup(init_mode); #endif for (i = 0; i < PARPORT_PC_MAX_PORTS && io[i]; i++) { if (parport_parse_irq(irq[i], &val)) return 1; irqval[i] = val; if (parport_parse_dma(dma[i], &val)) return 1; dmaval[i] = val; } if (!io[0]) { /* The user can make us use any IRQs or DMAs we find. */ if (irq[0] && !parport_parse_irq(irq[0], &val)) switch (val) { case PARPORT_IRQ_NONE: case PARPORT_IRQ_AUTO: irqval[0] = val; break; default: printk(KERN_WARNING "parport_pc: irq specified " "without base address. Use 'io=' " "to specify one\n"); } if (dma[0] && !parport_parse_dma(dma[0], &val)) switch (val) { case PARPORT_DMA_NONE: case PARPORT_DMA_AUTO: dmaval[0] = val; break; default: printk(KERN_WARNING "parport_pc: dma specified " "without base address. Use 'io=' " "to specify one\n"); } } return 0; } #else static int parport_setup_ptr __initdata; /* * Acceptable parameters: * * parport=0 * parport=auto * parport=0xBASE[,IRQ[,DMA]] * * IRQ/DMA may be numeric or 'auto' or 'none' */ static int __init parport_setup(char *str) { char *endptr; char *sep; int val; if (!str || !*str || (*str == '0' && !*(str+1))) { /* Disable parport if "parport=0" in cmdline */ io[0] = PARPORT_DISABLE; return 1; } if (!strncmp(str, "auto", 4)) { irqval[0] = PARPORT_IRQ_AUTO; dmaval[0] = PARPORT_DMA_AUTO; return 1; } val = simple_strtoul(str, &endptr, 0); if (endptr == str) { printk(KERN_WARNING "parport=%s not understood\n", str); return 1; } if (parport_setup_ptr == PARPORT_PC_MAX_PORTS) { printk(KERN_ERR "parport=%s ignored, too many ports\n", str); return 1; } io[parport_setup_ptr] = val; irqval[parport_setup_ptr] = PARPORT_IRQ_NONE; dmaval[parport_setup_ptr] = PARPORT_DMA_NONE; sep = strchr(str, ','); if (sep++) { if (parport_parse_irq(sep, &val)) return 1; irqval[parport_setup_ptr] = val; sep = strchr(sep, ','); if (sep++) { if (parport_parse_dma(sep, &val)) return 1; dmaval[parport_setup_ptr] = val; } } parport_setup_ptr++; return 1; } static int __init parse_parport_params(void) { return io[0] == PARPORT_DISABLE; } __setup("parport=", parport_setup); /* * Acceptable parameters: * * parport_init_mode=[spp|ps2|epp|ecp|ecpepp] */ #ifdef CONFIG_PCI __setup("parport_init_mode=", parport_init_mode_setup); #endif #endif /* "Parser" ends here */ static int __init parport_pc_init(void) { int err; if (parse_parport_params()) return -EINVAL; err = platform_driver_register(&parport_pc_platform_driver); if (err) return err; if (io[0]) { int i; /* Only probe the ports we were given. */ user_specified = 1; for (i = 0; i < PARPORT_PC_MAX_PORTS; i++) { if (!io[i]) break; if (io_hi[i] == PARPORT_IOHI_AUTO) io_hi[i] = 0x400 + io[i]; parport_pc_probe_port(io[i], io_hi[i], irqval[i], dmaval[i], NULL, 0); } } else parport_pc_find_ports(irqval[0], dmaval[0]); return 0; } static void __exit parport_pc_exit(void) { if (pci_registered_parport) pci_unregister_driver(&parport_pc_pci_driver); if (pnp_registered_parport) pnp_unregister_driver(&parport_pc_pnp_driver); platform_driver_unregister(&parport_pc_platform_driver); while (!list_empty(&ports_list)) { struct parport_pc_private *priv; struct parport *port; priv = list_entry(ports_list.next, struct parport_pc_private, list); port = priv->port; if (port->dev && port->dev->bus == &platform_bus_type) platform_device_unregister( to_platform_device(port->dev)); parport_pc_unregister_port(port); } } MODULE_AUTHOR("Phil Blundell, Tim Waugh, others"); MODULE_DESCRIPTION("PC-style parallel port driver"); MODULE_LICENSE("GPL"); module_init(parport_pc_init) module_exit(parport_pc_exit)