/* * intel_scu_ipc.c: Driver for the Intel SCU IPC mechanism * * (C) Copyright 2008-2010 Intel Corporation * Author: Sreedhara DS (sreedhara.ds@intel.com) * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; version 2 * of the License. * * SCU running in ARC processor communicates with other entity running in IA * core through IPC mechanism which in turn messaging between IA core ad SCU. * SCU has two IPC mechanism IPC-1 and IPC-2. IPC-1 is used between IA32 and * SCU where IPC-2 is used between P-Unit and SCU. This driver delas with * IPC-1 Driver provides an API for power control unit registers (e.g. MSIC) * along with other APIs. */ #include #include #include #include #include #include #include #include #include #include #include /* IPC defines the following message types */ #define IPCMSG_WATCHDOG_TIMER 0xF8 /* Set Kernel Watchdog Threshold */ #define IPCMSG_BATTERY 0xEF /* Coulomb Counter Accumulator */ #define IPCMSG_FW_UPDATE 0xFE /* Firmware update */ #define IPCMSG_PCNTRL 0xFF /* Power controller unit read/write */ #define IPCMSG_FW_REVISION 0xF4 /* Get firmware revision */ /* Command id associated with message IPCMSG_PCNTRL */ #define IPC_CMD_PCNTRL_W 0 /* Register write */ #define IPC_CMD_PCNTRL_R 1 /* Register read */ #define IPC_CMD_PCNTRL_M 2 /* Register read-modify-write */ /* * IPC register summary * * IPC register blocks are memory mapped at fixed address of 0xFF11C000 * To read or write information to the SCU, driver writes to IPC-1 memory * mapped registers (base address 0xFF11C000). The following is the IPC * mechanism * * 1. IA core cDMI interface claims this transaction and converts it to a * Transaction Layer Packet (TLP) message which is sent across the cDMI. * * 2. South Complex cDMI block receives this message and writes it to * the IPC-1 register block, causing an interrupt to the SCU * * 3. SCU firmware decodes this interrupt and IPC message and the appropriate * message handler is called within firmware. */ #define IPC_BASE_ADDR 0xFF11C000 /* IPC1 base register address */ #define IPC_MAX_ADDR 0x100 /* Maximum IPC regisers */ #define IPC_WWBUF_SIZE 20 /* IPC Write buffer Size */ #define IPC_RWBUF_SIZE 20 /* IPC Read buffer Size */ #define IPC_I2C_BASE 0xFF12B000 /* I2C control register base address */ #define IPC_I2C_MAX_ADDR 0x10 /* Maximum I2C regisers */ static int ipc_probe(struct pci_dev *dev, const struct pci_device_id *id); static void ipc_remove(struct pci_dev *pdev); struct intel_scu_ipc_dev { struct pci_dev *pdev; void __iomem *ipc_base; void __iomem *i2c_base; }; static struct intel_scu_ipc_dev ipcdev; /* Only one for now */ static int platform; /* Platform type */ /* * IPC Read Buffer (Read Only): * 16 byte buffer for receiving data from SCU, if IPC command * processing results in response data */ #define IPC_READ_BUFFER 0x90 #define IPC_I2C_CNTRL_ADDR 0 #define I2C_DATA_ADDR 0x04 static DEFINE_MUTEX(ipclock); /* lock used to prevent multiple call to SCU */ /* * Command Register (Write Only): * A write to this register results in an interrupt to the SCU core processor * Format: * |rfu2(8) | size(8) | command id(4) | rfu1(3) | ioc(1) | command(8)| */ static inline void ipc_command(u32 cmd) /* Send ipc command */ { writel(cmd, ipcdev.ipc_base); } /* * IPC Write Buffer (Write Only): * 16-byte buffer for sending data associated with IPC command to * SCU. Size of the data is specified in the IPC_COMMAND_REG register */ static inline void ipc_data_writel(u32 data, u32 offset) /* Write ipc data */ { writel(data, ipcdev.ipc_base + 0x80 + offset); } /* * Status Register (Read Only): * Driver will read this register to get the ready/busy status of the IPC * block and error status of the IPC command that was just processed by SCU * Format: * |rfu3(8)|error code(8)|initiator id(8)|cmd id(4)|rfu1(2)|error(1)|busy(1)| */ static inline u8 ipc_read_status(void) { return __raw_readl(ipcdev.ipc_base + 0x04); } static inline u8 ipc_data_readb(u32 offset) /* Read ipc byte data */ { return readb(ipcdev.ipc_base + IPC_READ_BUFFER + offset); } static inline u32 ipc_data_readl(u32 offset) /* Read ipc u32 data */ { return readl(ipcdev.ipc_base + IPC_READ_BUFFER + offset); } static inline int busy_loop(void) /* Wait till scu status is busy */ { u32 status = 0; u32 loop_count = 0; status = ipc_read_status(); while (status & 1) { udelay(1); /* scu processing time is in few u secods */ status = ipc_read_status(); loop_count++; /* break if scu doesn't reset busy bit after huge retry */ if (loop_count > 100000) { dev_err(&ipcdev.pdev->dev, "IPC timed out"); return -ETIMEDOUT; } } if ((status >> 1) & 1) return -EIO; return 0; } /* Read/Write power control(PMIC in Langwell, MSIC in PenWell) registers */ static int pwr_reg_rdwr(u16 *addr, u8 *data, u32 count, u32 op, u32 id) { int i, nc, bytes, d; u32 offset = 0; int err; u8 cbuf[IPC_WWBUF_SIZE] = { }; u32 *wbuf = (u32 *)&cbuf; mutex_lock(&ipclock); memset(cbuf, 0, sizeof(cbuf)); if (ipcdev.pdev == NULL) { mutex_unlock(&ipclock); return -ENODEV; } if (platform != MRST_CPU_CHIP_PENWELL) { bytes = 0; d = 0; for (i = 0; i < count; i++) { cbuf[bytes++] = addr[i]; cbuf[bytes++] = addr[i] >> 8; if (id != IPC_CMD_PCNTRL_R) cbuf[bytes++] = data[d++]; if (id == IPC_CMD_PCNTRL_M) cbuf[bytes++] = data[d++]; } for (i = 0; i < bytes; i += 4) ipc_data_writel(wbuf[i/4], i); ipc_command(bytes << 16 | id << 12 | 0 << 8 | op); } else { for (nc = 0; nc < count; nc++, offset += 2) { cbuf[offset] = addr[nc]; cbuf[offset + 1] = addr[nc] >> 8; } if (id == IPC_CMD_PCNTRL_R) { for (nc = 0, offset = 0; nc < count; nc++, offset += 4) ipc_data_writel(wbuf[nc], offset); ipc_command((count*2) << 16 | id << 12 | 0 << 8 | op); } else if (id == IPC_CMD_PCNTRL_W) { for (nc = 0; nc < count; nc++, offset += 1) cbuf[offset] = data[nc]; for (nc = 0, offset = 0; nc < count; nc++, offset += 4) ipc_data_writel(wbuf[nc], offset); ipc_command((count*3) << 16 | id << 12 | 0 << 8 | op); } else if (id == IPC_CMD_PCNTRL_M) { cbuf[offset] = data[0]; cbuf[offset + 1] = data[1]; ipc_data_writel(wbuf[0], 0); /* Write wbuff */ ipc_command(4 << 16 | id << 12 | 0 << 8 | op); } } err = busy_loop(); if (id == IPC_CMD_PCNTRL_R) { /* Read rbuf */ /* Workaround: values are read as 0 without memcpy_fromio */ memcpy_fromio(cbuf, ipcdev.ipc_base + 0x90, 16); if (platform != MRST_CPU_CHIP_PENWELL) { for (nc = 0, offset = 2; nc < count; nc++, offset += 3) data[nc] = ipc_data_readb(offset); } else { for (nc = 0; nc < count; nc++) data[nc] = ipc_data_readb(nc); } } mutex_unlock(&ipclock); return err; } /** * intel_scu_ipc_ioread8 - read a word via the SCU * @addr: register on SCU * @data: return pointer for read byte * * Read a single register. Returns 0 on success or an error code. All * locking between SCU accesses is handled for the caller. * * This function may sleep. */ int intel_scu_ipc_ioread8(u16 addr, u8 *data) { return pwr_reg_rdwr(&addr, data, 1, IPCMSG_PCNTRL, IPC_CMD_PCNTRL_R); } EXPORT_SYMBOL(intel_scu_ipc_ioread8); /** * intel_scu_ipc_ioread16 - read a word via the SCU * @addr: register on SCU * @data: return pointer for read word * * Read a register pair. Returns 0 on success or an error code. All * locking between SCU accesses is handled for the caller. * * This function may sleep. */ int intel_scu_ipc_ioread16(u16 addr, u16 *data) { u16 x[2] = {addr, addr + 1 }; return pwr_reg_rdwr(x, (u8 *)data, 2, IPCMSG_PCNTRL, IPC_CMD_PCNTRL_R); } EXPORT_SYMBOL(intel_scu_ipc_ioread16); /** * intel_scu_ipc_ioread32 - read a dword via the SCU * @addr: register on SCU * @data: return pointer for read dword * * Read four registers. Returns 0 on success or an error code. All * locking between SCU accesses is handled for the caller. * * This function may sleep. */ int intel_scu_ipc_ioread32(u16 addr, u32 *data) { u16 x[4] = {addr, addr + 1, addr + 2, addr + 3}; return pwr_reg_rdwr(x, (u8 *)data, 4, IPCMSG_PCNTRL, IPC_CMD_PCNTRL_R); } EXPORT_SYMBOL(intel_scu_ipc_ioread32); /** * intel_scu_ipc_iowrite8 - write a byte via the SCU * @addr: register on SCU * @data: byte to write * * Write a single register. Returns 0 on success or an error code. All * locking between SCU accesses is handled for the caller. * * This function may sleep. */ int intel_scu_ipc_iowrite8(u16 addr, u8 data) { return pwr_reg_rdwr(&addr, &data, 1, IPCMSG_PCNTRL, IPC_CMD_PCNTRL_W); } EXPORT_SYMBOL(intel_scu_ipc_iowrite8); /** * intel_scu_ipc_iowrite16 - write a word via the SCU * @addr: register on SCU * @data: word to write * * Write two registers. Returns 0 on success or an error code. All * locking between SCU accesses is handled for the caller. * * This function may sleep. */ int intel_scu_ipc_iowrite16(u16 addr, u16 data) { u16 x[2] = {addr, addr + 1 }; return pwr_reg_rdwr(x, (u8 *)&data, 2, IPCMSG_PCNTRL, IPC_CMD_PCNTRL_W); } EXPORT_SYMBOL(intel_scu_ipc_iowrite16); /** * intel_scu_ipc_iowrite32 - write a dword via the SCU * @addr: register on SCU * @data: dword to write * * Write four registers. Returns 0 on success or an error code. All * locking between SCU accesses is handled for the caller. * * This function may sleep. */ int intel_scu_ipc_iowrite32(u16 addr, u32 data) { u16 x[4] = {addr, addr + 1, addr + 2, addr + 3}; return pwr_reg_rdwr(x, (u8 *)&data, 4, IPCMSG_PCNTRL, IPC_CMD_PCNTRL_W); } EXPORT_SYMBOL(intel_scu_ipc_iowrite32); /** * intel_scu_ipc_readvv - read a set of registers * @addr: register list * @data: bytes to return * @len: length of array * * Read registers. Returns 0 on success or an error code. All * locking between SCU accesses is handled for the caller. * * The largest array length permitted by the hardware is 5 items. * * This function may sleep. */ int intel_scu_ipc_readv(u16 *addr, u8 *data, int len) { return pwr_reg_rdwr(addr, data, len, IPCMSG_PCNTRL, IPC_CMD_PCNTRL_R); } EXPORT_SYMBOL(intel_scu_ipc_readv); /** * intel_scu_ipc_writev - write a set of registers * @addr: register list * @data: bytes to write * @len: length of array * * Write registers. Returns 0 on success or an error code. All * locking between SCU accesses is handled for the caller. * * The largest array length permitted by the hardware is 5 items. * * This function may sleep. * */ int intel_scu_ipc_writev(u16 *addr, u8 *data, int len) { return pwr_reg_rdwr(addr, data, len, IPCMSG_PCNTRL, IPC_CMD_PCNTRL_W); } EXPORT_SYMBOL(intel_scu_ipc_writev); /** * intel_scu_ipc_update_register - r/m/w a register * @addr: register address * @bits: bits to update * @mask: mask of bits to update * * Read-modify-write power control unit register. The first data argument * must be register value and second is mask value * mask is a bitmap that indicates which bits to update. * 0 = masked. Don't modify this bit, 1 = modify this bit. * returns 0 on success or an error code. * * This function may sleep. Locking between SCU accesses is handled * for the caller. */ int intel_scu_ipc_update_register(u16 addr, u8 bits, u8 mask) { u8 data[2] = { bits, mask }; return pwr_reg_rdwr(&addr, data, 1, IPCMSG_PCNTRL, IPC_CMD_PCNTRL_M); } EXPORT_SYMBOL(intel_scu_ipc_update_register); /** * intel_scu_ipc_simple_command - send a simple command * @cmd: command * @sub: sub type * * Issue a simple command to the SCU. Do not use this interface if * you must then access data as any data values may be overwritten * by another SCU access by the time this function returns. * * This function may sleep. Locking for SCU accesses is handled for * the caller. */ int intel_scu_ipc_simple_command(int cmd, int sub) { int err; mutex_lock(&ipclock); if (ipcdev.pdev == NULL) { mutex_unlock(&ipclock); return -ENODEV; } ipc_command(sub << 12 | cmd); err = busy_loop(); mutex_unlock(&ipclock); return err; } EXPORT_SYMBOL(intel_scu_ipc_simple_command); /** * intel_scu_ipc_command - command with data * @cmd: command * @sub: sub type * @in: input data * @inlen: input length in dwords * @out: output data * @outlein: output length in dwords * * Issue a command to the SCU which involves data transfers. Do the * data copies under the lock but leave it for the caller to interpret */ int intel_scu_ipc_command(int cmd, int sub, u32 *in, int inlen, u32 *out, int outlen) { int i, err; mutex_lock(&ipclock); if (ipcdev.pdev == NULL) { mutex_unlock(&ipclock); return -ENODEV; } for (i = 0; i < inlen; i++) ipc_data_writel(*in++, 4 * i); ipc_command((inlen << 16) | (sub << 12) | cmd); err = busy_loop(); for (i = 0; i < outlen; i++) *out++ = ipc_data_readl(4 * i); mutex_unlock(&ipclock); return err; } EXPORT_SYMBOL(intel_scu_ipc_command); /*I2C commands */ #define IPC_I2C_WRITE 1 /* I2C Write command */ #define IPC_I2C_READ 2 /* I2C Read command */ /** * intel_scu_ipc_i2c_cntrl - I2C read/write operations * @addr: I2C address + command bits * @data: data to read/write * * Perform an an I2C read/write operation via the SCU. All locking is * handled for the caller. This function may sleep. * * Returns an error code or 0 on success. * * This has to be in the IPC driver for the locking. */ int intel_scu_ipc_i2c_cntrl(u32 addr, u32 *data) { u32 cmd = 0; mutex_lock(&ipclock); if (ipcdev.pdev == NULL) { mutex_unlock(&ipclock); return -ENODEV; } cmd = (addr >> 24) & 0xFF; if (cmd == IPC_I2C_READ) { writel(addr, ipcdev.i2c_base + IPC_I2C_CNTRL_ADDR); /* Write not getting updated without delay */ mdelay(1); *data = readl(ipcdev.i2c_base + I2C_DATA_ADDR); } else if (cmd == IPC_I2C_WRITE) { writel(*data, ipcdev.i2c_base + I2C_DATA_ADDR); mdelay(1); writel(addr, ipcdev.i2c_base + IPC_I2C_CNTRL_ADDR); } else { dev_err(&ipcdev.pdev->dev, "intel_scu_ipc: I2C INVALID_CMD = 0x%x\n", cmd); mutex_unlock(&ipclock); return -EIO; } mutex_unlock(&ipclock); return 0; } EXPORT_SYMBOL(intel_scu_ipc_i2c_cntrl); #define IPC_FW_LOAD_ADDR 0xFFFC0000 /* Storage location for FW image */ #define IPC_FW_UPDATE_MBOX_ADDR 0xFFFFDFF4 /* Mailbox between ipc and scu */ #define IPC_MAX_FW_SIZE 262144 /* 256K storage size for loading the FW image */ #define IPC_FW_MIP_HEADER_SIZE 2048 /* Firmware MIP header size */ /* IPC inform SCU to get ready for update process */ #define IPC_CMD_FW_UPDATE_READY 0x10FE /* IPC inform SCU to go for update process */ #define IPC_CMD_FW_UPDATE_GO 0x20FE /* Status code for fw update */ #define IPC_FW_UPDATE_SUCCESS 0x444f4e45 /* Status code 'DONE' */ #define IPC_FW_UPDATE_BADN 0x4241444E /* Status code 'BADN' */ #define IPC_FW_TXHIGH 0x54784849 /* Status code 'IPC_FW_TXHIGH' */ #define IPC_FW_TXLOW 0x54784c4f /* Status code 'IPC_FW_TXLOW' */ struct fw_update_mailbox { u32 status; u32 scu_flag; u32 driver_flag; }; /** * intel_scu_ipc_fw_update - Firmware update utility * @buffer: firmware buffer * @length: size of firmware buffer * * This function provides an interface to load the firmware into * the SCU. Returns 0 on success or -1 on failure */ int intel_scu_ipc_fw_update(u8 *buffer, u32 length) { void __iomem *fw_update_base; struct fw_update_mailbox __iomem *mailbox = NULL; int retry_cnt = 0; u32 status; mutex_lock(&ipclock); fw_update_base = ioremap_nocache(IPC_FW_LOAD_ADDR, (128*1024)); if (fw_update_base == NULL) { mutex_unlock(&ipclock); return -ENOMEM; } mailbox = ioremap_nocache(IPC_FW_UPDATE_MBOX_ADDR, sizeof(struct fw_update_mailbox)); if (mailbox == NULL) { iounmap(fw_update_base); mutex_unlock(&ipclock); return -ENOMEM; } ipc_command(IPC_CMD_FW_UPDATE_READY); /* Intitialize mailbox */ writel(0, &mailbox->status); writel(0, &mailbox->scu_flag); writel(0, &mailbox->driver_flag); /* Driver copies the 2KB MIP header to SRAM at 0xFFFC0000*/ memcpy_toio(fw_update_base, buffer, 0x800); /* Driver sends "FW Update" IPC command (CMD_ID 0xFE; MSG_ID 0x02). * Upon receiving this command, SCU will write the 2K MIP header * from 0xFFFC0000 into NAND. * SCU will write a status code into the Mailbox, and then set scu_flag. */ ipc_command(IPC_CMD_FW_UPDATE_GO); /*Driver stalls until scu_flag is set */ while (readl(&mailbox->scu_flag) != 1) { rmb(); mdelay(1); } /* Driver checks Mailbox status. * If the status is 'BADN', then abort (bad NAND). * If the status is 'IPC_FW_TXLOW', then continue. */ while (readl(&mailbox->status) != IPC_FW_TXLOW) { rmb(); mdelay(10); } mdelay(10); update_retry: if (retry_cnt > 5) goto update_end; if (readl(&mailbox->status) != IPC_FW_TXLOW) goto update_end; buffer = buffer + 0x800; memcpy_toio(fw_update_base, buffer, 0x20000); writel(1, &mailbox->driver_flag); while (readl(&mailbox->scu_flag) == 1) { rmb(); mdelay(1); } /* check for 'BADN' */ if (readl(&mailbox->status) == IPC_FW_UPDATE_BADN) goto update_end; while (readl(&mailbox->status) != IPC_FW_TXHIGH) { rmb(); mdelay(10); } mdelay(10); if (readl(&mailbox->status) != IPC_FW_TXHIGH) goto update_end; buffer = buffer + 0x20000; memcpy_toio(fw_update_base, buffer, 0x20000); writel(0, &mailbox->driver_flag); while (mailbox->scu_flag == 0) { rmb(); mdelay(1); } /* check for 'BADN' */ if (readl(&mailbox->status) == IPC_FW_UPDATE_BADN) goto update_end; if (readl(&mailbox->status) == IPC_FW_TXLOW) { ++retry_cnt; goto update_retry; } update_end: status = readl(&mailbox->status); iounmap(fw_update_base); iounmap(mailbox); mutex_unlock(&ipclock); if (status == IPC_FW_UPDATE_SUCCESS) return 0; return -EIO; } EXPORT_SYMBOL(intel_scu_ipc_fw_update); /* * Interrupt handler gets called when ioc bit of IPC_COMMAND_REG set to 1 * When ioc bit is set to 1, caller api must wait for interrupt handler called * which in turn unlocks the caller api. Currently this is not used * * This is edge triggered so we need take no action to clear anything */ static irqreturn_t ioc(int irq, void *dev_id) { return IRQ_HANDLED; } /** * ipc_probe - probe an Intel SCU IPC * @dev: the PCI device matching * @id: entry in the match table * * Enable and install an intel SCU IPC. This appears in the PCI space * but uses some hard coded addresses as well. */ static int ipc_probe(struct pci_dev *dev, const struct pci_device_id *id) { int err; resource_size_t pci_resource; if (ipcdev.pdev) /* We support only one SCU */ return -EBUSY; ipcdev.pdev = pci_dev_get(dev); err = pci_enable_device(dev); if (err) return err; err = pci_request_regions(dev, "intel_scu_ipc"); if (err) return err; pci_resource = pci_resource_start(dev, 0); if (!pci_resource) return -ENOMEM; if (request_irq(dev->irq, ioc, 0, "intel_scu_ipc", &ipcdev)) return -EBUSY; ipcdev.ipc_base = ioremap_nocache(IPC_BASE_ADDR, IPC_MAX_ADDR); if (!ipcdev.ipc_base) return -ENOMEM; ipcdev.i2c_base = ioremap_nocache(IPC_I2C_BASE, IPC_I2C_MAX_ADDR); if (!ipcdev.i2c_base) { iounmap(ipcdev.ipc_base); return -ENOMEM; } intel_scu_devices_create(); return 0; } /** * ipc_remove - remove a bound IPC device * @pdev: PCI device * * In practice the SCU is not removable but this function is also * called for each device on a module unload or cleanup which is the * path that will get used. * * Free up the mappings and release the PCI resources */ static void ipc_remove(struct pci_dev *pdev) { free_irq(pdev->irq, &ipcdev); pci_release_regions(pdev); pci_dev_put(ipcdev.pdev); iounmap(ipcdev.ipc_base); iounmap(ipcdev.i2c_base); ipcdev.pdev = NULL; intel_scu_devices_destroy(); } static DEFINE_PCI_DEVICE_TABLE(pci_ids) = { {PCI_DEVICE(PCI_VENDOR_ID_INTEL, 0x080e)}, {PCI_DEVICE(PCI_VENDOR_ID_INTEL, 0x082a)}, { 0,} }; MODULE_DEVICE_TABLE(pci, pci_ids); static struct pci_driver ipc_driver = { .name = "intel_scu_ipc", .id_table = pci_ids, .probe = ipc_probe, .remove = ipc_remove, }; static int __init intel_scu_ipc_init(void) { platform = mrst_identify_cpu(); if (platform == 0) return -ENODEV; return pci_register_driver(&ipc_driver); } static void __exit intel_scu_ipc_exit(void) { pci_unregister_driver(&ipc_driver); } MODULE_AUTHOR("Sreedhara DS "); MODULE_DESCRIPTION("Intel SCU IPC driver"); MODULE_LICENSE("GPL"); module_init(intel_scu_ipc_init); module_exit(intel_scu_ipc_exit);