/* * This file is part of the Chelsio FCoE driver for Linux. * * Copyright (c) 2008-2013 Chelsio Communications, Inc. All rights reserved. * * This software is available to you under a choice of one of two * licenses. You may choose to be licensed under the terms of the GNU * General Public License (GPL) Version 2, available from the file * OpenIB.org BSD license below: * * Redistribution and use in source and binary forms, with or * without modification, are permitted provided that the following * conditions are met: * * - Redistributions of source code must retain the above * copyright notice, this list of conditions and the following * - Redistributions in binary form must reproduce the above * copyright notice, this list of conditions and the following * disclaimer in the documentation and/or other materials * provided with the distribution. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. */ #include "csio_hw.h" #include "csio_init.h" /* * Return the specified PCI-E Configuration Space register from our Physical * Function. We try first via a Firmware LDST Command since we prefer to let * the firmware own all of these registers, but if that fails we go for it * directly ourselves. */ static uint32_t csio_t4_read_pcie_cfg4(struct csio_hw *hw, int reg) { u32 val = 0; struct csio_mb *mbp; int rv; struct fw_ldst_cmd *ldst_cmd; mbp = mempool_alloc(hw->mb_mempool, GFP_ATOMIC); if (!mbp) { CSIO_INC_STATS(hw, n_err_nomem); pci_read_config_dword(hw->pdev, reg, &val); return val; } csio_mb_ldst(hw, mbp, CSIO_MB_DEFAULT_TMO, reg); rv = csio_mb_issue(hw, mbp); /* * If the LDST Command suucceeded, exctract the returned register * value. Otherwise read it directly ourself. */ if (rv == 0) { ldst_cmd = (struct fw_ldst_cmd *)(mbp->mb); val = ntohl(ldst_cmd->u.pcie.data[0]); } else pci_read_config_dword(hw->pdev, reg, &val); mempool_free(mbp, hw->mb_mempool); return val; } static int csio_t4_set_mem_win(struct csio_hw *hw, uint32_t win) { u32 bar0; u32 mem_win_base; /* * Truncation intentional: we only read the bottom 32-bits of the * 64-bit BAR0/BAR1 ... We use the hardware backdoor mechanism to * read BAR0 instead of using pci_resource_start() because we could be * operating from within a Virtual Machine which is trapping our * accesses to our Configuration Space and we need to set up the PCI-E * Memory Window decoders with the actual addresses which will be * coming across the PCI-E link. */ bar0 = csio_t4_read_pcie_cfg4(hw, PCI_BASE_ADDRESS_0); bar0 &= PCI_BASE_ADDRESS_MEM_MASK; mem_win_base = bar0 + MEMWIN_BASE; /* * Set up memory window for accessing adapter memory ranges. (Read * back MA register to ensure that changes propagate before we attempt * to use the new values.) */ csio_wr_reg32(hw, mem_win_base | BIR(0) | WINDOW(ilog2(MEMWIN_APERTURE) - 10), PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_BASE_WIN, win)); csio_rd_reg32(hw, PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_BASE_WIN, win)); return 0; } /* * Interrupt handler for the PCIE module. */ static void csio_t4_pcie_intr_handler(struct csio_hw *hw) { static struct intr_info sysbus_intr_info[] = { { RNPP, "RXNP array parity error", -1, 1 }, { RPCP, "RXPC array parity error", -1, 1 }, { RCIP, "RXCIF array parity error", -1, 1 }, { RCCP, "Rx completions control array parity error", -1, 1 }, { RFTP, "RXFT array parity error", -1, 1 }, { 0, NULL, 0, 0 } }; static struct intr_info pcie_port_intr_info[] = { { TPCP, "TXPC array parity error", -1, 1 }, { TNPP, "TXNP array parity error", -1, 1 }, { TFTP, "TXFT array parity error", -1, 1 }, { TCAP, "TXCA array parity error", -1, 1 }, { TCIP, "TXCIF array parity error", -1, 1 }, { RCAP, "RXCA array parity error", -1, 1 }, { OTDD, "outbound request TLP discarded", -1, 1 }, { RDPE, "Rx data parity error", -1, 1 }, { TDUE, "Tx uncorrectable data error", -1, 1 }, { 0, NULL, 0, 0 } }; static struct intr_info pcie_intr_info[] = { { MSIADDRLPERR, "MSI AddrL parity error", -1, 1 }, { MSIADDRHPERR, "MSI AddrH parity error", -1, 1 }, { MSIDATAPERR, "MSI data parity error", -1, 1 }, { MSIXADDRLPERR, "MSI-X AddrL parity error", -1, 1 }, { MSIXADDRHPERR, "MSI-X AddrH parity error", -1, 1 }, { MSIXDATAPERR, "MSI-X data parity error", -1, 1 }, { MSIXDIPERR, "MSI-X DI parity error", -1, 1 }, { PIOCPLPERR, "PCI PIO completion FIFO parity error", -1, 1 }, { PIOREQPERR, "PCI PIO request FIFO parity error", -1, 1 }, { TARTAGPERR, "PCI PCI target tag FIFO parity error", -1, 1 }, { CCNTPERR, "PCI CMD channel count parity error", -1, 1 }, { CREQPERR, "PCI CMD channel request parity error", -1, 1 }, { CRSPPERR, "PCI CMD channel response parity error", -1, 1 }, { DCNTPERR, "PCI DMA channel count parity error", -1, 1 }, { DREQPERR, "PCI DMA channel request parity error", -1, 1 }, { DRSPPERR, "PCI DMA channel response parity error", -1, 1 }, { HCNTPERR, "PCI HMA channel count parity error", -1, 1 }, { HREQPERR, "PCI HMA channel request parity error", -1, 1 }, { HRSPPERR, "PCI HMA channel response parity error", -1, 1 }, { CFGSNPPERR, "PCI config snoop FIFO parity error", -1, 1 }, { FIDPERR, "PCI FID parity error", -1, 1 }, { INTXCLRPERR, "PCI INTx clear parity error", -1, 1 }, { MATAGPERR, "PCI MA tag parity error", -1, 1 }, { PIOTAGPERR, "PCI PIO tag parity error", -1, 1 }, { RXCPLPERR, "PCI Rx completion parity error", -1, 1 }, { RXWRPERR, "PCI Rx write parity error", -1, 1 }, { RPLPERR, "PCI replay buffer parity error", -1, 1 }, { PCIESINT, "PCI core secondary fault", -1, 1 }, { PCIEPINT, "PCI core primary fault", -1, 1 }, { UNXSPLCPLERR, "PCI unexpected split completion error", -1, 0 }, { 0, NULL, 0, 0 } }; int fat; fat = csio_handle_intr_status(hw, PCIE_CORE_UTL_SYSTEM_BUS_AGENT_STATUS, sysbus_intr_info) + csio_handle_intr_status(hw, PCIE_CORE_UTL_PCI_EXPRESS_PORT_STATUS, pcie_port_intr_info) + csio_handle_intr_status(hw, PCIE_INT_CAUSE, pcie_intr_info); if (fat) csio_hw_fatal_err(hw); } /* * csio_t4_flash_cfg_addr - return the address of the flash configuration file * @hw: the HW module * * Return the address within the flash where the Firmware Configuration * File is stored. */ static unsigned int csio_t4_flash_cfg_addr(struct csio_hw *hw) { return FLASH_CFG_OFFSET; } /* * csio_t4_mc_read - read from MC through backdoor accesses * @hw: the hw module * @idx: not used for T4 adapter * @addr: address of first byte requested * @data: 64 bytes of data containing the requested address * @ecc: where to store the corresponding 64-bit ECC word * * Read 64 bytes of data from MC starting at a 64-byte-aligned address * that covers the requested address @addr. If @parity is not %NULL it * is assigned the 64-bit ECC word for the read data. */ static int csio_t4_mc_read(struct csio_hw *hw, int idx, uint32_t addr, __be32 *data, uint64_t *ecc) { int i; if (csio_rd_reg32(hw, MC_BIST_CMD) & START_BIST) return -EBUSY; csio_wr_reg32(hw, addr & ~0x3fU, MC_BIST_CMD_ADDR); csio_wr_reg32(hw, 64, MC_BIST_CMD_LEN); csio_wr_reg32(hw, 0xc, MC_BIST_DATA_PATTERN); csio_wr_reg32(hw, BIST_OPCODE(1) | START_BIST | BIST_CMD_GAP(1), MC_BIST_CMD); i = csio_hw_wait_op_done_val(hw, MC_BIST_CMD, START_BIST, 0, 10, 1, NULL); if (i) return i; #define MC_DATA(i) MC_BIST_STATUS_REG(MC_BIST_STATUS_RDATA, i) for (i = 15; i >= 0; i--) *data++ = htonl(csio_rd_reg32(hw, MC_DATA(i))); if (ecc) *ecc = csio_rd_reg64(hw, MC_DATA(16)); #undef MC_DATA return 0; } /* * csio_t4_edc_read - read from EDC through backdoor accesses * @hw: the hw module * @idx: which EDC to access * @addr: address of first byte requested * @data: 64 bytes of data containing the requested address * @ecc: where to store the corresponding 64-bit ECC word * * Read 64 bytes of data from EDC starting at a 64-byte-aligned address * that covers the requested address @addr. If @parity is not %NULL it * is assigned the 64-bit ECC word for the read data. */ static int csio_t4_edc_read(struct csio_hw *hw, int idx, uint32_t addr, __be32 *data, uint64_t *ecc) { int i; idx *= EDC_STRIDE; if (csio_rd_reg32(hw, EDC_BIST_CMD + idx) & START_BIST) return -EBUSY; csio_wr_reg32(hw, addr & ~0x3fU, EDC_BIST_CMD_ADDR + idx); csio_wr_reg32(hw, 64, EDC_BIST_CMD_LEN + idx); csio_wr_reg32(hw, 0xc, EDC_BIST_DATA_PATTERN + idx); csio_wr_reg32(hw, BIST_OPCODE(1) | BIST_CMD_GAP(1) | START_BIST, EDC_BIST_CMD + idx); i = csio_hw_wait_op_done_val(hw, EDC_BIST_CMD + idx, START_BIST, 0, 10, 1, NULL); if (i) return i; #define EDC_DATA(i) (EDC_BIST_STATUS_REG(EDC_BIST_STATUS_RDATA, i) + idx) for (i = 15; i >= 0; i--) *data++ = htonl(csio_rd_reg32(hw, EDC_DATA(i))); if (ecc) *ecc = csio_rd_reg64(hw, EDC_DATA(16)); #undef EDC_DATA return 0; } /* * csio_t4_memory_rw - read/write EDC 0, EDC 1 or MC via PCIE memory window * @hw: the csio_hw * @win: PCI-E memory Window to use * @mtype: memory type: MEM_EDC0, MEM_EDC1, MEM_MC0 (or MEM_MC) or MEM_MC1 * @addr: address within indicated memory type * @len: amount of memory to transfer * @buf: host memory buffer * @dir: direction of transfer 1 => read, 0 => write * * Reads/writes an [almost] arbitrary memory region in the firmware: the * firmware memory address, length and host buffer must be aligned on * 32-bit boudaries. The memory is transferred as a raw byte sequence * from/to the firmware's memory. If this memory contains data * structures which contain multi-byte integers, it's the callers * responsibility to perform appropriate byte order conversions. */ static int csio_t4_memory_rw(struct csio_hw *hw, u32 win, int mtype, u32 addr, u32 len, uint32_t *buf, int dir) { u32 pos, start, offset, memoffset, bar0; u32 edc_size, mc_size, mem_reg, mem_aperture, mem_base; /* * Argument sanity checks ... */ if ((addr & 0x3) || (len & 0x3)) return -EINVAL; /* Offset into the region of memory which is being accessed * MEM_EDC0 = 0 * MEM_EDC1 = 1 * MEM_MC = 2 -- T4 */ edc_size = EDRAM_SIZE_GET(csio_rd_reg32(hw, MA_EDRAM0_BAR)); if (mtype != MEM_MC1) memoffset = (mtype * (edc_size * 1024 * 1024)); else { mc_size = EXT_MEM_SIZE_GET(csio_rd_reg32(hw, MA_EXT_MEMORY_BAR)); memoffset = (MEM_MC0 * edc_size + mc_size) * 1024 * 1024; } /* Determine the PCIE_MEM_ACCESS_OFFSET */ addr = addr + memoffset; /* * Each PCI-E Memory Window is programmed with a window size -- or * "aperture" -- which controls the granularity of its mapping onto * adapter memory. We need to grab that aperture in order to know * how to use the specified window. The window is also programmed * with the base address of the Memory Window in BAR0's address * space. For T4 this is an absolute PCI-E Bus Address. For T5 * the address is relative to BAR0. */ mem_reg = csio_rd_reg32(hw, PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_BASE_WIN, win)); mem_aperture = 1 << (WINDOW(mem_reg) + 10); mem_base = GET_PCIEOFST(mem_reg) << 10; bar0 = csio_t4_read_pcie_cfg4(hw, PCI_BASE_ADDRESS_0); bar0 &= PCI_BASE_ADDRESS_MEM_MASK; mem_base -= bar0; start = addr & ~(mem_aperture-1); offset = addr - start; csio_dbg(hw, "csio_t4_memory_rw: mem_reg: 0x%x, mem_aperture: 0x%x\n", mem_reg, mem_aperture); csio_dbg(hw, "csio_t4_memory_rw: mem_base: 0x%x, mem_offset: 0x%x\n", mem_base, memoffset); csio_dbg(hw, "csio_t4_memory_rw: bar0: 0x%x, start:0x%x, offset:0x%x\n", bar0, start, offset); csio_dbg(hw, "csio_t4_memory_rw: mtype: %d, addr: 0x%x, len: %d\n", mtype, addr, len); for (pos = start; len > 0; pos += mem_aperture, offset = 0) { /* * Move PCI-E Memory Window to our current transfer * position. Read it back to ensure that changes propagate * before we attempt to use the new value. */ csio_wr_reg32(hw, pos, PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_OFFSET, win)); csio_rd_reg32(hw, PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_OFFSET, win)); while (offset < mem_aperture && len > 0) { if (dir) *buf++ = csio_rd_reg32(hw, mem_base + offset); else csio_wr_reg32(hw, *buf++, mem_base + offset); offset += sizeof(__be32); len -= sizeof(__be32); } } return 0; } /* * csio_t4_dfs_create_ext_mem - setup debugfs for MC to read the values * @hw: the csio_hw * * This function creates files in the debugfs with external memory region MC. */ static void csio_t4_dfs_create_ext_mem(struct csio_hw *hw) { u32 size; int i = csio_rd_reg32(hw, MA_TARGET_MEM_ENABLE); if (i & EXT_MEM_ENABLE) { size = csio_rd_reg32(hw, MA_EXT_MEMORY_BAR); csio_add_debugfs_mem(hw, "mc", MEM_MC, EXT_MEM_SIZE_GET(size)); } } /* T4 adapter specific function */ struct csio_hw_chip_ops t4_ops = { .chip_set_mem_win = csio_t4_set_mem_win, .chip_pcie_intr_handler = csio_t4_pcie_intr_handler, .chip_flash_cfg_addr = csio_t4_flash_cfg_addr, .chip_mc_read = csio_t4_mc_read, .chip_edc_read = csio_t4_edc_read, .chip_memory_rw = csio_t4_memory_rw, .chip_dfs_create_ext_mem = csio_t4_dfs_create_ext_mem, };