/* * Linux MegaRAID driver for SAS based RAID controllers * * Copyright (c) 2009-2011 LSI Corporation. * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version 2 * of the License, or (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA * * FILE: megaraid_sas_fp.c * * Authors: LSI Corporation * Sumant Patro * Varad Talamacki * Manoj Jose * * Send feedback to: * * Mail to: LSI Corporation, 1621 Barber Lane, Milpitas, CA 95035 * ATTN: Linuxraid */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "megaraid_sas_fusion.h" #include "megaraid_sas.h" #include #define ABS_DIFF(a, b) (((a) > (b)) ? ((a) - (b)) : ((b) - (a))) #define MR_LD_STATE_OPTIMAL 3 #define FALSE 0 #define TRUE 1 /* Prototypes */ void mr_update_load_balance_params(struct MR_FW_RAID_MAP_ALL *map, struct LD_LOAD_BALANCE_INFO *lbInfo); u32 mega_mod64(u64 dividend, u32 divisor) { u64 d; u32 remainder; if (!divisor) printk(KERN_ERR "megasas : DIVISOR is zero, in div fn\n"); d = dividend; remainder = do_div(d, divisor); return remainder; } /** * @param dividend : Dividend * @param divisor : Divisor * * @return quotient **/ u64 mega_div64_32(uint64_t dividend, uint32_t divisor) { u32 remainder; u64 d; if (!divisor) printk(KERN_ERR "megasas : DIVISOR is zero in mod fn\n"); d = dividend; remainder = do_div(d, divisor); return d; } struct MR_LD_RAID *MR_LdRaidGet(u32 ld, struct MR_FW_RAID_MAP_ALL *map) { return &map->raidMap.ldSpanMap[ld].ldRaid; } static struct MR_SPAN_BLOCK_INFO *MR_LdSpanInfoGet(u32 ld, struct MR_FW_RAID_MAP_ALL *map) { return &map->raidMap.ldSpanMap[ld].spanBlock[0]; } static u8 MR_LdDataArmGet(u32 ld, u32 armIdx, struct MR_FW_RAID_MAP_ALL *map) { return map->raidMap.ldSpanMap[ld].dataArmMap[armIdx]; } static u16 MR_ArPdGet(u32 ar, u32 arm, struct MR_FW_RAID_MAP_ALL *map) { return map->raidMap.arMapInfo[ar].pd[arm]; } static u16 MR_LdSpanArrayGet(u32 ld, u32 span, struct MR_FW_RAID_MAP_ALL *map) { return map->raidMap.ldSpanMap[ld].spanBlock[span].span.arrayRef; } static u16 MR_PdDevHandleGet(u32 pd, struct MR_FW_RAID_MAP_ALL *map) { return map->raidMap.devHndlInfo[pd].curDevHdl; } u16 MR_GetLDTgtId(u32 ld, struct MR_FW_RAID_MAP_ALL *map) { return map->raidMap.ldSpanMap[ld].ldRaid.targetId; } u16 MR_TargetIdToLdGet(u32 ldTgtId, struct MR_FW_RAID_MAP_ALL *map) { return map->raidMap.ldTgtIdToLd[ldTgtId]; } static struct MR_LD_SPAN *MR_LdSpanPtrGet(u32 ld, u32 span, struct MR_FW_RAID_MAP_ALL *map) { return &map->raidMap.ldSpanMap[ld].spanBlock[span].span; } /* * This function will validate Map info data provided by FW */ u8 MR_ValidateMapInfo(struct MR_FW_RAID_MAP_ALL *map, struct LD_LOAD_BALANCE_INFO *lbInfo) { struct MR_FW_RAID_MAP *pFwRaidMap = &map->raidMap; if (pFwRaidMap->totalSize != (sizeof(struct MR_FW_RAID_MAP) -sizeof(struct MR_LD_SPAN_MAP) + (sizeof(struct MR_LD_SPAN_MAP) *pFwRaidMap->ldCount))) { printk(KERN_ERR "megasas: map info structure size 0x%x is not matching with ld count\n", (unsigned int)((sizeof(struct MR_FW_RAID_MAP) - sizeof(struct MR_LD_SPAN_MAP)) + (sizeof(struct MR_LD_SPAN_MAP) * pFwRaidMap->ldCount))); printk(KERN_ERR "megasas: span map %x, pFwRaidMap->totalSize " ": %x\n", (unsigned int)sizeof(struct MR_LD_SPAN_MAP), pFwRaidMap->totalSize); return 0; } mr_update_load_balance_params(map, lbInfo); return 1; } u32 MR_GetSpanBlock(u32 ld, u64 row, u64 *span_blk, struct MR_FW_RAID_MAP_ALL *map, int *div_error) { struct MR_SPAN_BLOCK_INFO *pSpanBlock = MR_LdSpanInfoGet(ld, map); struct MR_QUAD_ELEMENT *quad; struct MR_LD_RAID *raid = MR_LdRaidGet(ld, map); u32 span, j; for (span = 0; span < raid->spanDepth; span++, pSpanBlock++) { for (j = 0; j < pSpanBlock->block_span_info.noElements; j++) { quad = &pSpanBlock->block_span_info.quad[j]; if (quad->diff == 0) { *div_error = 1; return span; } if (quad->logStart <= row && row <= quad->logEnd && (mega_mod64(row-quad->logStart, quad->diff)) == 0) { if (span_blk != NULL) { u64 blk, debugBlk; blk = mega_div64_32( (row-quad->logStart), quad->diff); debugBlk = blk; blk = (blk + quad->offsetInSpan) << raid->stripeShift; *span_blk = blk; } return span; } } } return span; } /* ****************************************************************************** * * This routine calculates the arm, span and block for the specified stripe and * reference in stripe. * * Inputs : * * ld - Logical drive number * stripRow - Stripe number * stripRef - Reference in stripe * * Outputs : * * span - Span number * block - Absolute Block number in the physical disk */ u8 MR_GetPhyParams(struct megasas_instance *instance, u32 ld, u64 stripRow, u16 stripRef, u64 *pdBlock, u16 *pDevHandle, struct RAID_CONTEXT *pRAID_Context, struct MR_FW_RAID_MAP_ALL *map) { struct MR_LD_RAID *raid = MR_LdRaidGet(ld, map); u32 pd, arRef; u8 physArm, span; u64 row; u8 retval = TRUE; int error_code = 0; row = mega_div64_32(stripRow, raid->rowDataSize); if (raid->level == 6) { /* logical arm within row */ u32 logArm = mega_mod64(stripRow, raid->rowDataSize); u32 rowMod, armQ, arm; if (raid->rowSize == 0) return FALSE; /* get logical row mod */ rowMod = mega_mod64(row, raid->rowSize); armQ = raid->rowSize-1-rowMod; /* index of Q drive */ arm = armQ+1+logArm; /* data always logically follows Q */ if (arm >= raid->rowSize) /* handle wrap condition */ arm -= raid->rowSize; physArm = (u8)arm; } else { if (raid->modFactor == 0) return FALSE; physArm = MR_LdDataArmGet(ld, mega_mod64(stripRow, raid->modFactor), map); } if (raid->spanDepth == 1) { span = 0; *pdBlock = row << raid->stripeShift; } else { span = (u8)MR_GetSpanBlock(ld, row, pdBlock, map, &error_code); if (error_code == 1) return FALSE; } /* Get the array on which this span is present */ arRef = MR_LdSpanArrayGet(ld, span, map); pd = MR_ArPdGet(arRef, physArm, map); /* Get the pd */ if (pd != MR_PD_INVALID) /* Get dev handle from Pd. */ *pDevHandle = MR_PdDevHandleGet(pd, map); else { *pDevHandle = MR_PD_INVALID; /* set dev handle as invalid. */ if ((raid->level >= 5) && (instance->pdev->device != PCI_DEVICE_ID_LSI_INVADER)) pRAID_Context->regLockFlags = REGION_TYPE_EXCLUSIVE; else if (raid->level == 1) { /* Get alternate Pd. */ pd = MR_ArPdGet(arRef, physArm + 1, map); if (pd != MR_PD_INVALID) /* Get dev handle from Pd */ *pDevHandle = MR_PdDevHandleGet(pd, map); } } *pdBlock += stripRef + MR_LdSpanPtrGet(ld, span, map)->startBlk; pRAID_Context->spanArm = (span << RAID_CTX_SPANARM_SPAN_SHIFT) | physArm; return retval; } /* ****************************************************************************** * * MR_BuildRaidContext function * * This function will initiate command processing. The start/end row and strip * information is calculated then the lock is acquired. * This function will return 0 if region lock was acquired OR return num strips */ u8 MR_BuildRaidContext(struct megasas_instance *instance, struct IO_REQUEST_INFO *io_info, struct RAID_CONTEXT *pRAID_Context, struct MR_FW_RAID_MAP_ALL *map) { struct MR_LD_RAID *raid; u32 ld, stripSize, stripe_mask; u64 endLba, endStrip, endRow, start_row, start_strip; u64 regStart; u32 regSize; u8 num_strips, numRows; u16 ref_in_start_stripe, ref_in_end_stripe; u64 ldStartBlock; u32 numBlocks, ldTgtId; u8 isRead; u8 retval = 0; ldStartBlock = io_info->ldStartBlock; numBlocks = io_info->numBlocks; ldTgtId = io_info->ldTgtId; isRead = io_info->isRead; ld = MR_TargetIdToLdGet(ldTgtId, map); raid = MR_LdRaidGet(ld, map); stripSize = 1 << raid->stripeShift; stripe_mask = stripSize-1; /* * calculate starting row and stripe, and number of strips and rows */ start_strip = ldStartBlock >> raid->stripeShift; ref_in_start_stripe = (u16)(ldStartBlock & stripe_mask); endLba = ldStartBlock + numBlocks - 1; ref_in_end_stripe = (u16)(endLba & stripe_mask); endStrip = endLba >> raid->stripeShift; num_strips = (u8)(endStrip - start_strip + 1); /* End strip */ if (raid->rowDataSize == 0) return FALSE; start_row = mega_div64_32(start_strip, raid->rowDataSize); endRow = mega_div64_32(endStrip, raid->rowDataSize); numRows = (u8)(endRow - start_row + 1); /* * calculate region info. */ /* assume region is at the start of the first row */ regStart = start_row << raid->stripeShift; /* assume this IO needs the full row - we'll adjust if not true */ regSize = stripSize; /* If IO spans more than 1 strip, fp is not possible FP is not possible for writes on non-0 raid levels FP is not possible if LD is not capable */ if (num_strips > 1 || (!isRead && raid->level != 0) || !raid->capability.fpCapable) { io_info->fpOkForIo = FALSE; } else { io_info->fpOkForIo = TRUE; } if (numRows == 1) { /* single-strip IOs can always lock only the data needed */ if (num_strips == 1) { regStart += ref_in_start_stripe; regSize = numBlocks; } /* multi-strip IOs always need to full stripe locked */ } else { if (start_strip == (start_row + 1) * raid->rowDataSize - 1) { /* If the start strip is the last in the start row */ regStart += ref_in_start_stripe; regSize = stripSize - ref_in_start_stripe; /* initialize count to sectors from startref to end of strip */ } if (numRows > 2) /* Add complete rows in the middle of the transfer */ regSize += (numRows-2) << raid->stripeShift; /* if IO ends within first strip of last row */ if (endStrip == endRow*raid->rowDataSize) regSize += ref_in_end_stripe+1; else regSize += stripSize; } pRAID_Context->timeoutValue = map->raidMap.fpPdIoTimeoutSec; if (instance->pdev->device == PCI_DEVICE_ID_LSI_INVADER) pRAID_Context->regLockFlags = (isRead) ? raid->regTypeReqOnRead : raid->regTypeReqOnWrite; else pRAID_Context->regLockFlags = (isRead) ? REGION_TYPE_SHARED_READ : raid->regTypeReqOnWrite; pRAID_Context->VirtualDiskTgtId = raid->targetId; pRAID_Context->regLockRowLBA = regStart; pRAID_Context->regLockLength = regSize; pRAID_Context->configSeqNum = raid->seqNum; /*Get Phy Params only if FP capable, or else leave it to MR firmware to do the calculation.*/ if (io_info->fpOkForIo) { retval = MR_GetPhyParams(instance, ld, start_strip, ref_in_start_stripe, &io_info->pdBlock, &io_info->devHandle, pRAID_Context, map); /* If IO on an invalid Pd, then FP i snot possible */ if (io_info->devHandle == MR_PD_INVALID) io_info->fpOkForIo = FALSE; return retval; } else if (isRead) { uint stripIdx; for (stripIdx = 0; stripIdx < num_strips; stripIdx++) { if (!MR_GetPhyParams(instance, ld, start_strip + stripIdx, ref_in_start_stripe, &io_info->pdBlock, &io_info->devHandle, pRAID_Context, map)) return TRUE; } } return TRUE; } void mr_update_load_balance_params(struct MR_FW_RAID_MAP_ALL *map, struct LD_LOAD_BALANCE_INFO *lbInfo) { int ldCount; u16 ld; struct MR_LD_RAID *raid; for (ldCount = 0; ldCount < MAX_LOGICAL_DRIVES; ldCount++) { ld = MR_TargetIdToLdGet(ldCount, map); if (ld >= MAX_LOGICAL_DRIVES) { lbInfo[ldCount].loadBalanceFlag = 0; continue; } raid = MR_LdRaidGet(ld, map); /* Two drive Optimal RAID 1 */ if ((raid->level == 1) && (raid->rowSize == 2) && (raid->spanDepth == 1) && raid->ldState == MR_LD_STATE_OPTIMAL) { u32 pd, arRef; lbInfo[ldCount].loadBalanceFlag = 1; /* Get the array on which this span is present */ arRef = MR_LdSpanArrayGet(ld, 0, map); /* Get the Pd */ pd = MR_ArPdGet(arRef, 0, map); /* Get dev handle from Pd */ lbInfo[ldCount].raid1DevHandle[0] = MR_PdDevHandleGet(pd, map); /* Get the Pd */ pd = MR_ArPdGet(arRef, 1, map); /* Get the dev handle from Pd */ lbInfo[ldCount].raid1DevHandle[1] = MR_PdDevHandleGet(pd, map); } else lbInfo[ldCount].loadBalanceFlag = 0; } } u8 megasas_get_best_arm(struct LD_LOAD_BALANCE_INFO *lbInfo, u8 arm, u64 block, u32 count) { u16 pend0, pend1; u64 diff0, diff1; u8 bestArm; /* get the pending cmds for the data and mirror arms */ pend0 = atomic_read(&lbInfo->scsi_pending_cmds[0]); pend1 = atomic_read(&lbInfo->scsi_pending_cmds[1]); /* Determine the disk whose head is nearer to the req. block */ diff0 = ABS_DIFF(block, lbInfo->last_accessed_block[0]); diff1 = ABS_DIFF(block, lbInfo->last_accessed_block[1]); bestArm = (diff0 <= diff1 ? 0 : 1); if ((bestArm == arm && pend0 > pend1 + 16) || (bestArm != arm && pend1 > pend0 + 16)) bestArm ^= 1; /* Update the last accessed block on the correct pd */ lbInfo->last_accessed_block[bestArm] = block + count - 1; return bestArm; } u16 get_updated_dev_handle(struct LD_LOAD_BALANCE_INFO *lbInfo, struct IO_REQUEST_INFO *io_info) { u8 arm, old_arm; u16 devHandle; old_arm = lbInfo->raid1DevHandle[0] == io_info->devHandle ? 0 : 1; /* get best new arm */ arm = megasas_get_best_arm(lbInfo, old_arm, io_info->ldStartBlock, io_info->numBlocks); devHandle = lbInfo->raid1DevHandle[arm]; atomic_inc(&lbInfo->scsi_pending_cmds[arm]); return devHandle; }