/* * PMC-Sierra PM8001/8081/8088/8089 SAS/SATA based host adapters driver * * Copyright (c) 2008-2009 USI Co., Ltd. * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions, and the following disclaimer, * without modification. * 2. Redistributions in binary form must reproduce at minimum a disclaimer * substantially similar to the "NO WARRANTY" disclaimer below * ("Disclaimer") and any redistribution must be conditioned upon * including a substantially similar Disclaimer requirement for further * binary redistribution. * 3. Neither the names of the above-listed copyright holders nor the names * of any contributors may be used to endorse or promote products derived * from this software without specific prior written permission. * * Alternatively, this software may be distributed under the terms of the * GNU General Public License ("GPL") version 2 as published by the Free * Software Foundation. * * NO WARRANTY * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT * HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGES. * */ #include #include "pm8001_sas.h" /** * pm8001_find_tag - from sas task to find out tag that belongs to this task * @task: the task sent to the LLDD * @tag: the found tag associated with the task */ static int pm8001_find_tag(struct sas_task *task, u32 *tag) { if (task->lldd_task) { struct pm8001_ccb_info *ccb; ccb = task->lldd_task; *tag = ccb->ccb_tag; return 1; } return 0; } /** * pm8001_tag_clear - clear the tags bitmap * @pm8001_ha: our hba struct * @tag: the found tag associated with the task */ static void pm8001_tag_clear(struct pm8001_hba_info *pm8001_ha, u32 tag) { void *bitmap = pm8001_ha->tags; clear_bit(tag, bitmap); } void pm8001_tag_free(struct pm8001_hba_info *pm8001_ha, u32 tag) { pm8001_tag_clear(pm8001_ha, tag); } static void pm8001_tag_set(struct pm8001_hba_info *pm8001_ha, u32 tag) { void *bitmap = pm8001_ha->tags; set_bit(tag, bitmap); } /** * pm8001_tag_alloc - allocate a empty tag for task used. * @pm8001_ha: our hba struct * @tag_out: the found empty tag . */ inline int pm8001_tag_alloc(struct pm8001_hba_info *pm8001_ha, u32 *tag_out) { unsigned int index, tag; void *bitmap = pm8001_ha->tags; index = find_first_zero_bit(bitmap, pm8001_ha->tags_num); tag = index; if (tag >= pm8001_ha->tags_num) return -SAS_QUEUE_FULL; pm8001_tag_set(pm8001_ha, tag); *tag_out = tag; return 0; } void pm8001_tag_init(struct pm8001_hba_info *pm8001_ha) { int i; for (i = 0; i < pm8001_ha->tags_num; ++i) pm8001_tag_clear(pm8001_ha, i); } /** * pm8001_mem_alloc - allocate memory for pm8001. * @pdev: pci device. * @virt_addr: the allocated virtual address * @pphys_addr_hi: the physical address high byte address. * @pphys_addr_lo: the physical address low byte address. * @mem_size: memory size. */ int pm8001_mem_alloc(struct pci_dev *pdev, void **virt_addr, dma_addr_t *pphys_addr, u32 *pphys_addr_hi, u32 *pphys_addr_lo, u32 mem_size, u32 align) { caddr_t mem_virt_alloc; dma_addr_t mem_dma_handle; u64 phys_align; u64 align_offset = 0; if (align) align_offset = (dma_addr_t)align - 1; mem_virt_alloc = pci_alloc_consistent(pdev, mem_size + align, &mem_dma_handle); if (!mem_virt_alloc) { pm8001_printk("memory allocation error\n"); return -1; } memset((void *)mem_virt_alloc, 0, mem_size+align); *pphys_addr = mem_dma_handle; phys_align = (*pphys_addr + align_offset) & ~align_offset; *virt_addr = (void *)mem_virt_alloc + phys_align - *pphys_addr; *pphys_addr_hi = upper_32_bits(phys_align); *pphys_addr_lo = lower_32_bits(phys_align); return 0; } /** * pm8001_find_ha_by_dev - from domain device which come from sas layer to * find out our hba struct. * @dev: the domain device which from sas layer. */ static struct pm8001_hba_info *pm8001_find_ha_by_dev(struct domain_device *dev) { struct sas_ha_struct *sha = dev->port->ha; struct pm8001_hba_info *pm8001_ha = sha->lldd_ha; return pm8001_ha; } /** * pm8001_phy_control - this function should be registered to * sas_domain_function_template to provide libsas used, note: this is just * control the HBA phy rather than other expander phy if you want control * other phy, you should use SMP command. * @sas_phy: which phy in HBA phys. * @func: the operation. * @funcdata: always NULL. */ int pm8001_phy_control(struct asd_sas_phy *sas_phy, enum phy_func func, void *funcdata) { int rc = 0, phy_id = sas_phy->id; struct pm8001_hba_info *pm8001_ha = NULL; struct sas_phy_linkrates *rates; DECLARE_COMPLETION_ONSTACK(completion); unsigned long flags; pm8001_ha = sas_phy->ha->lldd_ha; pm8001_ha->phy[phy_id].enable_completion = &completion; switch (func) { case PHY_FUNC_SET_LINK_RATE: rates = funcdata; if (rates->minimum_linkrate) { pm8001_ha->phy[phy_id].minimum_linkrate = rates->minimum_linkrate; } if (rates->maximum_linkrate) { pm8001_ha->phy[phy_id].maximum_linkrate = rates->maximum_linkrate; } if (pm8001_ha->phy[phy_id].phy_state == 0) { PM8001_CHIP_DISP->phy_start_req(pm8001_ha, phy_id); wait_for_completion(&completion); } PM8001_CHIP_DISP->phy_ctl_req(pm8001_ha, phy_id, PHY_LINK_RESET); break; case PHY_FUNC_HARD_RESET: if (pm8001_ha->phy[phy_id].phy_state == 0) { PM8001_CHIP_DISP->phy_start_req(pm8001_ha, phy_id); wait_for_completion(&completion); } PM8001_CHIP_DISP->phy_ctl_req(pm8001_ha, phy_id, PHY_HARD_RESET); break; case PHY_FUNC_LINK_RESET: if (pm8001_ha->phy[phy_id].phy_state == 0) { PM8001_CHIP_DISP->phy_start_req(pm8001_ha, phy_id); wait_for_completion(&completion); } PM8001_CHIP_DISP->phy_ctl_req(pm8001_ha, phy_id, PHY_LINK_RESET); break; case PHY_FUNC_RELEASE_SPINUP_HOLD: PM8001_CHIP_DISP->phy_ctl_req(pm8001_ha, phy_id, PHY_LINK_RESET); break; case PHY_FUNC_DISABLE: PM8001_CHIP_DISP->phy_stop_req(pm8001_ha, phy_id); break; case PHY_FUNC_GET_EVENTS: spin_lock_irqsave(&pm8001_ha->lock, flags); if (pm8001_ha->chip_id == chip_8001) { if (-1 == pm8001_bar4_shift(pm8001_ha, (phy_id < 4) ? 0x30000 : 0x40000)) { spin_unlock_irqrestore(&pm8001_ha->lock, flags); return -EINVAL; } } { struct sas_phy *phy = sas_phy->phy; uint32_t *qp = (uint32_t *)(((char *) pm8001_ha->io_mem[2].memvirtaddr) + 0x1034 + (0x4000 * (phy_id & 3))); phy->invalid_dword_count = qp[0]; phy->running_disparity_error_count = qp[1]; phy->loss_of_dword_sync_count = qp[3]; phy->phy_reset_problem_count = qp[4]; } if (pm8001_ha->chip_id == chip_8001) pm8001_bar4_shift(pm8001_ha, 0); spin_unlock_irqrestore(&pm8001_ha->lock, flags); return 0; default: rc = -EOPNOTSUPP; } msleep(300); return rc; } /** * pm8001_scan_start - we should enable all HBA phys by sending the phy_start * command to HBA. * @shost: the scsi host data. */ void pm8001_scan_start(struct Scsi_Host *shost) { int i; struct pm8001_hba_info *pm8001_ha; struct sas_ha_struct *sha = SHOST_TO_SAS_HA(shost); pm8001_ha = sha->lldd_ha; /* SAS_RE_INITIALIZATION not available in SPCv/ve */ if (pm8001_ha->chip_id == chip_8001) PM8001_CHIP_DISP->sas_re_init_req(pm8001_ha); for (i = 0; i < pm8001_ha->chip->n_phy; ++i) PM8001_CHIP_DISP->phy_start_req(pm8001_ha, i); } int pm8001_scan_finished(struct Scsi_Host *shost, unsigned long time) { struct sas_ha_struct *ha = SHOST_TO_SAS_HA(shost); /* give the phy enabling interrupt event time to come in (1s * is empirically about all it takes) */ if (time < HZ) return 0; /* Wait for discovery to finish */ sas_drain_work(ha); return 1; } /** * pm8001_task_prep_smp - the dispatcher function, prepare data for smp task * @pm8001_ha: our hba card information * @ccb: the ccb which attached to smp task */ static int pm8001_task_prep_smp(struct pm8001_hba_info *pm8001_ha, struct pm8001_ccb_info *ccb) { return PM8001_CHIP_DISP->smp_req(pm8001_ha, ccb); } u32 pm8001_get_ncq_tag(struct sas_task *task, u32 *tag) { struct ata_queued_cmd *qc = task->uldd_task; if (qc) { if (qc->tf.command == ATA_CMD_FPDMA_WRITE || qc->tf.command == ATA_CMD_FPDMA_READ) { *tag = qc->tag; return 1; } } return 0; } /** * pm8001_task_prep_ata - the dispatcher function, prepare data for sata task * @pm8001_ha: our hba card information * @ccb: the ccb which attached to sata task */ static int pm8001_task_prep_ata(struct pm8001_hba_info *pm8001_ha, struct pm8001_ccb_info *ccb) { return PM8001_CHIP_DISP->sata_req(pm8001_ha, ccb); } /** * pm8001_task_prep_ssp_tm - the dispatcher function, prepare task management data * @pm8001_ha: our hba card information * @ccb: the ccb which attached to TM * @tmf: the task management IU */ static int pm8001_task_prep_ssp_tm(struct pm8001_hba_info *pm8001_ha, struct pm8001_ccb_info *ccb, struct pm8001_tmf_task *tmf) { return PM8001_CHIP_DISP->ssp_tm_req(pm8001_ha, ccb, tmf); } /** * pm8001_task_prep_ssp - the dispatcher function,prepare ssp data for ssp task * @pm8001_ha: our hba card information * @ccb: the ccb which attached to ssp task */ static int pm8001_task_prep_ssp(struct pm8001_hba_info *pm8001_ha, struct pm8001_ccb_info *ccb) { return PM8001_CHIP_DISP->ssp_io_req(pm8001_ha, ccb); } /* Find the local port id that's attached to this device */ static int sas_find_local_port_id(struct domain_device *dev) { struct domain_device *pdev = dev->parent; /* Directly attached device */ if (!pdev) return dev->port->id; while (pdev) { struct domain_device *pdev_p = pdev->parent; if (!pdev_p) return pdev->port->id; pdev = pdev->parent; } return 0; } /** * pm8001_task_exec - queue the task(ssp, smp && ata) to the hardware. * @task: the task to be execute. * @num: if can_queue great than 1, the task can be queued up. for SMP task, * we always execute one one time. * @gfp_flags: gfp_flags. * @is_tmf: if it is task management task. * @tmf: the task management IU */ #define DEV_IS_GONE(pm8001_dev) \ ((!pm8001_dev || (pm8001_dev->dev_type == SAS_PHY_UNUSED))) static int pm8001_task_exec(struct sas_task *task, const int num, gfp_t gfp_flags, int is_tmf, struct pm8001_tmf_task *tmf) { struct domain_device *dev = task->dev; struct pm8001_hba_info *pm8001_ha; struct pm8001_device *pm8001_dev; struct pm8001_port *port = NULL; struct sas_task *t = task; struct pm8001_ccb_info *ccb; u32 tag = 0xdeadbeef, rc, n_elem = 0; u32 n = num; unsigned long flags = 0; if (!dev->port) { struct task_status_struct *tsm = &t->task_status; tsm->resp = SAS_TASK_UNDELIVERED; tsm->stat = SAS_PHY_DOWN; if (dev->dev_type != SAS_SATA_DEV) t->task_done(t); return 0; } pm8001_ha = pm8001_find_ha_by_dev(task->dev); PM8001_IO_DBG(pm8001_ha, pm8001_printk("pm8001_task_exec device \n ")); spin_lock_irqsave(&pm8001_ha->lock, flags); do { dev = t->dev; pm8001_dev = dev->lldd_dev; port = &pm8001_ha->port[sas_find_local_port_id(dev)]; if (DEV_IS_GONE(pm8001_dev) || !port->port_attached) { if (sas_protocol_ata(t->task_proto)) { struct task_status_struct *ts = &t->task_status; ts->resp = SAS_TASK_UNDELIVERED; ts->stat = SAS_PHY_DOWN; spin_unlock_irqrestore(&pm8001_ha->lock, flags); t->task_done(t); spin_lock_irqsave(&pm8001_ha->lock, flags); if (n > 1) t = list_entry(t->list.next, struct sas_task, list); continue; } else { struct task_status_struct *ts = &t->task_status; ts->resp = SAS_TASK_UNDELIVERED; ts->stat = SAS_PHY_DOWN; t->task_done(t); if (n > 1) t = list_entry(t->list.next, struct sas_task, list); continue; } } rc = pm8001_tag_alloc(pm8001_ha, &tag); if (rc) goto err_out; ccb = &pm8001_ha->ccb_info[tag]; if (!sas_protocol_ata(t->task_proto)) { if (t->num_scatter) { n_elem = dma_map_sg(pm8001_ha->dev, t->scatter, t->num_scatter, t->data_dir); if (!n_elem) { rc = -ENOMEM; goto err_out_tag; } } } else { n_elem = t->num_scatter; } t->lldd_task = ccb; ccb->n_elem = n_elem; ccb->ccb_tag = tag; ccb->task = t; switch (t->task_proto) { case SAS_PROTOCOL_SMP: rc = pm8001_task_prep_smp(pm8001_ha, ccb); break; case SAS_PROTOCOL_SSP: if (is_tmf) rc = pm8001_task_prep_ssp_tm(pm8001_ha, ccb, tmf); else rc = pm8001_task_prep_ssp(pm8001_ha, ccb); break; case SAS_PROTOCOL_SATA: case SAS_PROTOCOL_STP: case SAS_PROTOCOL_SATA | SAS_PROTOCOL_STP: rc = pm8001_task_prep_ata(pm8001_ha, ccb); break; default: dev_printk(KERN_ERR, pm8001_ha->dev, "unknown sas_task proto: 0x%x\n", t->task_proto); rc = -EINVAL; break; } if (rc) { PM8001_IO_DBG(pm8001_ha, pm8001_printk("rc is %x\n", rc)); goto err_out_tag; } /* TODO: select normal or high priority */ spin_lock(&t->task_state_lock); t->task_state_flags |= SAS_TASK_AT_INITIATOR; spin_unlock(&t->task_state_lock); pm8001_dev->running_req++; if (n > 1) t = list_entry(t->list.next, struct sas_task, list); } while (--n); rc = 0; goto out_done; err_out_tag: pm8001_tag_free(pm8001_ha, tag); err_out: dev_printk(KERN_ERR, pm8001_ha->dev, "pm8001 exec failed[%d]!\n", rc); if (!sas_protocol_ata(t->task_proto)) if (n_elem) dma_unmap_sg(pm8001_ha->dev, t->scatter, n_elem, t->data_dir); out_done: spin_unlock_irqrestore(&pm8001_ha->lock, flags); return rc; } /** * pm8001_queue_command - register for upper layer used, all IO commands sent * to HBA are from this interface. * @task: the task to be execute. * @num: if can_queue great than 1, the task can be queued up. for SMP task, * we always execute one one time * @gfp_flags: gfp_flags */ int pm8001_queue_command(struct sas_task *task, const int num, gfp_t gfp_flags) { return pm8001_task_exec(task, num, gfp_flags, 0, NULL); } void pm8001_ccb_free(struct pm8001_hba_info *pm8001_ha, u32 ccb_idx) { pm8001_tag_clear(pm8001_ha, ccb_idx); } /** * pm8001_ccb_task_free - free the sg for ssp and smp command, free the ccb. * @pm8001_ha: our hba card information * @ccb: the ccb which attached to ssp task * @task: the task to be free. * @ccb_idx: ccb index. */ void pm8001_ccb_task_free(struct pm8001_hba_info *pm8001_ha, struct sas_task *task, struct pm8001_ccb_info *ccb, u32 ccb_idx) { if (!ccb->task) return; if (!sas_protocol_ata(task->task_proto)) if (ccb->n_elem) dma_unmap_sg(pm8001_ha->dev, task->scatter, task->num_scatter, task->data_dir); switch (task->task_proto) { case SAS_PROTOCOL_SMP: dma_unmap_sg(pm8001_ha->dev, &task->smp_task.smp_resp, 1, PCI_DMA_FROMDEVICE); dma_unmap_sg(pm8001_ha->dev, &task->smp_task.smp_req, 1, PCI_DMA_TODEVICE); break; case SAS_PROTOCOL_SATA: case SAS_PROTOCOL_STP: case SAS_PROTOCOL_SSP: default: /* do nothing */ break; } task->lldd_task = NULL; ccb->task = NULL; ccb->ccb_tag = 0xFFFFFFFF; ccb->open_retry = 0; pm8001_ccb_free(pm8001_ha, ccb_idx); } /** * pm8001_alloc_dev - find a empty pm8001_device * @pm8001_ha: our hba card information */ struct pm8001_device *pm8001_alloc_dev(struct pm8001_hba_info *pm8001_ha) { u32 dev; for (dev = 0; dev < PM8001_MAX_DEVICES; dev++) { if (pm8001_ha->devices[dev].dev_type == SAS_PHY_UNUSED) { pm8001_ha->devices[dev].id = dev; return &pm8001_ha->devices[dev]; } } if (dev == PM8001_MAX_DEVICES) { PM8001_FAIL_DBG(pm8001_ha, pm8001_printk("max support %d devices, ignore ..\n", PM8001_MAX_DEVICES)); } return NULL; } /** * pm8001_find_dev - find a matching pm8001_device * @pm8001_ha: our hba card information */ struct pm8001_device *pm8001_find_dev(struct pm8001_hba_info *pm8001_ha, u32 device_id) { u32 dev; for (dev = 0; dev < PM8001_MAX_DEVICES; dev++) { if (pm8001_ha->devices[dev].device_id == device_id) return &pm8001_ha->devices[dev]; } if (dev == PM8001_MAX_DEVICES) { PM8001_FAIL_DBG(pm8001_ha, pm8001_printk("NO MATCHING " "DEVICE FOUND !!!\n")); } return NULL; } static void pm8001_free_dev(struct pm8001_device *pm8001_dev) { u32 id = pm8001_dev->id; memset(pm8001_dev, 0, sizeof(*pm8001_dev)); pm8001_dev->id = id; pm8001_dev->dev_type = SAS_PHY_UNUSED; pm8001_dev->device_id = PM8001_MAX_DEVICES; pm8001_dev->sas_device = NULL; } /** * pm8001_dev_found_notify - libsas notify a device is found. * @dev: the device structure which sas layer used. * * when libsas find a sas domain device, it should tell the LLDD that * device is found, and then LLDD register this device to HBA firmware * by the command "OPC_INB_REG_DEV", after that the HBA will assign a * device ID(according to device's sas address) and returned it to LLDD. From * now on, we communicate with HBA FW with the device ID which HBA assigned * rather than sas address. it is the necessary step for our HBA but it is * the optional for other HBA driver. */ static int pm8001_dev_found_notify(struct domain_device *dev) { unsigned long flags = 0; int res = 0; struct pm8001_hba_info *pm8001_ha = NULL; struct domain_device *parent_dev = dev->parent; struct pm8001_device *pm8001_device; DECLARE_COMPLETION_ONSTACK(completion); u32 flag = 0; pm8001_ha = pm8001_find_ha_by_dev(dev); spin_lock_irqsave(&pm8001_ha->lock, flags); pm8001_device = pm8001_alloc_dev(pm8001_ha); if (!pm8001_device) { res = -1; goto found_out; } pm8001_device->sas_device = dev; dev->lldd_dev = pm8001_device; pm8001_device->dev_type = dev->dev_type; pm8001_device->dcompletion = &completion; if (parent_dev && DEV_IS_EXPANDER(parent_dev->dev_type)) { int phy_id; struct ex_phy *phy; for (phy_id = 0; phy_id < parent_dev->ex_dev.num_phys; phy_id++) { phy = &parent_dev->ex_dev.ex_phy[phy_id]; if (SAS_ADDR(phy->attached_sas_addr) == SAS_ADDR(dev->sas_addr)) { pm8001_device->attached_phy = phy_id; break; } } if (phy_id == parent_dev->ex_dev.num_phys) { PM8001_FAIL_DBG(pm8001_ha, pm8001_printk("Error: no attached dev:%016llx" " at ex:%016llx.\n", SAS_ADDR(dev->sas_addr), SAS_ADDR(parent_dev->sas_addr))); res = -1; } } else { if (dev->dev_type == SAS_SATA_DEV) { pm8001_device->attached_phy = dev->rphy->identify.phy_identifier; flag = 1; /* directly sata*/ } } /*register this device to HBA*/ PM8001_DISC_DBG(pm8001_ha, pm8001_printk("Found device\n")); PM8001_CHIP_DISP->reg_dev_req(pm8001_ha, pm8001_device, flag); spin_unlock_irqrestore(&pm8001_ha->lock, flags); wait_for_completion(&completion); if (dev->dev_type == SAS_END_DEVICE) msleep(50); pm8001_ha->flags = PM8001F_RUN_TIME; return 0; found_out: spin_unlock_irqrestore(&pm8001_ha->lock, flags); return res; } int pm8001_dev_found(struct domain_device *dev) { return pm8001_dev_found_notify(dev); } void pm8001_task_done(struct sas_task *task) { if (!del_timer(&task->slow_task->timer)) return; complete(&task->slow_task->completion); } static void pm8001_tmf_timedout(unsigned long data) { struct sas_task *task = (struct sas_task *)data; task->task_state_flags |= SAS_TASK_STATE_ABORTED; complete(&task->slow_task->completion); } #define PM8001_TASK_TIMEOUT 20 /** * pm8001_exec_internal_tmf_task - execute some task management commands. * @dev: the wanted device. * @tmf: which task management wanted to be take. * @para_len: para_len. * @parameter: ssp task parameter. * * when errors or exception happened, we may want to do something, for example * abort the issued task which result in this execption, it is done by calling * this function, note it is also with the task execute interface. */ static int pm8001_exec_internal_tmf_task(struct domain_device *dev, void *parameter, u32 para_len, struct pm8001_tmf_task *tmf) { int res, retry; struct sas_task *task = NULL; struct pm8001_hba_info *pm8001_ha = pm8001_find_ha_by_dev(dev); for (retry = 0; retry < 3; retry++) { task = sas_alloc_slow_task(GFP_KERNEL); if (!task) return -ENOMEM; task->dev = dev; task->task_proto = dev->tproto; memcpy(&task->ssp_task, parameter, para_len); task->task_done = pm8001_task_done; task->slow_task->timer.data = (unsigned long)task; task->slow_task->timer.function = pm8001_tmf_timedout; task->slow_task->timer.expires = jiffies + PM8001_TASK_TIMEOUT*HZ; add_timer(&task->slow_task->timer); res = pm8001_task_exec(task, 1, GFP_KERNEL, 1, tmf); if (res) { del_timer(&task->slow_task->timer); PM8001_FAIL_DBG(pm8001_ha, pm8001_printk("Executing internal task " "failed\n")); goto ex_err; } wait_for_completion(&task->slow_task->completion); res = -TMF_RESP_FUNC_FAILED; /* Even TMF timed out, return direct. */ if ((task->task_state_flags & SAS_TASK_STATE_ABORTED)) { if (!(task->task_state_flags & SAS_TASK_STATE_DONE)) { PM8001_FAIL_DBG(pm8001_ha, pm8001_printk("TMF task[%x]timeout.\n", tmf->tmf)); goto ex_err; } } if (task->task_status.resp == SAS_TASK_COMPLETE && task->task_status.stat == SAM_STAT_GOOD) { res = TMF_RESP_FUNC_COMPLETE; break; } if (task->task_status.resp == SAS_TASK_COMPLETE && task->task_status.stat == SAS_DATA_UNDERRUN) { /* no error, but return the number of bytes of * underrun */ res = task->task_status.residual; break; } if (task->task_status.resp == SAS_TASK_COMPLETE && task->task_status.stat == SAS_DATA_OVERRUN) { PM8001_FAIL_DBG(pm8001_ha, pm8001_printk("Blocked task error.\n")); res = -EMSGSIZE; break; } else { PM8001_EH_DBG(pm8001_ha, pm8001_printk(" Task to dev %016llx response:" "0x%x status 0x%x\n", SAS_ADDR(dev->sas_addr), task->task_status.resp, task->task_status.stat)); sas_free_task(task); task = NULL; } } ex_err: BUG_ON(retry == 3 && task != NULL); sas_free_task(task); return res; } static int pm8001_exec_internal_task_abort(struct pm8001_hba_info *pm8001_ha, struct pm8001_device *pm8001_dev, struct domain_device *dev, u32 flag, u32 task_tag) { int res, retry; u32 ccb_tag; struct pm8001_ccb_info *ccb; struct sas_task *task = NULL; for (retry = 0; retry < 3; retry++) { task = sas_alloc_slow_task(GFP_KERNEL); if (!task) return -ENOMEM; task->dev = dev; task->task_proto = dev->tproto; task->task_done = pm8001_task_done; task->slow_task->timer.data = (unsigned long)task; task->slow_task->timer.function = pm8001_tmf_timedout; task->slow_task->timer.expires = jiffies + PM8001_TASK_TIMEOUT * HZ; add_timer(&task->slow_task->timer); res = pm8001_tag_alloc(pm8001_ha, &ccb_tag); if (res) return res; ccb = &pm8001_ha->ccb_info[ccb_tag]; ccb->device = pm8001_dev; ccb->ccb_tag = ccb_tag; ccb->task = task; res = PM8001_CHIP_DISP->task_abort(pm8001_ha, pm8001_dev, flag, task_tag, ccb_tag); if (res) { del_timer(&task->slow_task->timer); PM8001_FAIL_DBG(pm8001_ha, pm8001_printk("Executing internal task " "failed\n")); goto ex_err; } wait_for_completion(&task->slow_task->completion); res = TMF_RESP_FUNC_FAILED; /* Even TMF timed out, return direct. */ if ((task->task_state_flags & SAS_TASK_STATE_ABORTED)) { if (!(task->task_state_flags & SAS_TASK_STATE_DONE)) { PM8001_FAIL_DBG(pm8001_ha, pm8001_printk("TMF task timeout.\n")); goto ex_err; } } if (task->task_status.resp == SAS_TASK_COMPLETE && task->task_status.stat == SAM_STAT_GOOD) { res = TMF_RESP_FUNC_COMPLETE; break; } else { PM8001_EH_DBG(pm8001_ha, pm8001_printk(" Task to dev %016llx response: " "0x%x status 0x%x\n", SAS_ADDR(dev->sas_addr), task->task_status.resp, task->task_status.stat)); sas_free_task(task); task = NULL; } } ex_err: BUG_ON(retry == 3 && task != NULL); sas_free_task(task); return res; } /** * pm8001_dev_gone_notify - see the comments for "pm8001_dev_found_notify" * @dev: the device structure which sas layer used. */ static void pm8001_dev_gone_notify(struct domain_device *dev) { unsigned long flags = 0; u32 tag; struct pm8001_hba_info *pm8001_ha; struct pm8001_device *pm8001_dev = dev->lldd_dev; pm8001_ha = pm8001_find_ha_by_dev(dev); spin_lock_irqsave(&pm8001_ha->lock, flags); pm8001_tag_alloc(pm8001_ha, &tag); if (pm8001_dev) { u32 device_id = pm8001_dev->device_id; PM8001_DISC_DBG(pm8001_ha, pm8001_printk("found dev[%d:%x] is gone.\n", pm8001_dev->device_id, pm8001_dev->dev_type)); if (pm8001_dev->running_req) { spin_unlock_irqrestore(&pm8001_ha->lock, flags); pm8001_exec_internal_task_abort(pm8001_ha, pm8001_dev , dev, 1, 0); spin_lock_irqsave(&pm8001_ha->lock, flags); } PM8001_CHIP_DISP->dereg_dev_req(pm8001_ha, device_id); pm8001_free_dev(pm8001_dev); } else { PM8001_DISC_DBG(pm8001_ha, pm8001_printk("Found dev has gone.\n")); } dev->lldd_dev = NULL; spin_unlock_irqrestore(&pm8001_ha->lock, flags); } void pm8001_dev_gone(struct domain_device *dev) { pm8001_dev_gone_notify(dev); } static int pm8001_issue_ssp_tmf(struct domain_device *dev, u8 *lun, struct pm8001_tmf_task *tmf) { struct sas_ssp_task ssp_task; if (!(dev->tproto & SAS_PROTOCOL_SSP)) return TMF_RESP_FUNC_ESUPP; strncpy((u8 *)&ssp_task.LUN, lun, 8); return pm8001_exec_internal_tmf_task(dev, &ssp_task, sizeof(ssp_task), tmf); } /* retry commands by ha, by task and/or by device */ void pm8001_open_reject_retry( struct pm8001_hba_info *pm8001_ha, struct sas_task *task_to_close, struct pm8001_device *device_to_close) { int i; unsigned long flags; if (pm8001_ha == NULL) return; spin_lock_irqsave(&pm8001_ha->lock, flags); for (i = 0; i < PM8001_MAX_CCB; i++) { struct sas_task *task; struct task_status_struct *ts; struct pm8001_device *pm8001_dev; unsigned long flags1; u32 tag; struct pm8001_ccb_info *ccb = &pm8001_ha->ccb_info[i]; pm8001_dev = ccb->device; if (!pm8001_dev || (pm8001_dev->dev_type == SAS_PHY_UNUSED)) continue; if (!device_to_close) { uintptr_t d = (uintptr_t)pm8001_dev - (uintptr_t)&pm8001_ha->devices; if (((d % sizeof(*pm8001_dev)) != 0) || ((d / sizeof(*pm8001_dev)) >= PM8001_MAX_DEVICES)) continue; } else if (pm8001_dev != device_to_close) continue; tag = ccb->ccb_tag; if (!tag || (tag == 0xFFFFFFFF)) continue; task = ccb->task; if (!task || !task->task_done) continue; if (task_to_close && (task != task_to_close)) continue; ts = &task->task_status; ts->resp = SAS_TASK_COMPLETE; /* Force the midlayer to retry */ ts->stat = SAS_OPEN_REJECT; ts->open_rej_reason = SAS_OREJ_RSVD_RETRY; if (pm8001_dev) pm8001_dev->running_req--; spin_lock_irqsave(&task->task_state_lock, flags1); task->task_state_flags &= ~SAS_TASK_STATE_PENDING; task->task_state_flags &= ~SAS_TASK_AT_INITIATOR; task->task_state_flags |= SAS_TASK_STATE_DONE; if (unlikely((task->task_state_flags & SAS_TASK_STATE_ABORTED))) { spin_unlock_irqrestore(&task->task_state_lock, flags1); pm8001_ccb_task_free(pm8001_ha, task, ccb, tag); } else { spin_unlock_irqrestore(&task->task_state_lock, flags1); pm8001_ccb_task_free(pm8001_ha, task, ccb, tag); mb();/* in order to force CPU ordering */ spin_unlock_irqrestore(&pm8001_ha->lock, flags); task->task_done(task); spin_lock_irqsave(&pm8001_ha->lock, flags); } } spin_unlock_irqrestore(&pm8001_ha->lock, flags); } /** * Standard mandates link reset for ATA (type 0) and hard reset for * SSP (type 1) , only for RECOVERY */ int pm8001_I_T_nexus_reset(struct domain_device *dev) { int rc = TMF_RESP_FUNC_FAILED; struct pm8001_device *pm8001_dev; struct pm8001_hba_info *pm8001_ha; struct sas_phy *phy; if (!dev || !dev->lldd_dev) return -ENODEV; pm8001_dev = dev->lldd_dev; pm8001_ha = pm8001_find_ha_by_dev(dev); phy = sas_get_local_phy(dev); if (dev_is_sata(dev)) { DECLARE_COMPLETION_ONSTACK(completion_setstate); if (scsi_is_sas_phy_local(phy)) { rc = 0; goto out; } rc = sas_phy_reset(phy, 1); msleep(2000); rc = pm8001_exec_internal_task_abort(pm8001_ha, pm8001_dev , dev, 1, 0); pm8001_dev->setds_completion = &completion_setstate; rc = PM8001_CHIP_DISP->set_dev_state_req(pm8001_ha, pm8001_dev, 0x01); wait_for_completion(&completion_setstate); } else { rc = sas_phy_reset(phy, 1); msleep(2000); } PM8001_EH_DBG(pm8001_ha, pm8001_printk(" for device[%x]:rc=%d\n", pm8001_dev->device_id, rc)); out: sas_put_local_phy(phy); return rc; } /* * This function handle the IT_NEXUS_XXX event or completion * status code for SSP/SATA/SMP I/O request. */ int pm8001_I_T_nexus_event_handler(struct domain_device *dev) { int rc = TMF_RESP_FUNC_FAILED; struct pm8001_device *pm8001_dev; struct pm8001_hba_info *pm8001_ha; struct sas_phy *phy; u32 device_id = 0; if (!dev || !dev->lldd_dev) return -1; pm8001_dev = dev->lldd_dev; device_id = pm8001_dev->device_id; pm8001_ha = pm8001_find_ha_by_dev(dev); PM8001_EH_DBG(pm8001_ha, pm8001_printk("I_T_Nexus handler invoked !!")); phy = sas_get_local_phy(dev); if (dev_is_sata(dev)) { DECLARE_COMPLETION_ONSTACK(completion_setstate); if (scsi_is_sas_phy_local(phy)) { rc = 0; goto out; } /* send internal ssp/sata/smp abort command to FW */ rc = pm8001_exec_internal_task_abort(pm8001_ha, pm8001_dev , dev, 1, 0); msleep(100); /* deregister the target device */ pm8001_dev_gone_notify(dev); msleep(200); /*send phy reset to hard reset target */ rc = sas_phy_reset(phy, 1); msleep(2000); pm8001_dev->setds_completion = &completion_setstate; wait_for_completion(&completion_setstate); } else { /* send internal ssp/sata/smp abort command to FW */ rc = pm8001_exec_internal_task_abort(pm8001_ha, pm8001_dev , dev, 1, 0); msleep(100); /* deregister the target device */ pm8001_dev_gone_notify(dev); msleep(200); /*send phy reset to hard reset target */ rc = sas_phy_reset(phy, 1); msleep(2000); } PM8001_EH_DBG(pm8001_ha, pm8001_printk(" for device[%x]:rc=%d\n", pm8001_dev->device_id, rc)); out: sas_put_local_phy(phy); return rc; } /* mandatory SAM-3, the task reset the specified LUN*/ int pm8001_lu_reset(struct domain_device *dev, u8 *lun) { int rc = TMF_RESP_FUNC_FAILED; struct pm8001_tmf_task tmf_task; struct pm8001_device *pm8001_dev = dev->lldd_dev; struct pm8001_hba_info *pm8001_ha = pm8001_find_ha_by_dev(dev); if (dev_is_sata(dev)) { struct sas_phy *phy = sas_get_local_phy(dev); rc = pm8001_exec_internal_task_abort(pm8001_ha, pm8001_dev , dev, 1, 0); rc = sas_phy_reset(phy, 1); sas_put_local_phy(phy); rc = PM8001_CHIP_DISP->set_dev_state_req(pm8001_ha, pm8001_dev, 0x01); msleep(2000); } else { tmf_task.tmf = TMF_LU_RESET; rc = pm8001_issue_ssp_tmf(dev, lun, &tmf_task); } /* If failed, fall-through I_T_Nexus reset */ PM8001_EH_DBG(pm8001_ha, pm8001_printk("for device[%x]:rc=%d\n", pm8001_dev->device_id, rc)); return rc; } /* optional SAM-3 */ int pm8001_query_task(struct sas_task *task) { u32 tag = 0xdeadbeef; int i = 0; struct scsi_lun lun; struct pm8001_tmf_task tmf_task; int rc = TMF_RESP_FUNC_FAILED; if (unlikely(!task || !task->lldd_task || !task->dev)) return rc; if (task->task_proto & SAS_PROTOCOL_SSP) { struct scsi_cmnd *cmnd = task->uldd_task; struct domain_device *dev = task->dev; struct pm8001_hba_info *pm8001_ha = pm8001_find_ha_by_dev(dev); int_to_scsilun(cmnd->device->lun, &lun); rc = pm8001_find_tag(task, &tag); if (rc == 0) { rc = TMF_RESP_FUNC_FAILED; return rc; } PM8001_EH_DBG(pm8001_ha, pm8001_printk("Query:[")); for (i = 0; i < 16; i++) printk(KERN_INFO "%02x ", cmnd->cmnd[i]); printk(KERN_INFO "]\n"); tmf_task.tmf = TMF_QUERY_TASK; tmf_task.tag_of_task_to_be_managed = tag; rc = pm8001_issue_ssp_tmf(dev, lun.scsi_lun, &tmf_task); switch (rc) { /* The task is still in Lun, release it then */ case TMF_RESP_FUNC_SUCC: PM8001_EH_DBG(pm8001_ha, pm8001_printk("The task is still in Lun\n")); break; /* The task is not in Lun or failed, reset the phy */ case TMF_RESP_FUNC_FAILED: case TMF_RESP_FUNC_COMPLETE: PM8001_EH_DBG(pm8001_ha, pm8001_printk("The task is not in Lun or failed," " reset the phy\n")); break; } } pm8001_printk(":rc= %d\n", rc); return rc; } /* mandatory SAM-3, still need free task/ccb info, abord the specified task */ int pm8001_abort_task(struct sas_task *task) { unsigned long flags; u32 tag = 0xdeadbeef; u32 device_id; struct domain_device *dev ; struct pm8001_hba_info *pm8001_ha = NULL; struct pm8001_ccb_info *ccb; struct scsi_lun lun; struct pm8001_device *pm8001_dev; struct pm8001_tmf_task tmf_task; int rc = TMF_RESP_FUNC_FAILED; if (unlikely(!task || !task->lldd_task || !task->dev)) return rc; spin_lock_irqsave(&task->task_state_lock, flags); if (task->task_state_flags & SAS_TASK_STATE_DONE) { spin_unlock_irqrestore(&task->task_state_lock, flags); rc = TMF_RESP_FUNC_COMPLETE; goto out; } spin_unlock_irqrestore(&task->task_state_lock, flags); if (task->task_proto & SAS_PROTOCOL_SSP) { struct scsi_cmnd *cmnd = task->uldd_task; dev = task->dev; ccb = task->lldd_task; pm8001_dev = dev->lldd_dev; pm8001_ha = pm8001_find_ha_by_dev(dev); int_to_scsilun(cmnd->device->lun, &lun); rc = pm8001_find_tag(task, &tag); if (rc == 0) { printk(KERN_INFO "No such tag in %s\n", __func__); rc = TMF_RESP_FUNC_FAILED; return rc; } device_id = pm8001_dev->device_id; PM8001_EH_DBG(pm8001_ha, pm8001_printk("abort io to deviceid= %d\n", device_id)); tmf_task.tmf = TMF_ABORT_TASK; tmf_task.tag_of_task_to_be_managed = tag; rc = pm8001_issue_ssp_tmf(dev, lun.scsi_lun, &tmf_task); pm8001_exec_internal_task_abort(pm8001_ha, pm8001_dev, pm8001_dev->sas_device, 0, tag); } else if (task->task_proto & SAS_PROTOCOL_SATA || task->task_proto & SAS_PROTOCOL_STP) { dev = task->dev; pm8001_dev = dev->lldd_dev; pm8001_ha = pm8001_find_ha_by_dev(dev); rc = pm8001_find_tag(task, &tag); if (rc == 0) { printk(KERN_INFO "No such tag in %s\n", __func__); rc = TMF_RESP_FUNC_FAILED; return rc; } rc = pm8001_exec_internal_task_abort(pm8001_ha, pm8001_dev, pm8001_dev->sas_device, 0, tag); } else if (task->task_proto & SAS_PROTOCOL_SMP) { /* SMP */ dev = task->dev; pm8001_dev = dev->lldd_dev; pm8001_ha = pm8001_find_ha_by_dev(dev); rc = pm8001_find_tag(task, &tag); if (rc == 0) { printk(KERN_INFO "No such tag in %s\n", __func__); rc = TMF_RESP_FUNC_FAILED; return rc; } rc = pm8001_exec_internal_task_abort(pm8001_ha, pm8001_dev, pm8001_dev->sas_device, 0, tag); } out: if (rc != TMF_RESP_FUNC_COMPLETE) pm8001_printk("rc= %d\n", rc); return rc; } int pm8001_abort_task_set(struct domain_device *dev, u8 *lun) { int rc = TMF_RESP_FUNC_FAILED; struct pm8001_tmf_task tmf_task; tmf_task.tmf = TMF_ABORT_TASK_SET; rc = pm8001_issue_ssp_tmf(dev, lun, &tmf_task); return rc; } int pm8001_clear_aca(struct domain_device *dev, u8 *lun) { int rc = TMF_RESP_FUNC_FAILED; struct pm8001_tmf_task tmf_task; tmf_task.tmf = TMF_CLEAR_ACA; rc = pm8001_issue_ssp_tmf(dev, lun, &tmf_task); return rc; } int pm8001_clear_task_set(struct domain_device *dev, u8 *lun) { int rc = TMF_RESP_FUNC_FAILED; struct pm8001_tmf_task tmf_task; struct pm8001_device *pm8001_dev = dev->lldd_dev; struct pm8001_hba_info *pm8001_ha = pm8001_find_ha_by_dev(dev); PM8001_EH_DBG(pm8001_ha, pm8001_printk("I_T_L_Q clear task set[%x]\n", pm8001_dev->device_id)); tmf_task.tmf = TMF_CLEAR_TASK_SET; rc = pm8001_issue_ssp_tmf(dev, lun, &tmf_task); return rc; }