/* * sata_mv.c - Marvell SATA support * * Copyright 2005: EMC Corporation, all rights reserved. * * Please ALWAYS copy linux-ide@vger.kernel.org on emails. * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; version 2 of the License. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA * */ #include #include #include #include #include #include #include #include #include #include "scsi.h" #include #include #include #define DRV_NAME "sata_mv" #define DRV_VERSION "0.12" enum { /* BAR's are enumerated in terms of pci_resource_start() terms */ MV_PRIMARY_BAR = 0, /* offset 0x10: memory space */ MV_IO_BAR = 2, /* offset 0x18: IO space */ MV_MISC_BAR = 3, /* offset 0x1c: FLASH, NVRAM, SRAM */ MV_MAJOR_REG_AREA_SZ = 0x10000, /* 64KB */ MV_MINOR_REG_AREA_SZ = 0x2000, /* 8KB */ MV_PCI_REG_BASE = 0, MV_IRQ_COAL_REG_BASE = 0x18000, /* 6xxx part only */ MV_SATAHC0_REG_BASE = 0x20000, MV_PCI_REG_SZ = MV_MAJOR_REG_AREA_SZ, MV_SATAHC_REG_SZ = MV_MAJOR_REG_AREA_SZ, MV_SATAHC_ARBTR_REG_SZ = MV_MINOR_REG_AREA_SZ, /* arbiter */ MV_PORT_REG_SZ = MV_MINOR_REG_AREA_SZ, MV_Q_CT = 32, MV_CRQB_SZ = 32, MV_CRPB_SZ = 8, MV_DMA_BOUNDARY = 0xffffffffU, SATAHC_MASK = (~(MV_SATAHC_REG_SZ - 1)), MV_PORTS_PER_HC = 4, /* == (port / MV_PORTS_PER_HC) to determine HC from 0-7 port */ MV_PORT_HC_SHIFT = 2, /* == (port % MV_PORTS_PER_HC) to determine port from 0-7 port */ MV_PORT_MASK = 3, /* Host Flags */ MV_FLAG_DUAL_HC = (1 << 30), /* two SATA Host Controllers */ MV_FLAG_IRQ_COALESCE = (1 << 29), /* IRQ coalescing capability */ MV_FLAG_BDMA = (1 << 28), /* Basic DMA */ chip_504x = 0, chip_508x = 1, chip_604x = 2, chip_608x = 3, /* PCI interface registers */ PCI_MAIN_CMD_STS_OFS = 0xd30, STOP_PCI_MASTER = (1 << 2), PCI_MASTER_EMPTY = (1 << 3), GLOB_SFT_RST = (1 << 4), PCI_IRQ_CAUSE_OFS = 0x1d58, PCI_IRQ_MASK_OFS = 0x1d5c, PCI_UNMASK_ALL_IRQS = 0x7fffff, /* bits 22-0 */ HC_MAIN_IRQ_CAUSE_OFS = 0x1d60, HC_MAIN_IRQ_MASK_OFS = 0x1d64, PORT0_ERR = (1 << 0), /* shift by port # */ PORT0_DONE = (1 << 1), /* shift by port # */ HC0_IRQ_PEND = 0x1ff, /* bits 0-8 = HC0's ports */ HC_SHIFT = 9, /* bits 9-17 = HC1's ports */ PCI_ERR = (1 << 18), TRAN_LO_DONE = (1 << 19), /* 6xxx: IRQ coalescing */ TRAN_HI_DONE = (1 << 20), /* 6xxx: IRQ coalescing */ PORTS_0_7_COAL_DONE = (1 << 21), /* 6xxx: IRQ coalescing */ GPIO_INT = (1 << 22), SELF_INT = (1 << 23), TWSI_INT = (1 << 24), HC_MAIN_RSVD = (0x7f << 25), /* bits 31-25 */ HC_MAIN_MASKED_IRQS = (TRAN_LO_DONE | TRAN_HI_DONE | PORTS_0_7_COAL_DONE | GPIO_INT | TWSI_INT | HC_MAIN_RSVD), /* SATAHC registers */ HC_CFG_OFS = 0, HC_IRQ_CAUSE_OFS = 0x14, CRBP_DMA_DONE = (1 << 0), /* shift by port # */ HC_IRQ_COAL = (1 << 4), /* IRQ coalescing */ DEV_IRQ = (1 << 8), /* shift by port # */ /* Shadow block registers */ SHD_PIO_DATA_OFS = 0x100, SHD_FEA_ERR_OFS = 0x104, SHD_SECT_CNT_OFS = 0x108, SHD_LBA_L_OFS = 0x10C, SHD_LBA_M_OFS = 0x110, SHD_LBA_H_OFS = 0x114, SHD_DEV_HD_OFS = 0x118, SHD_CMD_STA_OFS = 0x11C, SHD_CTL_AST_OFS = 0x120, /* SATA registers */ SATA_STATUS_OFS = 0x300, /* ctrl, err regs follow status */ SATA_ACTIVE_OFS = 0x350, /* Port registers */ EDMA_CFG_OFS = 0, EDMA_ERR_IRQ_CAUSE_OFS = 0x8, EDMA_ERR_IRQ_MASK_OFS = 0xc, EDMA_ERR_D_PAR = (1 << 0), EDMA_ERR_PRD_PAR = (1 << 1), EDMA_ERR_DEV = (1 << 2), EDMA_ERR_DEV_DCON = (1 << 3), EDMA_ERR_DEV_CON = (1 << 4), EDMA_ERR_SERR = (1 << 5), EDMA_ERR_SELF_DIS = (1 << 7), EDMA_ERR_BIST_ASYNC = (1 << 8), EDMA_ERR_CRBQ_PAR = (1 << 9), EDMA_ERR_CRPB_PAR = (1 << 10), EDMA_ERR_INTRL_PAR = (1 << 11), EDMA_ERR_IORDY = (1 << 12), EDMA_ERR_LNK_CTRL_RX = (0xf << 13), EDMA_ERR_LNK_CTRL_RX_2 = (1 << 15), EDMA_ERR_LNK_DATA_RX = (0xf << 17), EDMA_ERR_LNK_CTRL_TX = (0x1f << 21), EDMA_ERR_LNK_DATA_TX = (0x1f << 26), EDMA_ERR_TRANS_PROTO = (1 << 31), EDMA_ERR_FATAL = (EDMA_ERR_D_PAR | EDMA_ERR_PRD_PAR | EDMA_ERR_DEV_DCON | EDMA_ERR_CRBQ_PAR | EDMA_ERR_CRPB_PAR | EDMA_ERR_INTRL_PAR | EDMA_ERR_IORDY | EDMA_ERR_LNK_CTRL_RX_2 | EDMA_ERR_LNK_DATA_RX | EDMA_ERR_LNK_DATA_TX | EDMA_ERR_TRANS_PROTO), EDMA_CMD_OFS = 0x28, EDMA_EN = (1 << 0), EDMA_DS = (1 << 1), ATA_RST = (1 << 2), /* BDMA is 6xxx part only */ BDMA_CMD_OFS = 0x224, BDMA_START = (1 << 0), MV_UNDEF = 0, }; struct mv_port_priv { }; struct mv_host_priv { }; static void mv_irq_clear(struct ata_port *ap); static u32 mv_scr_read(struct ata_port *ap, unsigned int sc_reg_in); static void mv_scr_write(struct ata_port *ap, unsigned int sc_reg_in, u32 val); static void mv_phy_reset(struct ata_port *ap); static int mv_master_reset(void __iomem *mmio_base); static irqreturn_t mv_interrupt(int irq, void *dev_instance, struct pt_regs *regs); static int mv_init_one(struct pci_dev *pdev, const struct pci_device_id *ent); static Scsi_Host_Template mv_sht = { .module = THIS_MODULE, .name = DRV_NAME, .ioctl = ata_scsi_ioctl, .queuecommand = ata_scsi_queuecmd, .eh_strategy_handler = ata_scsi_error, .can_queue = ATA_DEF_QUEUE, .this_id = ATA_SHT_THIS_ID, .sg_tablesize = MV_UNDEF, .max_sectors = ATA_MAX_SECTORS, .cmd_per_lun = ATA_SHT_CMD_PER_LUN, .emulated = ATA_SHT_EMULATED, .use_clustering = MV_UNDEF, .proc_name = DRV_NAME, .dma_boundary = MV_DMA_BOUNDARY, .slave_configure = ata_scsi_slave_config, .bios_param = ata_std_bios_param, .ordered_flush = 1, }; static struct ata_port_operations mv_ops = { .port_disable = ata_port_disable, .tf_load = ata_tf_load, .tf_read = ata_tf_read, .check_status = ata_check_status, .exec_command = ata_exec_command, .dev_select = ata_std_dev_select, .phy_reset = mv_phy_reset, .qc_prep = ata_qc_prep, .qc_issue = ata_qc_issue_prot, .eng_timeout = ata_eng_timeout, .irq_handler = mv_interrupt, .irq_clear = mv_irq_clear, .scr_read = mv_scr_read, .scr_write = mv_scr_write, .port_start = ata_port_start, .port_stop = ata_port_stop, .host_stop = ata_host_stop, }; static struct ata_port_info mv_port_info[] = { { /* chip_504x */ .sht = &mv_sht, .host_flags = (ATA_FLAG_SATA | ATA_FLAG_NO_LEGACY | ATA_FLAG_SATA_RESET | ATA_FLAG_MMIO), .pio_mask = 0x1f, /* pio4-0 */ .udma_mask = 0, /* 0x7f (udma6-0 disabled for now) */ .port_ops = &mv_ops, }, { /* chip_508x */ .sht = &mv_sht, .host_flags = (ATA_FLAG_SATA | ATA_FLAG_NO_LEGACY | ATA_FLAG_SATA_RESET | ATA_FLAG_MMIO | MV_FLAG_DUAL_HC), .pio_mask = 0x1f, /* pio4-0 */ .udma_mask = 0, /* 0x7f (udma6-0 disabled for now) */ .port_ops = &mv_ops, }, { /* chip_604x */ .sht = &mv_sht, .host_flags = (ATA_FLAG_SATA | ATA_FLAG_NO_LEGACY | ATA_FLAG_SATA_RESET | ATA_FLAG_MMIO | MV_FLAG_IRQ_COALESCE | MV_FLAG_BDMA), .pio_mask = 0x1f, /* pio4-0 */ .udma_mask = 0, /* 0x7f (udma6-0 disabled for now) */ .port_ops = &mv_ops, }, { /* chip_608x */ .sht = &mv_sht, .host_flags = (ATA_FLAG_SATA | ATA_FLAG_NO_LEGACY | ATA_FLAG_SATA_RESET | ATA_FLAG_MMIO | MV_FLAG_IRQ_COALESCE | MV_FLAG_DUAL_HC | MV_FLAG_BDMA), .pio_mask = 0x1f, /* pio4-0 */ .udma_mask = 0, /* 0x7f (udma6-0 disabled for now) */ .port_ops = &mv_ops, }, }; static struct pci_device_id mv_pci_tbl[] = { {PCI_DEVICE(PCI_VENDOR_ID_MARVELL, 0x5040), 0, 0, chip_504x}, {PCI_DEVICE(PCI_VENDOR_ID_MARVELL, 0x5041), 0, 0, chip_504x}, {PCI_DEVICE(PCI_VENDOR_ID_MARVELL, 0x5080), 0, 0, chip_508x}, {PCI_DEVICE(PCI_VENDOR_ID_MARVELL, 0x5081), 0, 0, chip_508x}, {PCI_DEVICE(PCI_VENDOR_ID_MARVELL, 0x6040), 0, 0, chip_604x}, {PCI_DEVICE(PCI_VENDOR_ID_MARVELL, 0x6041), 0, 0, chip_604x}, {PCI_DEVICE(PCI_VENDOR_ID_MARVELL, 0x6080), 0, 0, chip_608x}, {PCI_DEVICE(PCI_VENDOR_ID_MARVELL, 0x6081), 0, 0, chip_608x}, {} /* terminate list */ }; static struct pci_driver mv_pci_driver = { .name = DRV_NAME, .id_table = mv_pci_tbl, .probe = mv_init_one, .remove = ata_pci_remove_one, }; /* * Functions */ static inline void writelfl(unsigned long data, void __iomem *addr) { writel(data, addr); (void) readl(addr); /* flush to avoid PCI posted write */ } static inline void __iomem *mv_port_addr_to_hc_base(void __iomem *port_mmio) { return ((void __iomem *)((unsigned long)port_mmio & (unsigned long)SATAHC_MASK)); } static inline void __iomem *mv_hc_base(void __iomem *base, unsigned int hc) { return (base + MV_SATAHC0_REG_BASE + (hc * MV_SATAHC_REG_SZ)); } static inline void __iomem *mv_port_base(void __iomem *base, unsigned int port) { return (mv_hc_base(base, port >> MV_PORT_HC_SHIFT) + MV_SATAHC_ARBTR_REG_SZ + ((port & MV_PORT_MASK) * MV_PORT_REG_SZ)); } static inline void __iomem *mv_ap_base(struct ata_port *ap) { return mv_port_base(ap->host_set->mmio_base, ap->port_no); } static inline int mv_get_hc_count(unsigned long flags) { return ((flags & MV_FLAG_DUAL_HC) ? 2 : 1); } static inline int mv_is_edma_active(struct ata_port *ap) { void __iomem *port_mmio = mv_ap_base(ap); return (EDMA_EN & readl(port_mmio + EDMA_CMD_OFS)); } static inline int mv_port_bdma_capable(struct ata_port *ap) { return (ap->flags & MV_FLAG_BDMA); } static void mv_irq_clear(struct ata_port *ap) { } static unsigned int mv_scr_offset(unsigned int sc_reg_in) { unsigned int ofs; switch (sc_reg_in) { case SCR_STATUS: case SCR_CONTROL: case SCR_ERROR: ofs = SATA_STATUS_OFS + (sc_reg_in * sizeof(u32)); break; case SCR_ACTIVE: ofs = SATA_ACTIVE_OFS; /* active is not with the others */ break; default: ofs = 0xffffffffU; break; } return ofs; } static u32 mv_scr_read(struct ata_port *ap, unsigned int sc_reg_in) { unsigned int ofs = mv_scr_offset(sc_reg_in); if (0xffffffffU != ofs) { return readl(mv_ap_base(ap) + ofs); } else { return (u32) ofs; } } static void mv_scr_write(struct ata_port *ap, unsigned int sc_reg_in, u32 val) { unsigned int ofs = mv_scr_offset(sc_reg_in); if (0xffffffffU != ofs) { writelfl(val, mv_ap_base(ap) + ofs); } } static int mv_master_reset(void __iomem *mmio_base) { void __iomem *reg = mmio_base + PCI_MAIN_CMD_STS_OFS; int i, rc = 0; u32 t; VPRINTK("ENTER\n"); /* Following procedure defined in PCI "main command and status * register" table. */ t = readl(reg); writel(t | STOP_PCI_MASTER, reg); for (i = 0; i < 100; i++) { msleep(10); t = readl(reg); if (PCI_MASTER_EMPTY & t) { break; } } if (!(PCI_MASTER_EMPTY & t)) { printk(KERN_ERR DRV_NAME "PCI master won't flush\n"); rc = 1; /* broken HW? */ goto done; } /* set reset */ i = 5; do { writel(t | GLOB_SFT_RST, reg); t = readl(reg); udelay(1); } while (!(GLOB_SFT_RST & t) && (i-- > 0)); if (!(GLOB_SFT_RST & t)) { printk(KERN_ERR DRV_NAME "can't set global reset\n"); rc = 1; /* broken HW? */ goto done; } /* clear reset */ i = 5; do { writel(t & ~GLOB_SFT_RST, reg); t = readl(reg); udelay(1); } while ((GLOB_SFT_RST & t) && (i-- > 0)); if (GLOB_SFT_RST & t) { printk(KERN_ERR DRV_NAME "can't clear global reset\n"); rc = 1; /* broken HW? */ } done: VPRINTK("EXIT, rc = %i\n", rc); return rc; } static void mv_err_intr(struct ata_port *ap) { void __iomem *port_mmio; u32 edma_err_cause, serr = 0; /* bug here b/c we got an err int on a port we don't know about, * so there's no way to clear it */ BUG_ON(NULL == ap); port_mmio = mv_ap_base(ap); edma_err_cause = readl(port_mmio + EDMA_ERR_IRQ_CAUSE_OFS); if (EDMA_ERR_SERR & edma_err_cause) { serr = scr_read(ap, SCR_ERROR); scr_write_flush(ap, SCR_ERROR, serr); } DPRINTK("port %u error; EDMA err cause: 0x%08x SERR: 0x%08x\n", ap->port_no, edma_err_cause, serr); /* Clear EDMA now that SERR cleanup done */ writelfl(0, port_mmio + EDMA_ERR_IRQ_CAUSE_OFS); /* check for fatal here and recover if needed */ if (EDMA_ERR_FATAL & edma_err_cause) { mv_phy_reset(ap); } } /* Handle any outstanding interrupts in a single SATAHC */ static void mv_host_intr(struct ata_host_set *host_set, u32 relevant, unsigned int hc) { void __iomem *mmio = host_set->mmio_base; void __iomem *hc_mmio = mv_hc_base(mmio, hc); struct ata_port *ap; struct ata_queued_cmd *qc; u32 hc_irq_cause; int shift, port, port0, hard_port; u8 ata_status; if (hc == 0) { port0 = 0; } else { port0 = MV_PORTS_PER_HC; } /* we'll need the HC success int register in most cases */ hc_irq_cause = readl(hc_mmio + HC_IRQ_CAUSE_OFS); if (hc_irq_cause) { writelfl(0, hc_mmio + HC_IRQ_CAUSE_OFS); } VPRINTK("ENTER, hc%u relevant=0x%08x HC IRQ cause=0x%08x\n", hc,relevant,hc_irq_cause); for (port = port0; port < port0 + MV_PORTS_PER_HC; port++) { ap = host_set->ports[port]; hard_port = port & MV_PORT_MASK; /* range 0-3 */ ata_status = 0xffU; if (((CRBP_DMA_DONE | DEV_IRQ) << hard_port) & hc_irq_cause) { BUG_ON(NULL == ap); /* rcv'd new resp, basic DMA complete, or ATA IRQ */ /* This is needed to clear the ATA INTRQ. * FIXME: don't read the status reg in EDMA mode! */ ata_status = readb((void __iomem *) ap->ioaddr.status_addr); } shift = port * 2; if (port >= MV_PORTS_PER_HC) { shift++; /* skip bit 8 in the HC Main IRQ reg */ } if ((PORT0_ERR << shift) & relevant) { mv_err_intr(ap); /* FIXME: smart to OR in ATA_ERR? */ ata_status = readb((void __iomem *) ap->ioaddr.status_addr) | ATA_ERR; } if (ap) { qc = ata_qc_from_tag(ap, ap->active_tag); if (NULL != qc) { VPRINTK("port %u IRQ found for qc, " "ata_status 0x%x\n", port,ata_status); BUG_ON(0xffU == ata_status); /* mark qc status appropriately */ ata_qc_complete(qc, ata_status); } } } VPRINTK("EXIT\n"); } static irqreturn_t mv_interrupt(int irq, void *dev_instance, struct pt_regs *regs) { struct ata_host_set *host_set = dev_instance; unsigned int hc, handled = 0, n_hcs; void __iomem *mmio; u32 irq_stat; mmio = host_set->mmio_base; irq_stat = readl(mmio + HC_MAIN_IRQ_CAUSE_OFS); n_hcs = mv_get_hc_count(host_set->ports[0]->flags); /* check the cases where we either have nothing pending or have read * a bogus register value which can indicate HW removal or PCI fault */ if (!irq_stat || (0xffffffffU == irq_stat)) { return IRQ_NONE; } spin_lock(&host_set->lock); for (hc = 0; hc < n_hcs; hc++) { u32 relevant = irq_stat & (HC0_IRQ_PEND << (hc * HC_SHIFT)); if (relevant) { mv_host_intr(host_set, relevant, hc); handled = 1; } } if (PCI_ERR & irq_stat) { /* FIXME: these are all masked by default, but still need * to recover from them properly. */ } spin_unlock(&host_set->lock); return IRQ_RETVAL(handled); } static void mv_phy_reset(struct ata_port *ap) { void __iomem *port_mmio = mv_ap_base(ap); struct ata_taskfile tf; struct ata_device *dev = &ap->device[0]; u32 edma = 0, bdma; VPRINTK("ENTER, port %u, mmio 0x%p\n", ap->port_no, port_mmio); edma = readl(port_mmio + EDMA_CMD_OFS); if (EDMA_EN & edma) { /* disable EDMA if active */ edma &= ~EDMA_EN; writelfl(edma | EDMA_DS, port_mmio + EDMA_CMD_OFS); udelay(1); } else if (mv_port_bdma_capable(ap) && (bdma = readl(port_mmio + BDMA_CMD_OFS)) & BDMA_START) { /* disable BDMA if active */ writelfl(bdma & ~BDMA_START, port_mmio + BDMA_CMD_OFS); } writelfl(edma | ATA_RST, port_mmio + EDMA_CMD_OFS); udelay(25); /* allow reset propagation */ /* Spec never mentions clearing the bit. Marvell's driver does * clear the bit, however. */ writelfl(edma & ~ATA_RST, port_mmio + EDMA_CMD_OFS); VPRINTK("Done. Now calling __sata_phy_reset()\n"); /* proceed to init communications via the scr_control reg */ __sata_phy_reset(ap); if (ap->flags & ATA_FLAG_PORT_DISABLED) { VPRINTK("Port disabled pre-sig. Exiting.\n"); return; } tf.lbah = readb((void __iomem *) ap->ioaddr.lbah_addr); tf.lbam = readb((void __iomem *) ap->ioaddr.lbam_addr); tf.lbal = readb((void __iomem *) ap->ioaddr.lbal_addr); tf.nsect = readb((void __iomem *) ap->ioaddr.nsect_addr); dev->class = ata_dev_classify(&tf); if (!ata_dev_present(dev)) { VPRINTK("Port disabled post-sig: No device present.\n"); ata_port_disable(ap); } VPRINTK("EXIT\n"); } static void mv_port_init(struct ata_ioports *port, unsigned long base) { /* PIO related setup */ port->data_addr = base + SHD_PIO_DATA_OFS; port->error_addr = port->feature_addr = base + SHD_FEA_ERR_OFS; port->nsect_addr = base + SHD_SECT_CNT_OFS; port->lbal_addr = base + SHD_LBA_L_OFS; port->lbam_addr = base + SHD_LBA_M_OFS; port->lbah_addr = base + SHD_LBA_H_OFS; port->device_addr = base + SHD_DEV_HD_OFS; port->status_addr = port->command_addr = base + SHD_CMD_STA_OFS; port->altstatus_addr = port->ctl_addr = base + SHD_CTL_AST_OFS; /* unused */ port->cmd_addr = port->bmdma_addr = port->scr_addr = 0; /* unmask all EDMA error interrupts */ writel(~0, (void __iomem *)base + EDMA_ERR_IRQ_MASK_OFS); VPRINTK("EDMA cfg=0x%08x EDMA IRQ err cause/mask=0x%08x/0x%08x\n", readl((void __iomem *)base + EDMA_CFG_OFS), readl((void __iomem *)base + EDMA_ERR_IRQ_CAUSE_OFS), readl((void __iomem *)base + EDMA_ERR_IRQ_MASK_OFS)); } static int mv_host_init(struct ata_probe_ent *probe_ent) { int rc = 0, n_hc, port, hc; void __iomem *mmio = probe_ent->mmio_base; void __iomem *port_mmio; if (mv_master_reset(probe_ent->mmio_base)) { rc = 1; goto done; } n_hc = mv_get_hc_count(probe_ent->host_flags); probe_ent->n_ports = MV_PORTS_PER_HC * n_hc; for (port = 0; port < probe_ent->n_ports; port++) { port_mmio = mv_port_base(mmio, port); mv_port_init(&probe_ent->port[port], (unsigned long)port_mmio); } for (hc = 0; hc < n_hc; hc++) { VPRINTK("HC%i: HC config=0x%08x HC IRQ cause=0x%08x\n", hc, readl(mv_hc_base(mmio, hc) + HC_CFG_OFS), readl(mv_hc_base(mmio, hc) + HC_IRQ_CAUSE_OFS)); } writel(~HC_MAIN_MASKED_IRQS, mmio + HC_MAIN_IRQ_MASK_OFS); writel(PCI_UNMASK_ALL_IRQS, mmio + PCI_IRQ_MASK_OFS); VPRINTK("HC MAIN IRQ cause/mask=0x%08x/0x%08x " "PCI int cause/mask=0x%08x/0x%08x\n", readl(mmio + HC_MAIN_IRQ_CAUSE_OFS), readl(mmio + HC_MAIN_IRQ_MASK_OFS), readl(mmio + PCI_IRQ_CAUSE_OFS), readl(mmio + PCI_IRQ_MASK_OFS)); done: return rc; } static int mv_init_one(struct pci_dev *pdev, const struct pci_device_id *ent) { static int printed_version = 0; struct ata_probe_ent *probe_ent = NULL; struct mv_host_priv *hpriv; unsigned int board_idx = (unsigned int)ent->driver_data; void __iomem *mmio_base; int pci_dev_busy = 0; int rc; if (!printed_version++) { printk(KERN_DEBUG DRV_NAME " version " DRV_VERSION "\n"); } VPRINTK("ENTER for PCI Bus:Slot.Func=%u:%u.%u\n", pdev->bus->number, PCI_SLOT(pdev->devfn), PCI_FUNC(pdev->devfn)); rc = pci_enable_device(pdev); if (rc) { return rc; } rc = pci_request_regions(pdev, DRV_NAME); if (rc) { pci_dev_busy = 1; goto err_out; } pci_intx(pdev, 1); probe_ent = kmalloc(sizeof(*probe_ent), GFP_KERNEL); if (probe_ent == NULL) { rc = -ENOMEM; goto err_out_regions; } memset(probe_ent, 0, sizeof(*probe_ent)); probe_ent->dev = pci_dev_to_dev(pdev); INIT_LIST_HEAD(&probe_ent->node); mmio_base = ioremap_nocache(pci_resource_start(pdev, MV_PRIMARY_BAR), pci_resource_len(pdev, MV_PRIMARY_BAR)); if (mmio_base == NULL) { rc = -ENOMEM; goto err_out_free_ent; } hpriv = kmalloc(sizeof(*hpriv), GFP_KERNEL); if (!hpriv) { rc = -ENOMEM; goto err_out_iounmap; } memset(hpriv, 0, sizeof(*hpriv)); probe_ent->sht = mv_port_info[board_idx].sht; probe_ent->host_flags = mv_port_info[board_idx].host_flags; probe_ent->pio_mask = mv_port_info[board_idx].pio_mask; probe_ent->udma_mask = mv_port_info[board_idx].udma_mask; probe_ent->port_ops = mv_port_info[board_idx].port_ops; probe_ent->irq = pdev->irq; probe_ent->irq_flags = SA_SHIRQ; probe_ent->mmio_base = mmio_base; probe_ent->private_data = hpriv; /* initialize adapter */ rc = mv_host_init(probe_ent); if (rc) { goto err_out_hpriv; } /* mv_print_info(probe_ent); */ { int b, w; u32 dw[4]; /* hold a line of 16b */ VPRINTK("PCI config space:\n"); for (b = 0; b < 0x40; ) { for (w = 0; w < 4; w++) { (void) pci_read_config_dword(pdev,b,&dw[w]); b += sizeof(*dw); } VPRINTK("%08x %08x %08x %08x\n", dw[0],dw[1],dw[2],dw[3]); } } /* FIXME: check ata_device_add return value */ ata_device_add(probe_ent); kfree(probe_ent); return 0; err_out_hpriv: kfree(hpriv); err_out_iounmap: iounmap(mmio_base); err_out_free_ent: kfree(probe_ent); err_out_regions: pci_release_regions(pdev); err_out: if (!pci_dev_busy) { pci_disable_device(pdev); } return rc; } static int __init mv_init(void) { return pci_module_init(&mv_pci_driver); } static void __exit mv_exit(void) { pci_unregister_driver(&mv_pci_driver); } MODULE_AUTHOR("Brett Russ"); MODULE_DESCRIPTION("SCSI low-level driver for Marvell SATA controllers"); MODULE_LICENSE("GPL"); MODULE_DEVICE_TABLE(pci, mv_pci_tbl); MODULE_VERSION(DRV_VERSION); module_init(mv_init); module_exit(mv_exit);