/* * SH RSPI driver * * Copyright (C) 2012 Renesas Solutions Corp. * * Based on spi-sh.c: * Copyright (C) 2011 Renesas Solutions Corp. * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; version 2 of the License. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA * */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #define RSPI_SPCR 0x00 /* Control Register */ #define RSPI_SSLP 0x01 /* Slave Select Polarity Register */ #define RSPI_SPPCR 0x02 /* Pin Control Register */ #define RSPI_SPSR 0x03 /* Status Register */ #define RSPI_SPDR 0x04 /* Data Register */ #define RSPI_SPSCR 0x08 /* Sequence Control Register */ #define RSPI_SPSSR 0x09 /* Sequence Status Register */ #define RSPI_SPBR 0x0a /* Bit Rate Register */ #define RSPI_SPDCR 0x0b /* Data Control Register */ #define RSPI_SPCKD 0x0c /* Clock Delay Register */ #define RSPI_SSLND 0x0d /* Slave Select Negation Delay Register */ #define RSPI_SPND 0x0e /* Next-Access Delay Register */ #define RSPI_SPCR2 0x0f /* Control Register 2 */ #define RSPI_SPCMD0 0x10 /* Command Register 0 */ #define RSPI_SPCMD1 0x12 /* Command Register 1 */ #define RSPI_SPCMD2 0x14 /* Command Register 2 */ #define RSPI_SPCMD3 0x16 /* Command Register 3 */ #define RSPI_SPCMD4 0x18 /* Command Register 4 */ #define RSPI_SPCMD5 0x1a /* Command Register 5 */ #define RSPI_SPCMD6 0x1c /* Command Register 6 */ #define RSPI_SPCMD7 0x1e /* Command Register 7 */ #define RSPI_SPBFCR 0x20 /* Buffer Control Register */ #define RSPI_SPBFDR 0x22 /* Buffer Data Count Setting Register */ /*qspi only */ #define QSPI_SPBFCR 0x18 /* Buffer Control Register */ #define QSPI_SPBDCR 0x1a /* Buffer Data Count Register */ #define QSPI_SPBMUL0 0x1c /* Transfer Data Length Multiplier Setting Register 0 */ #define QSPI_SPBMUL1 0x20 /* Transfer Data Length Multiplier Setting Register 1 */ #define QSPI_SPBMUL2 0x24 /* Transfer Data Length Multiplier Setting Register 2 */ #define QSPI_SPBMUL3 0x28 /* Transfer Data Length Multiplier Setting Register 3 */ /* SPCR - Control Register */ #define SPCR_SPRIE 0x80 /* Receive Interrupt Enable */ #define SPCR_SPE 0x40 /* Function Enable */ #define SPCR_SPTIE 0x20 /* Transmit Interrupt Enable */ #define SPCR_SPEIE 0x10 /* Error Interrupt Enable */ #define SPCR_MSTR 0x08 /* Master/Slave Mode Select */ #define SPCR_MODFEN 0x04 /* Mode Fault Error Detection Enable */ /* RSPI on SH only */ #define SPCR_TXMD 0x02 /* TX Only Mode (vs. Full Duplex) */ #define SPCR_SPMS 0x01 /* 3-wire Mode (vs. 4-wire) */ /* QSPI on R-Car M2 only */ #define SPCR_WSWAP 0x02 /* Word Swap of read-data for DMAC */ #define SPCR_BSWAP 0x01 /* Byte Swap of read-data for DMAC */ /* SSLP - Slave Select Polarity Register */ #define SSLP_SSL1P 0x02 /* SSL1 Signal Polarity Setting */ #define SSLP_SSL0P 0x01 /* SSL0 Signal Polarity Setting */ /* SPPCR - Pin Control Register */ #define SPPCR_MOIFE 0x20 /* MOSI Idle Value Fixing Enable */ #define SPPCR_MOIFV 0x10 /* MOSI Idle Fixed Value */ #define SPPCR_SPOM 0x04 #define SPPCR_SPLP2 0x02 /* Loopback Mode 2 (non-inverting) */ #define SPPCR_SPLP 0x01 /* Loopback Mode (inverting) */ #define SPPCR_IO3FV 0x04 /* Single-/Dual-SPI Mode IO3 Output Fixed Value */ #define SPPCR_IO2FV 0x04 /* Single-/Dual-SPI Mode IO2 Output Fixed Value */ /* SPSR - Status Register */ #define SPSR_SPRF 0x80 /* Receive Buffer Full Flag */ #define SPSR_TEND 0x40 /* Transmit End */ #define SPSR_SPTEF 0x20 /* Transmit Buffer Empty Flag */ #define SPSR_PERF 0x08 /* Parity Error Flag */ #define SPSR_MODF 0x04 /* Mode Fault Error Flag */ #define SPSR_IDLNF 0x02 /* RSPI Idle Flag */ #define SPSR_OVRF 0x01 /* Overrun Error Flag */ /* SPSCR - Sequence Control Register */ #define SPSCR_SPSLN_MASK 0x07 /* Sequence Length Specification */ /* SPSSR - Sequence Status Register */ #define SPSSR_SPECM_MASK 0x70 /* Command Error Mask */ #define SPSSR_SPCP_MASK 0x07 /* Command Pointer Mask */ /* SPDCR - Data Control Register */ #define SPDCR_TXDMY 0x80 /* Dummy Data Transmission Enable */ #define SPDCR_SPLW1 0x40 /* Access Width Specification (RZ) */ #define SPDCR_SPLW0 0x20 /* Access Width Specification (RZ) */ #define SPDCR_SPLLWORD (SPDCR_SPLW1 | SPDCR_SPLW0) #define SPDCR_SPLWORD SPDCR_SPLW1 #define SPDCR_SPLBYTE SPDCR_SPLW0 #define SPDCR_SPLW 0x20 /* Access Width Specification (SH) */ #define SPDCR_SPRDTD 0x10 /* Receive Transmit Data Select */ #define SPDCR_SLSEL1 0x08 #define SPDCR_SLSEL0 0x04 #define SPDCR_SLSEL_MASK 0x0c /* SSL1 Output Select */ #define SPDCR_SPFC1 0x02 #define SPDCR_SPFC0 0x01 #define SPDCR_SPFC_MASK 0x03 /* Frame Count Setting (1-4) */ /* SPCKD - Clock Delay Register */ #define SPCKD_SCKDL_MASK 0x07 /* Clock Delay Setting (1-8) */ /* SSLND - Slave Select Negation Delay Register */ #define SSLND_SLNDL_MASK 0x07 /* SSL Negation Delay Setting (1-8) */ /* SPND - Next-Access Delay Register */ #define SPND_SPNDL_MASK 0x07 /* Next-Access Delay Setting (1-8) */ /* SPCR2 - Control Register 2 */ #define SPCR2_PTE 0x08 /* Parity Self-Test Enable */ #define SPCR2_SPIE 0x04 /* Idle Interrupt Enable */ #define SPCR2_SPOE 0x02 /* Odd Parity Enable (vs. Even) */ #define SPCR2_SPPE 0x01 /* Parity Enable */ /* SPCMDn - Command Registers */ #define SPCMD_SCKDEN 0x8000 /* Clock Delay Setting Enable */ #define SPCMD_SLNDEN 0x4000 /* SSL Negation Delay Setting Enable */ #define SPCMD_SPNDEN 0x2000 /* Next-Access Delay Enable */ #define SPCMD_LSBF 0x1000 /* LSB First */ #define SPCMD_SPB_MASK 0x0f00 /* Data Length Setting */ #define SPCMD_SPB_8_TO_16(bit) (((bit - 1) << 8) & SPCMD_SPB_MASK) #define SPCMD_SPB_8BIT 0x0000 /* qspi only */ #define SPCMD_SPB_16BIT 0x0100 #define SPCMD_SPB_20BIT 0x0000 #define SPCMD_SPB_24BIT 0x0100 #define SPCMD_SPB_32BIT 0x0200 #define SPCMD_SSLKP 0x0080 /* SSL Signal Level Keeping */ #define SPCMD_SPIMOD_MASK 0x0060 /* SPI Operating Mode (QSPI only) */ #define SPCMD_SPIMOD1 0x0040 #define SPCMD_SPIMOD0 0x0020 #define SPCMD_SPIMOD_SINGLE 0 #define SPCMD_SPIMOD_DUAL SPCMD_SPIMOD0 #define SPCMD_SPIMOD_QUAD SPCMD_SPIMOD1 #define SPCMD_SPRW 0x0010 /* SPI Read/Write Access (Dual/Quad) */ #define SPCMD_SSLA_MASK 0x0030 /* SSL Assert Signal Setting (RSPI) */ #define SPCMD_BRDV_MASK 0x000c /* Bit Rate Division Setting */ #define SPCMD_CPOL 0x0002 /* Clock Polarity Setting */ #define SPCMD_CPHA 0x0001 /* Clock Phase Setting */ /* SPBFCR - Buffer Control Register */ #define SPBFCR_TXRST 0x80 /* Transmit Buffer Data Reset (qspi only) */ #define SPBFCR_RXRST 0x40 /* Receive Buffer Data Reset (qspi only) */ #define SPBFCR_TXTRG_MASK 0x30 /* Transmit Buffer Data Triggering Number */ #define SPBFCR_RXTRG_MASK 0x07 /* Receive Buffer Data Triggering Number */ #define DUMMY_DATA 0x00 struct rspi_data { void __iomem *addr; u32 max_speed_hz; struct spi_master *master; struct list_head queue; struct work_struct ws; wait_queue_head_t wait; spinlock_t lock; struct clk *clk; u8 spsr; u16 spcmd; const struct spi_ops *ops; /* for dmaengine */ struct dma_chan *chan_tx; struct dma_chan *chan_rx; int irq; unsigned dma_width_16bit:1; unsigned dma_callbacked:1; }; static void rspi_write8(const struct rspi_data *rspi, u8 data, u16 offset) { iowrite8(data, rspi->addr + offset); } static void rspi_write16(const struct rspi_data *rspi, u16 data, u16 offset) { iowrite16(data, rspi->addr + offset); } static void rspi_write32(const struct rspi_data *rspi, u32 data, u16 offset) { iowrite32(data, rspi->addr + offset); } static u8 rspi_read8(const struct rspi_data *rspi, u16 offset) { return ioread8(rspi->addr + offset); } static u16 rspi_read16(const struct rspi_data *rspi, u16 offset) { return ioread16(rspi->addr + offset); } /* optional functions */ struct spi_ops { int (*set_config_register)(const struct rspi_data *rspi, int access_size); int (*send_pio)(struct rspi_data *rspi, struct spi_message *mesg, struct spi_transfer *t); int (*receive_pio)(struct rspi_data *rspi, struct spi_message *mesg, struct spi_transfer *t); }; /* * functions for RSPI */ static int rspi_set_config_register(const struct rspi_data *rspi, int access_size) { int spbr; /* Sets output mode(CMOS) and MOSI signal(from previous transfer) */ rspi_write8(rspi, 0x00, RSPI_SPPCR); /* Sets transfer bit rate */ spbr = clk_get_rate(rspi->clk) / (2 * rspi->max_speed_hz) - 1; rspi_write8(rspi, clamp(spbr, 0, 255), RSPI_SPBR); /* Sets number of frames to be used: 1 frame */ rspi_write8(rspi, 0x00, RSPI_SPDCR); /* Sets RSPCK, SSL, next-access delay value */ rspi_write8(rspi, 0x00, RSPI_SPCKD); rspi_write8(rspi, 0x00, RSPI_SSLND); rspi_write8(rspi, 0x00, RSPI_SPND); /* Sets parity, interrupt mask */ rspi_write8(rspi, 0x00, RSPI_SPCR2); /* Sets SPCMD */ rspi_write16(rspi, SPCMD_SPB_8_TO_16(access_size) | rspi->spcmd, RSPI_SPCMD0); /* Sets RSPI mode */ rspi_write8(rspi, SPCR_MSTR, RSPI_SPCR); return 0; } /* * functions for QSPI */ static int qspi_set_config_register(const struct rspi_data *rspi, int access_size) { u16 spcmd; int spbr; /* Sets output mode(CMOS) and MOSI signal(from previous transfer) */ rspi_write8(rspi, 0x00, RSPI_SPPCR); /* Sets transfer bit rate */ spbr = clk_get_rate(rspi->clk) / (2 * rspi->max_speed_hz); rspi_write8(rspi, clamp(spbr, 0, 255), RSPI_SPBR); /* Sets number of frames to be used: 1 frame */ rspi_write8(rspi, 0x00, RSPI_SPDCR); /* Sets RSPCK, SSL, next-access delay value */ rspi_write8(rspi, 0x00, RSPI_SPCKD); rspi_write8(rspi, 0x00, RSPI_SSLND); rspi_write8(rspi, 0x00, RSPI_SPND); /* Data Length Setting */ if (access_size == 8) spcmd = SPCMD_SPB_8BIT; else if (access_size == 16) spcmd = SPCMD_SPB_16BIT; else spcmd = SPCMD_SPB_32BIT; spcmd |= SPCMD_SCKDEN | SPCMD_SLNDEN | rspi->spcmd | SPCMD_SPNDEN; /* Resets transfer data length */ rspi_write32(rspi, 0, QSPI_SPBMUL0); /* Resets transmit and receive buffer */ rspi_write8(rspi, SPBFCR_TXRST | SPBFCR_RXRST, QSPI_SPBFCR); /* Sets buffer to allow normal operation */ rspi_write8(rspi, 0x00, QSPI_SPBFCR); /* Sets SPCMD */ rspi_write16(rspi, spcmd, RSPI_SPCMD0); /* Enables SPI function in a master mode */ rspi_write8(rspi, SPCR_SPE | SPCR_MSTR, RSPI_SPCR); return 0; } #define set_config_register(spi, n) spi->ops->set_config_register(spi, n) static void rspi_enable_irq(const struct rspi_data *rspi, u8 enable) { rspi_write8(rspi, rspi_read8(rspi, RSPI_SPCR) | enable, RSPI_SPCR); } static void rspi_disable_irq(const struct rspi_data *rspi, u8 disable) { rspi_write8(rspi, rspi_read8(rspi, RSPI_SPCR) & ~disable, RSPI_SPCR); } static int rspi_wait_for_interrupt(struct rspi_data *rspi, u8 wait_mask, u8 enable_bit) { int ret; rspi->spsr = rspi_read8(rspi, RSPI_SPSR); rspi_enable_irq(rspi, enable_bit); ret = wait_event_timeout(rspi->wait, rspi->spsr & wait_mask, HZ); if (ret == 0 && !(rspi->spsr & wait_mask)) return -ETIMEDOUT; return 0; } static void rspi_assert_ssl(const struct rspi_data *rspi) { rspi_write8(rspi, rspi_read8(rspi, RSPI_SPCR) | SPCR_SPE, RSPI_SPCR); } static void rspi_negate_ssl(const struct rspi_data *rspi) { rspi_write8(rspi, rspi_read8(rspi, RSPI_SPCR) & ~SPCR_SPE, RSPI_SPCR); } static int rspi_send_pio(struct rspi_data *rspi, struct spi_message *mesg, struct spi_transfer *t) { int remain = t->len; const u8 *data = t->tx_buf; while (remain > 0) { rspi_write8(rspi, rspi_read8(rspi, RSPI_SPCR) | SPCR_TXMD, RSPI_SPCR); if (rspi_wait_for_interrupt(rspi, SPSR_SPTEF, SPCR_SPTIE) < 0) { dev_err(&rspi->master->dev, "%s: tx empty timeout\n", __func__); return -ETIMEDOUT; } rspi_write16(rspi, *data, RSPI_SPDR); data++; remain--; } /* Waiting for the last transmission */ rspi_wait_for_interrupt(rspi, SPSR_SPTEF, SPCR_SPTIE); return 0; } static int qspi_send_pio(struct rspi_data *rspi, struct spi_message *mesg, struct spi_transfer *t) { int remain = t->len; const u8 *data = t->tx_buf; rspi_write8(rspi, SPBFCR_TXRST, QSPI_SPBFCR); rspi_write8(rspi, 0x00, QSPI_SPBFCR); while (remain > 0) { if (rspi_wait_for_interrupt(rspi, SPSR_SPTEF, SPCR_SPTIE) < 0) { dev_err(&rspi->master->dev, "%s: tx empty timeout\n", __func__); return -ETIMEDOUT; } rspi_write8(rspi, *data++, RSPI_SPDR); if (rspi_wait_for_interrupt(rspi, SPSR_SPRF, SPCR_SPRIE) < 0) { dev_err(&rspi->master->dev, "%s: receive timeout\n", __func__); return -ETIMEDOUT; } rspi_read8(rspi, RSPI_SPDR); remain--; } /* Waiting for the last transmission */ rspi_wait_for_interrupt(rspi, SPSR_SPTEF, SPCR_SPTIE); return 0; } #define send_pio(spi, mesg, t) spi->ops->send_pio(spi, mesg, t) static void rspi_dma_complete(void *arg) { struct rspi_data *rspi = arg; rspi->dma_callbacked = 1; wake_up_interruptible(&rspi->wait); } static int rspi_dma_map_sg(struct scatterlist *sg, const void *buf, unsigned len, struct dma_chan *chan, enum dma_transfer_direction dir) { sg_init_table(sg, 1); sg_set_buf(sg, buf, len); sg_dma_len(sg) = len; return dma_map_sg(chan->device->dev, sg, 1, dir); } static void rspi_dma_unmap_sg(struct scatterlist *sg, struct dma_chan *chan, enum dma_transfer_direction dir) { dma_unmap_sg(chan->device->dev, sg, 1, dir); } static void rspi_memory_to_8bit(void *buf, const void *data, unsigned len) { u16 *dst = buf; const u8 *src = data; while (len) { *dst++ = (u16)(*src++); len--; } } static void rspi_memory_from_8bit(void *buf, const void *data, unsigned len) { u8 *dst = buf; const u16 *src = data; while (len) { *dst++ = (u8)*src++; len--; } } static int rspi_send_dma(struct rspi_data *rspi, struct spi_transfer *t) { struct scatterlist sg; const void *buf = NULL; struct dma_async_tx_descriptor *desc; unsigned len; int ret = 0; if (rspi->dma_width_16bit) { void *tmp; /* * If DMAC bus width is 16-bit, the driver allocates a dummy * buffer. And, the driver converts original data into the * DMAC data as the following format: * original data: 1st byte, 2nd byte ... * DMAC data: 1st byte, dummy, 2nd byte, dummy ... */ len = t->len * 2; tmp = kmalloc(len, GFP_KERNEL); if (!tmp) return -ENOMEM; rspi_memory_to_8bit(tmp, t->tx_buf, t->len); buf = tmp; } else { len = t->len; buf = t->tx_buf; } if (!rspi_dma_map_sg(&sg, buf, len, rspi->chan_tx, DMA_TO_DEVICE)) { ret = -EFAULT; goto end_nomap; } desc = dmaengine_prep_slave_sg(rspi->chan_tx, &sg, 1, DMA_TO_DEVICE, DMA_PREP_INTERRUPT | DMA_CTRL_ACK); if (!desc) { ret = -EIO; goto end; } /* * DMAC needs SPTIE, but if SPTIE is set, this IRQ routine will be * called. So, this driver disables the IRQ while DMA transfer. */ disable_irq(rspi->irq); rspi_write8(rspi, rspi_read8(rspi, RSPI_SPCR) | SPCR_TXMD, RSPI_SPCR); rspi_enable_irq(rspi, SPCR_SPTIE); rspi->dma_callbacked = 0; desc->callback = rspi_dma_complete; desc->callback_param = rspi; dmaengine_submit(desc); dma_async_issue_pending(rspi->chan_tx); ret = wait_event_interruptible_timeout(rspi->wait, rspi->dma_callbacked, HZ); if (ret > 0 && rspi->dma_callbacked) ret = 0; else if (!ret) ret = -ETIMEDOUT; rspi_disable_irq(rspi, SPCR_SPTIE); enable_irq(rspi->irq); end: rspi_dma_unmap_sg(&sg, rspi->chan_tx, DMA_TO_DEVICE); end_nomap: if (rspi->dma_width_16bit) kfree(buf); return ret; } static void rspi_receive_init(const struct rspi_data *rspi) { u8 spsr; spsr = rspi_read8(rspi, RSPI_SPSR); if (spsr & SPSR_SPRF) rspi_read16(rspi, RSPI_SPDR); /* dummy read */ if (spsr & SPSR_OVRF) rspi_write8(rspi, rspi_read8(rspi, RSPI_SPSR) & ~SPSR_OVRF, RSPI_SPSR); } static int rspi_receive_pio(struct rspi_data *rspi, struct spi_message *mesg, struct spi_transfer *t) { int remain = t->len; u8 *data; rspi_receive_init(rspi); data = t->rx_buf; while (remain > 0) { rspi_write8(rspi, rspi_read8(rspi, RSPI_SPCR) & ~SPCR_TXMD, RSPI_SPCR); if (rspi_wait_for_interrupt(rspi, SPSR_SPTEF, SPCR_SPTIE) < 0) { dev_err(&rspi->master->dev, "%s: tx empty timeout\n", __func__); return -ETIMEDOUT; } /* dummy write for generate clock */ rspi_write16(rspi, DUMMY_DATA, RSPI_SPDR); if (rspi_wait_for_interrupt(rspi, SPSR_SPRF, SPCR_SPRIE) < 0) { dev_err(&rspi->master->dev, "%s: receive timeout\n", __func__); return -ETIMEDOUT; } /* SPDR allows 16 or 32-bit access only */ *data = (u8)rspi_read16(rspi, RSPI_SPDR); data++; remain--; } return 0; } static void qspi_receive_init(const struct rspi_data *rspi) { u8 spsr; spsr = rspi_read8(rspi, RSPI_SPSR); if (spsr & SPSR_SPRF) rspi_read8(rspi, RSPI_SPDR); /* dummy read */ rspi_write8(rspi, SPBFCR_TXRST | SPBFCR_RXRST, QSPI_SPBFCR); rspi_write8(rspi, 0x00, QSPI_SPBFCR); } static int qspi_receive_pio(struct rspi_data *rspi, struct spi_message *mesg, struct spi_transfer *t) { int remain = t->len; u8 *data; qspi_receive_init(rspi); data = t->rx_buf; while (remain > 0) { if (rspi_wait_for_interrupt(rspi, SPSR_SPTEF, SPCR_SPTIE) < 0) { dev_err(&rspi->master->dev, "%s: tx empty timeout\n", __func__); return -ETIMEDOUT; } /* dummy write for generate clock */ rspi_write8(rspi, DUMMY_DATA, RSPI_SPDR); if (rspi_wait_for_interrupt(rspi, SPSR_SPRF, SPCR_SPRIE) < 0) { dev_err(&rspi->master->dev, "%s: receive timeout\n", __func__); return -ETIMEDOUT; } /* SPDR allows 8, 16 or 32-bit access */ *data++ = rspi_read8(rspi, RSPI_SPDR); remain--; } return 0; } #define receive_pio(spi, mesg, t) spi->ops->receive_pio(spi, mesg, t) static int rspi_receive_dma(struct rspi_data *rspi, struct spi_transfer *t) { struct scatterlist sg, sg_dummy; void *dummy = NULL, *rx_buf = NULL; struct dma_async_tx_descriptor *desc, *desc_dummy; unsigned len; int ret = 0; if (rspi->dma_width_16bit) { /* * If DMAC bus width is 16-bit, the driver allocates a dummy * buffer. And, finally the driver converts the DMAC data into * actual data as the following format: * DMAC data: 1st byte, dummy, 2nd byte, dummy ... * actual data: 1st byte, 2nd byte ... */ len = t->len * 2; rx_buf = kmalloc(len, GFP_KERNEL); if (!rx_buf) return -ENOMEM; } else { len = t->len; rx_buf = t->rx_buf; } /* prepare dummy transfer to generate SPI clocks */ dummy = kzalloc(len, GFP_KERNEL); if (!dummy) { ret = -ENOMEM; goto end_nomap; } if (!rspi_dma_map_sg(&sg_dummy, dummy, len, rspi->chan_tx, DMA_TO_DEVICE)) { ret = -EFAULT; goto end_nomap; } desc_dummy = dmaengine_prep_slave_sg(rspi->chan_tx, &sg_dummy, 1, DMA_TO_DEVICE, DMA_PREP_INTERRUPT | DMA_CTRL_ACK); if (!desc_dummy) { ret = -EIO; goto end_dummy_mapped; } /* prepare receive transfer */ if (!rspi_dma_map_sg(&sg, rx_buf, len, rspi->chan_rx, DMA_FROM_DEVICE)) { ret = -EFAULT; goto end_dummy_mapped; } desc = dmaengine_prep_slave_sg(rspi->chan_rx, &sg, 1, DMA_FROM_DEVICE, DMA_PREP_INTERRUPT | DMA_CTRL_ACK); if (!desc) { ret = -EIO; goto end; } rspi_receive_init(rspi); /* * DMAC needs SPTIE, but if SPTIE is set, this IRQ routine will be * called. So, this driver disables the IRQ while DMA transfer. */ disable_irq(rspi->irq); rspi_write8(rspi, rspi_read8(rspi, RSPI_SPCR) & ~SPCR_TXMD, RSPI_SPCR); rspi_enable_irq(rspi, SPCR_SPTIE | SPCR_SPRIE); rspi->dma_callbacked = 0; desc->callback = rspi_dma_complete; desc->callback_param = rspi; dmaengine_submit(desc); dma_async_issue_pending(rspi->chan_rx); desc_dummy->callback = NULL; /* No callback */ dmaengine_submit(desc_dummy); dma_async_issue_pending(rspi->chan_tx); ret = wait_event_interruptible_timeout(rspi->wait, rspi->dma_callbacked, HZ); if (ret > 0 && rspi->dma_callbacked) ret = 0; else if (!ret) ret = -ETIMEDOUT; rspi_disable_irq(rspi, SPCR_SPTIE | SPCR_SPRIE); enable_irq(rspi->irq); end: rspi_dma_unmap_sg(&sg, rspi->chan_rx, DMA_FROM_DEVICE); end_dummy_mapped: rspi_dma_unmap_sg(&sg_dummy, rspi->chan_tx, DMA_TO_DEVICE); end_nomap: if (rspi->dma_width_16bit) { if (!ret) rspi_memory_from_8bit(t->rx_buf, rx_buf, t->len); kfree(rx_buf); } kfree(dummy); return ret; } static int rspi_is_dma(const struct rspi_data *rspi, struct spi_transfer *t) { if (t->tx_buf && rspi->chan_tx) return 1; /* If the module receives data by DMAC, it also needs TX DMAC */ if (t->rx_buf && rspi->chan_tx && rspi->chan_rx) return 1; return 0; } static void rspi_work(struct work_struct *work) { struct rspi_data *rspi = container_of(work, struct rspi_data, ws); struct spi_message *mesg; struct spi_transfer *t; unsigned long flags; int ret; while (1) { spin_lock_irqsave(&rspi->lock, flags); if (list_empty(&rspi->queue)) { spin_unlock_irqrestore(&rspi->lock, flags); break; } mesg = list_entry(rspi->queue.next, struct spi_message, queue); list_del_init(&mesg->queue); spin_unlock_irqrestore(&rspi->lock, flags); rspi_assert_ssl(rspi); list_for_each_entry(t, &mesg->transfers, transfer_list) { if (t->tx_buf) { if (rspi_is_dma(rspi, t)) ret = rspi_send_dma(rspi, t); else ret = send_pio(rspi, mesg, t); if (ret < 0) goto error; } if (t->rx_buf) { if (rspi_is_dma(rspi, t)) ret = rspi_receive_dma(rspi, t); else ret = receive_pio(rspi, mesg, t); if (ret < 0) goto error; } mesg->actual_length += t->len; } rspi_negate_ssl(rspi); mesg->status = 0; mesg->complete(mesg->context); } return; error: mesg->status = ret; mesg->complete(mesg->context); } static int rspi_setup(struct spi_device *spi) { struct rspi_data *rspi = spi_master_get_devdata(spi->master); rspi->max_speed_hz = spi->max_speed_hz; rspi->spcmd = SPCMD_SSLKP; if (spi->mode & SPI_CPOL) rspi->spcmd |= SPCMD_CPOL; if (spi->mode & SPI_CPHA) rspi->spcmd |= SPCMD_CPHA; set_config_register(rspi, 8); return 0; } static int rspi_transfer(struct spi_device *spi, struct spi_message *mesg) { struct rspi_data *rspi = spi_master_get_devdata(spi->master); unsigned long flags; mesg->actual_length = 0; mesg->status = -EINPROGRESS; spin_lock_irqsave(&rspi->lock, flags); list_add_tail(&mesg->queue, &rspi->queue); schedule_work(&rspi->ws); spin_unlock_irqrestore(&rspi->lock, flags); return 0; } static void rspi_cleanup(struct spi_device *spi) { } static irqreturn_t rspi_irq(int irq, void *_sr) { struct rspi_data *rspi = _sr; u8 spsr; irqreturn_t ret = IRQ_NONE; u8 disable_irq = 0; rspi->spsr = spsr = rspi_read8(rspi, RSPI_SPSR); if (spsr & SPSR_SPRF) disable_irq |= SPCR_SPRIE; if (spsr & SPSR_SPTEF) disable_irq |= SPCR_SPTIE; if (disable_irq) { ret = IRQ_HANDLED; rspi_disable_irq(rspi, disable_irq); wake_up(&rspi->wait); } return ret; } static int rspi_request_dma(struct rspi_data *rspi, struct platform_device *pdev) { const struct rspi_plat_data *rspi_pd = dev_get_platdata(&pdev->dev); struct resource *res = platform_get_resource(pdev, IORESOURCE_MEM, 0); dma_cap_mask_t mask; struct dma_slave_config cfg; int ret; if (!res || !rspi_pd) return 0; /* The driver assumes no error. */ rspi->dma_width_16bit = rspi_pd->dma_width_16bit; /* If the module receives data by DMAC, it also needs TX DMAC */ if (rspi_pd->dma_rx_id && rspi_pd->dma_tx_id) { dma_cap_zero(mask); dma_cap_set(DMA_SLAVE, mask); rspi->chan_rx = dma_request_channel(mask, shdma_chan_filter, (void *)rspi_pd->dma_rx_id); if (rspi->chan_rx) { cfg.slave_id = rspi_pd->dma_rx_id; cfg.direction = DMA_DEV_TO_MEM; cfg.dst_addr = 0; cfg.src_addr = res->start + RSPI_SPDR; ret = dmaengine_slave_config(rspi->chan_rx, &cfg); if (!ret) dev_info(&pdev->dev, "Use DMA when rx.\n"); else return ret; } } if (rspi_pd->dma_tx_id) { dma_cap_zero(mask); dma_cap_set(DMA_SLAVE, mask); rspi->chan_tx = dma_request_channel(mask, shdma_chan_filter, (void *)rspi_pd->dma_tx_id); if (rspi->chan_tx) { cfg.slave_id = rspi_pd->dma_tx_id; cfg.direction = DMA_MEM_TO_DEV; cfg.dst_addr = res->start + RSPI_SPDR; cfg.src_addr = 0; ret = dmaengine_slave_config(rspi->chan_tx, &cfg); if (!ret) dev_info(&pdev->dev, "Use DMA when tx\n"); else return ret; } } return 0; } static void rspi_release_dma(struct rspi_data *rspi) { if (rspi->chan_tx) dma_release_channel(rspi->chan_tx); if (rspi->chan_rx) dma_release_channel(rspi->chan_rx); } static int rspi_remove(struct platform_device *pdev) { struct rspi_data *rspi = platform_get_drvdata(pdev); rspi_release_dma(rspi); clk_disable(rspi->clk); return 0; } static int rspi_probe(struct platform_device *pdev) { struct resource *res; struct spi_master *master; struct rspi_data *rspi; int ret, irq; char clk_name[16]; const struct rspi_plat_data *rspi_pd = dev_get_platdata(&pdev->dev); const struct spi_ops *ops; const struct platform_device_id *id_entry = pdev->id_entry; ops = (struct spi_ops *)id_entry->driver_data; /* ops parameter check */ if (!ops->set_config_register) { dev_err(&pdev->dev, "there is no set_config_register\n"); return -ENODEV; } irq = platform_get_irq(pdev, 0); if (irq < 0) { dev_err(&pdev->dev, "platform_get_irq error\n"); return -ENODEV; } master = spi_alloc_master(&pdev->dev, sizeof(struct rspi_data)); if (master == NULL) { dev_err(&pdev->dev, "spi_alloc_master error.\n"); return -ENOMEM; } rspi = spi_master_get_devdata(master); platform_set_drvdata(pdev, rspi); rspi->ops = ops; rspi->master = master; res = platform_get_resource(pdev, IORESOURCE_MEM, 0); rspi->addr = devm_ioremap_resource(&pdev->dev, res); if (IS_ERR(rspi->addr)) { ret = PTR_ERR(rspi->addr); goto error1; } snprintf(clk_name, sizeof(clk_name), "%s%d", id_entry->name, pdev->id); rspi->clk = devm_clk_get(&pdev->dev, clk_name); if (IS_ERR(rspi->clk)) { dev_err(&pdev->dev, "cannot get clock\n"); ret = PTR_ERR(rspi->clk); goto error1; } clk_enable(rspi->clk); INIT_LIST_HEAD(&rspi->queue); spin_lock_init(&rspi->lock); INIT_WORK(&rspi->ws, rspi_work); init_waitqueue_head(&rspi->wait); if (rspi_pd && rspi_pd->num_chipselect) master->num_chipselect = rspi_pd->num_chipselect; else master->num_chipselect = 2; /* default */ master->bus_num = pdev->id; master->setup = rspi_setup; master->transfer = rspi_transfer; master->cleanup = rspi_cleanup; master->mode_bits = SPI_CPHA | SPI_CPOL; ret = devm_request_irq(&pdev->dev, irq, rspi_irq, 0, dev_name(&pdev->dev), rspi); if (ret < 0) { dev_err(&pdev->dev, "request_irq error\n"); goto error2; } rspi->irq = irq; ret = rspi_request_dma(rspi, pdev); if (ret < 0) { dev_err(&pdev->dev, "rspi_request_dma failed.\n"); goto error3; } ret = devm_spi_register_master(&pdev->dev, master); if (ret < 0) { dev_err(&pdev->dev, "spi_register_master error.\n"); goto error3; } dev_info(&pdev->dev, "probed\n"); return 0; error3: rspi_release_dma(rspi); error2: clk_disable(rspi->clk); error1: spi_master_put(master); return ret; } static struct spi_ops rspi_ops = { .set_config_register = rspi_set_config_register, .send_pio = rspi_send_pio, .receive_pio = rspi_receive_pio, }; static struct spi_ops qspi_ops = { .set_config_register = qspi_set_config_register, .send_pio = qspi_send_pio, .receive_pio = qspi_receive_pio, }; static struct platform_device_id spi_driver_ids[] = { { "rspi", (kernel_ulong_t)&rspi_ops }, { "qspi", (kernel_ulong_t)&qspi_ops }, {}, }; MODULE_DEVICE_TABLE(platform, spi_driver_ids); static struct platform_driver rspi_driver = { .probe = rspi_probe, .remove = rspi_remove, .id_table = spi_driver_ids, .driver = { .name = "renesas_spi", .owner = THIS_MODULE, }, }; module_platform_driver(rspi_driver); MODULE_DESCRIPTION("Renesas RSPI bus driver"); MODULE_LICENSE("GPL v2"); MODULE_AUTHOR("Yoshihiro Shimoda"); MODULE_ALIAS("platform:rspi");