#include "headers.h" #define STATUS_IMAGE_CHECKSUM_MISMATCH -199 #define EVENT_SIGNALED 1 static B_UINT16 CFG_CalculateChecksum(B_UINT8 *pu8Buffer, B_UINT32 u32Size) { B_UINT16 u16CheckSum = 0; while (u32Size--) { u16CheckSum += (B_UINT8)~(*pu8Buffer); pu8Buffer++; } return u16CheckSum; } BOOLEAN IsReqGpioIsLedInNVM(PMINI_ADAPTER Adapter, UINT gpios) { INT Status; Status = (Adapter->gpioBitMap & gpios) ^ gpios; if (Status) return FALSE; else return TRUE; } static INT LED_Blink(PMINI_ADAPTER Adapter, UINT GPIO_Num, UCHAR uiLedIndex, ULONG timeout, INT num_of_time, LedEventInfo_t currdriverstate) { int Status = STATUS_SUCCESS; BOOLEAN bInfinite = FALSE; /* Check if num_of_time is -ve. If yes, blink led in infinite loop */ if (num_of_time < 0) { bInfinite = TRUE; num_of_time = 1; } while (num_of_time) { if (currdriverstate == Adapter->DriverState) TURN_ON_LED(GPIO_Num, uiLedIndex); /* Wait for timeout after setting on the LED */ Status = wait_event_interruptible_timeout( Adapter->LEDInfo.notify_led_event, currdriverstate != Adapter->DriverState || kthread_should_stop(), msecs_to_jiffies(timeout)); if (kthread_should_stop()) { BCM_DEBUG_PRINT(Adapter, DBG_TYPE_OTHERS, LED_DUMP_INFO, DBG_LVL_ALL, "Led thread got signal to exit..hence exiting"); Adapter->LEDInfo.led_thread_running = BCM_LED_THREAD_DISABLED; TURN_OFF_LED(GPIO_Num, uiLedIndex); Status = EVENT_SIGNALED; break; } if (Status) { TURN_OFF_LED(GPIO_Num, uiLedIndex); Status = EVENT_SIGNALED; break; } TURN_OFF_LED(GPIO_Num, uiLedIndex); Status = wait_event_interruptible_timeout( Adapter->LEDInfo.notify_led_event, currdriverstate != Adapter->DriverState || kthread_should_stop(), msecs_to_jiffies(timeout)); if (bInfinite == FALSE) num_of_time--; } return Status; } static INT ScaleRateofTransfer(ULONG rate) { if (rate <= 3) return rate; else if ((rate > 3) && (rate <= 100)) return 5; else if ((rate > 100) && (rate <= 200)) return 6; else if ((rate > 200) && (rate <= 300)) return 7; else if ((rate > 300) && (rate <= 400)) return 8; else if ((rate > 400) && (rate <= 500)) return 9; else if ((rate > 500) && (rate <= 600)) return 10; else return MAX_NUM_OF_BLINKS; } static INT LED_Proportional_Blink(PMINI_ADAPTER Adapter, UCHAR GPIO_Num_tx, UCHAR uiTxLedIndex, UCHAR GPIO_Num_rx, UCHAR uiRxLedIndex, LedEventInfo_t currdriverstate) { /* Initial values of TX and RX packets */ ULONG64 Initial_num_of_packts_tx = 0, Initial_num_of_packts_rx = 0; /* values of TX and RX packets after 1 sec */ ULONG64 Final_num_of_packts_tx = 0, Final_num_of_packts_rx = 0; /* Rate of transfer of Tx and Rx in 1 sec */ ULONG64 rate_of_transfer_tx = 0, rate_of_transfer_rx = 0; int Status = STATUS_SUCCESS; INT num_of_time = 0, num_of_time_tx = 0, num_of_time_rx = 0; UINT remDelay = 0; BOOLEAN bBlinkBothLED = TRUE; /* UINT GPIO_num = DISABLE_GPIO_NUM; */ ulong timeout = 0; /* Read initial value of packets sent/received */ Initial_num_of_packts_tx = Adapter->dev->stats.tx_packets; Initial_num_of_packts_rx = Adapter->dev->stats.rx_packets; /* Scale the rate of transfer to no of blinks. */ num_of_time_tx = ScaleRateofTransfer((ULONG)rate_of_transfer_tx); num_of_time_rx = ScaleRateofTransfer((ULONG)rate_of_transfer_rx); while ((Adapter->device_removed == FALSE)) { timeout = 50; /* * Blink Tx and Rx LED when both Tx and Rx is * in normal bandwidth */ if (bBlinkBothLED) { /* * Assign minimum number of blinks of * either Tx or Rx. */ if (num_of_time_tx > num_of_time_rx) num_of_time = num_of_time_rx; else num_of_time = num_of_time_tx; if (num_of_time > 0) { /* Blink both Tx and Rx LEDs */ if (LED_Blink(Adapter, 1 << GPIO_Num_tx, uiTxLedIndex, timeout, num_of_time, currdriverstate) == EVENT_SIGNALED) return EVENT_SIGNALED; if (LED_Blink(Adapter, 1 << GPIO_Num_rx, uiRxLedIndex, timeout, num_of_time, currdriverstate) == EVENT_SIGNALED) return EVENT_SIGNALED; } if (num_of_time == num_of_time_tx) { /* Blink pending rate of Rx */ if (LED_Blink(Adapter, (1 << GPIO_Num_rx), uiRxLedIndex, timeout, num_of_time_rx-num_of_time, currdriverstate) == EVENT_SIGNALED) return EVENT_SIGNALED; num_of_time = num_of_time_rx; } else { /* Blink pending rate of Tx */ if (LED_Blink(Adapter, 1 << GPIO_Num_tx, uiTxLedIndex, timeout, num_of_time_tx-num_of_time, currdriverstate) == EVENT_SIGNALED) return EVENT_SIGNALED; num_of_time = num_of_time_tx; } } else { if (num_of_time == num_of_time_tx) { /* Blink pending rate of Rx */ if (LED_Blink(Adapter, 1 << GPIO_Num_tx, uiTxLedIndex, timeout, num_of_time, currdriverstate) == EVENT_SIGNALED) return EVENT_SIGNALED; } else { /* Blink pending rate of Tx */ if (LED_Blink(Adapter, 1 << GPIO_Num_rx, uiRxLedIndex, timeout, num_of_time, currdriverstate) == EVENT_SIGNALED) return EVENT_SIGNALED; } } /* * If Tx/Rx rate is less than maximum blinks per second, * wait till delay completes to 1 second */ remDelay = MAX_NUM_OF_BLINKS - num_of_time; if (remDelay > 0) { timeout = 100 * remDelay; Status = wait_event_interruptible_timeout( Adapter->LEDInfo.notify_led_event, currdriverstate != Adapter->DriverState || kthread_should_stop(), msecs_to_jiffies(timeout)); if (kthread_should_stop()) { BCM_DEBUG_PRINT(Adapter, DBG_TYPE_OTHERS, LED_DUMP_INFO, DBG_LVL_ALL, "Led thread got signal to exit..hence exiting"); Adapter->LEDInfo.led_thread_running = BCM_LED_THREAD_DISABLED; return EVENT_SIGNALED; } if (Status) return EVENT_SIGNALED; } /* Turn off both Tx and Rx LEDs before next second */ TURN_OFF_LED(1 << GPIO_Num_tx, uiTxLedIndex); TURN_OFF_LED(1 << GPIO_Num_rx, uiTxLedIndex); /* * Read the Tx & Rx packets transmission after 1 second and * calculate rate of transfer */ Final_num_of_packts_tx = Adapter->dev->stats.tx_packets; Final_num_of_packts_rx = Adapter->dev->stats.rx_packets; rate_of_transfer_tx = Final_num_of_packts_tx - Initial_num_of_packts_tx; rate_of_transfer_rx = Final_num_of_packts_rx - Initial_num_of_packts_rx; /* Read initial value of packets sent/received */ Initial_num_of_packts_tx = Final_num_of_packts_tx; Initial_num_of_packts_rx = Final_num_of_packts_rx; /* Scale the rate of transfer to no of blinks. */ num_of_time_tx = ScaleRateofTransfer((ULONG)rate_of_transfer_tx); num_of_time_rx = ScaleRateofTransfer((ULONG)rate_of_transfer_rx); } return Status; } /* * ----------------------------------------------------------------------------- * Procedure: ValidateDSDParamsChecksum * * Description: Reads DSD Params and validates checkusm. * * Arguments: * Adapter - Pointer to Adapter structure. * ulParamOffset - Start offset of the DSD parameter to be read and * validated. * usParamLen - Length of the DSD Parameter. * * Returns: * * ----------------------------------------------------------------------------- */ static INT ValidateDSDParamsChecksum(PMINI_ADAPTER Adapter, ULONG ulParamOffset, USHORT usParamLen) { INT Status = STATUS_SUCCESS; PUCHAR puBuffer = NULL; USHORT usChksmOrg = 0; USHORT usChecksumCalculated = 0; BCM_DEBUG_PRINT(Adapter, DBG_TYPE_OTHERS, LED_DUMP_INFO, DBG_LVL_ALL, "LED Thread:ValidateDSDParamsChecksum: 0x%lx 0x%X", ulParamOffset, usParamLen); puBuffer = kmalloc(usParamLen, GFP_KERNEL); if (!puBuffer) { BCM_DEBUG_PRINT(Adapter, DBG_TYPE_OTHERS, LED_DUMP_INFO, DBG_LVL_ALL, "LED Thread: ValidateDSDParamsChecksum Allocation failed"); return -ENOMEM; } /* Read the DSD data from the parameter offset. */ if (STATUS_SUCCESS != BeceemNVMRead(Adapter, (PUINT)puBuffer, ulParamOffset, usParamLen)) { BCM_DEBUG_PRINT(Adapter, DBG_TYPE_OTHERS, LED_DUMP_INFO, DBG_LVL_ALL, "LED Thread: ValidateDSDParamsChecksum BeceemNVMRead failed"); Status = STATUS_IMAGE_CHECKSUM_MISMATCH; goto exit; } /* Calculate the checksum of the data read from the DSD parameter. */ usChecksumCalculated = CFG_CalculateChecksum(puBuffer, usParamLen); BCM_DEBUG_PRINT(Adapter, DBG_TYPE_OTHERS, LED_DUMP_INFO, DBG_LVL_ALL, "LED Thread: usCheckSumCalculated = 0x%x\n", usChecksumCalculated); /* * End of the DSD parameter will have a TWO bytes checksum stored in it. * Read it and compare with the calculated Checksum. */ if (STATUS_SUCCESS != BeceemNVMRead(Adapter, (PUINT)&usChksmOrg, ulParamOffset+usParamLen, 2)) { BCM_DEBUG_PRINT(Adapter, DBG_TYPE_OTHERS, LED_DUMP_INFO, DBG_LVL_ALL, "LED Thread: ValidateDSDParamsChecksum BeceemNVMRead failed"); Status = STATUS_IMAGE_CHECKSUM_MISMATCH; goto exit; } usChksmOrg = ntohs(usChksmOrg); BCM_DEBUG_PRINT(Adapter, DBG_TYPE_OTHERS, LED_DUMP_INFO, DBG_LVL_ALL, "LED Thread: usChksmOrg = 0x%x", usChksmOrg); /* * Compare the checksum calculated with the checksum read * from DSD section */ if (usChecksumCalculated ^ usChksmOrg) { BCM_DEBUG_PRINT(Adapter, DBG_TYPE_OTHERS, LED_DUMP_INFO, DBG_LVL_ALL, "LED Thread: ValidateDSDParamsChecksum: Checksums don't match"); Status = STATUS_IMAGE_CHECKSUM_MISMATCH; goto exit; } exit: kfree(puBuffer); return Status; } /* * ----------------------------------------------------------------------------- * Procedure: ValidateHWParmStructure * * Description: Validates HW Parameters. * * Arguments: * Adapter - Pointer to Adapter structure. * ulHwParamOffset - Start offset of the HW parameter Section to be read * and validated. * * Returns: * * ----------------------------------------------------------------------------- */ static INT ValidateHWParmStructure(PMINI_ADAPTER Adapter, ULONG ulHwParamOffset) { INT Status = STATUS_SUCCESS; USHORT HwParamLen = 0; /* * Add DSD start offset to the hwParamOffset to get * the actual address. */ ulHwParamOffset += DSD_START_OFFSET; /* Read the Length of HW_PARAM structure */ BeceemNVMRead(Adapter, (PUINT)&HwParamLen, ulHwParamOffset, 2); HwParamLen = ntohs(HwParamLen); if (0 == HwParamLen || HwParamLen > Adapter->uiNVMDSDSize) return STATUS_IMAGE_CHECKSUM_MISMATCH; BCM_DEBUG_PRINT(Adapter, DBG_TYPE_OTHERS, LED_DUMP_INFO, DBG_LVL_ALL, "LED Thread:HwParamLen = 0x%x", HwParamLen); Status = ValidateDSDParamsChecksum(Adapter, ulHwParamOffset, HwParamLen); return Status; } /* ValidateHWParmStructure() */ static int ReadLEDInformationFromEEPROM(PMINI_ADAPTER Adapter, UCHAR GPIO_Array[]) { int Status = STATUS_SUCCESS; ULONG dwReadValue = 0; USHORT usHwParamData = 0; USHORT usEEPROMVersion = 0; UCHAR ucIndex = 0; UCHAR ucGPIOInfo[32] = {0}; BeceemNVMRead(Adapter, (PUINT)&usEEPROMVersion, EEPROM_VERSION_OFFSET, 2); BCM_DEBUG_PRINT(Adapter, DBG_TYPE_OTHERS, LED_DUMP_INFO, DBG_LVL_ALL, "usEEPROMVersion: Minor:0x%X Major:0x%x", usEEPROMVersion&0xFF, ((usEEPROMVersion>>8)&0xFF)); if (((usEEPROMVersion>>8)&0xFF) < EEPROM_MAP5_MAJORVERSION) { BeceemNVMRead(Adapter, (PUINT)&usHwParamData, EEPROM_HW_PARAM_POINTER_ADDRESS, 2); usHwParamData = ntohs(usHwParamData); dwReadValue = usHwParamData; } else { /* * Validate Compatibility section and then read HW param * if compatibility section is valid. */ Status = ValidateDSDParamsChecksum(Adapter, DSD_START_OFFSET, COMPATIBILITY_SECTION_LENGTH_MAP5); if (Status != STATUS_SUCCESS) return Status; BeceemNVMRead(Adapter, (PUINT)&dwReadValue, EEPROM_HW_PARAM_POINTER_ADDRRES_MAP5, 4); dwReadValue = ntohl(dwReadValue); } BCM_DEBUG_PRINT(Adapter, DBG_TYPE_OTHERS, LED_DUMP_INFO, DBG_LVL_ALL, "LED Thread: Start address of HW_PARAM structure = 0x%lx", dwReadValue); /* * Validate if the address read out is within the DSD. * Adapter->uiNVMDSDSize gives whole DSD size inclusive of Autoinit. * lower limit should be above DSD_START_OFFSET and * upper limit should be below (Adapter->uiNVMDSDSize-DSD_START_OFFSET) */ if (dwReadValue < DSD_START_OFFSET || dwReadValue > (Adapter->uiNVMDSDSize-DSD_START_OFFSET)) return STATUS_IMAGE_CHECKSUM_MISMATCH; Status = ValidateHWParmStructure(Adapter, dwReadValue); if (Status) return Status; /* * Add DSD_START_OFFSET to the offset read from the EEPROM. * This will give the actual start HW Parameters start address. * To read GPIO section, add GPIO offset further. */ dwReadValue += DSD_START_OFFSET; /* = start address of hw param section. */ dwReadValue += GPIO_SECTION_START_OFFSET; /* = GPIO start offset within HW Param section. */ /* * Read the GPIO values for 32 GPIOs from EEPROM and map the function * number to GPIO pin number to GPIO_Array */ BeceemNVMRead(Adapter, (UINT *)ucGPIOInfo, dwReadValue, 32); for (ucIndex = 0; ucIndex < 32; ucIndex++) { switch (ucGPIOInfo[ucIndex]) { case RED_LED: GPIO_Array[RED_LED] = ucIndex; Adapter->gpioBitMap |= (1 << ucIndex); break; case BLUE_LED: GPIO_Array[BLUE_LED] = ucIndex; Adapter->gpioBitMap |= (1 << ucIndex); break; case YELLOW_LED: GPIO_Array[YELLOW_LED] = ucIndex; Adapter->gpioBitMap |= (1 << ucIndex); break; case GREEN_LED: GPIO_Array[GREEN_LED] = ucIndex; Adapter->gpioBitMap |= (1 << ucIndex); break; default: break; } } BCM_DEBUG_PRINT(Adapter, DBG_TYPE_OTHERS, LED_DUMP_INFO, DBG_LVL_ALL, "GPIO's bit map correspond to LED :0x%X", Adapter->gpioBitMap); return Status; } static int ReadConfigFileStructure(PMINI_ADAPTER Adapter, BOOLEAN *bEnableThread) { int Status = STATUS_SUCCESS; /* Array to store GPIO numbers from EEPROM */ UCHAR GPIO_Array[NUM_OF_LEDS+1]; UINT uiIndex = 0; UINT uiNum_of_LED_Type = 0; PUCHAR puCFGData = NULL; UCHAR bData = 0; memset(GPIO_Array, DISABLE_GPIO_NUM, NUM_OF_LEDS+1); if (!Adapter->pstargetparams || IS_ERR(Adapter->pstargetparams)) { BCM_DEBUG_PRINT (Adapter, DBG_TYPE_OTHERS, LED_DUMP_INFO, DBG_LVL_ALL, "Target Params not Avail.\n"); return -ENOENT; } /* Populate GPIO_Array with GPIO numbers for LED functions */ /* Read the GPIO numbers from EEPROM */ Status = ReadLEDInformationFromEEPROM(Adapter, GPIO_Array); if (Status == STATUS_IMAGE_CHECKSUM_MISMATCH) { *bEnableThread = FALSE; return STATUS_SUCCESS; } else if (Status) { *bEnableThread = FALSE; return Status; } /* * CONFIG file read successfully. Deallocate the memory of * uiFileNameBufferSize */ BCM_DEBUG_PRINT(Adapter, DBG_TYPE_OTHERS, LED_DUMP_INFO, DBG_LVL_ALL, "LED Thread: Config file read successfully\n"); puCFGData = (PUCHAR) &Adapter->pstargetparams->HostDrvrConfig1; /* * Offset for HostDrvConfig1, HostDrvConfig2, HostDrvConfig3 which * will have the information of LED type, LED on state for different * driver state and LED blink state. */ for (uiIndex = 0; uiIndex < NUM_OF_LEDS; uiIndex++) { bData = *puCFGData; /* * Check Bit 8 for polarity. If it is set, * polarity is reverse polarity */ if (bData & 0x80) { Adapter->LEDInfo.LEDState[uiIndex].BitPolarity = 0; /* unset the bit 8 */ bData = bData & 0x7f; } Adapter->LEDInfo.LEDState[uiIndex].LED_Type = bData; if (bData <= NUM_OF_LEDS) Adapter->LEDInfo.LEDState[uiIndex].GPIO_Num = GPIO_Array[bData]; else Adapter->LEDInfo.LEDState[uiIndex].GPIO_Num = DISABLE_GPIO_NUM; puCFGData++; bData = *puCFGData; Adapter->LEDInfo.LEDState[uiIndex].LED_On_State = bData; puCFGData++; bData = *puCFGData; Adapter->LEDInfo.LEDState[uiIndex].LED_Blink_State = bData; puCFGData++; } /* * Check if all the LED settings are disabled. If it is disabled, * dont launch the LED control thread. */ for (uiIndex = 0; uiIndex < NUM_OF_LEDS; uiIndex++) { if ((Adapter->LEDInfo.LEDState[uiIndex].LED_Type == DISABLE_GPIO_NUM) || (Adapter->LEDInfo.LEDState[uiIndex].LED_Type == 0x7f) || (Adapter->LEDInfo.LEDState[uiIndex].LED_Type == 0)) uiNum_of_LED_Type++; } if (uiNum_of_LED_Type >= NUM_OF_LEDS) *bEnableThread = FALSE; return Status; } /* * ----------------------------------------------------------------------------- * Procedure: LedGpioInit * * Description: Initializes LED GPIOs. Makes the LED GPIOs to OUTPUT mode * and make the initial state to be OFF. * * Arguments: * Adapter - Pointer to MINI_ADAPTER structure. * * Returns: VOID * * ----------------------------------------------------------------------------- */ static VOID LedGpioInit(PMINI_ADAPTER Adapter) { UINT uiResetValue = 0; UINT uiIndex = 0; /* Set all LED GPIO Mode to output mode */ if (rdmalt(Adapter, GPIO_MODE_REGISTER, &uiResetValue, sizeof(uiResetValue)) < 0) BCM_DEBUG_PRINT (Adapter, DBG_TYPE_OTHERS, LED_DUMP_INFO, DBG_LVL_ALL, "LED Thread: RDM Failed\n"); for (uiIndex = 0; uiIndex < NUM_OF_LEDS; uiIndex++) { if (Adapter->LEDInfo.LEDState[uiIndex].GPIO_Num != DISABLE_GPIO_NUM) uiResetValue |= (1 << Adapter->LEDInfo.LEDState[uiIndex].GPIO_Num); TURN_OFF_LED(1 << Adapter->LEDInfo.LEDState[uiIndex].GPIO_Num, uiIndex); } if (wrmalt(Adapter, GPIO_MODE_REGISTER, &uiResetValue, sizeof(uiResetValue)) < 0) BCM_DEBUG_PRINT (Adapter, DBG_TYPE_OTHERS, LED_DUMP_INFO, DBG_LVL_ALL, "LED Thread: WRM Failed\n"); Adapter->LEDInfo.bIdle_led_off = FALSE; } static INT BcmGetGPIOPinInfo(PMINI_ADAPTER Adapter, UCHAR *GPIO_num_tx, UCHAR *GPIO_num_rx, UCHAR *uiLedTxIndex, UCHAR *uiLedRxIndex, LedEventInfo_t currdriverstate) { UINT uiIndex = 0; *GPIO_num_tx = DISABLE_GPIO_NUM; *GPIO_num_rx = DISABLE_GPIO_NUM; for (uiIndex = 0; uiIndex < NUM_OF_LEDS; uiIndex++) { if ((currdriverstate == NORMAL_OPERATION) || (currdriverstate == IDLEMODE_EXIT) || (currdriverstate == FW_DOWNLOAD)) { if (Adapter->LEDInfo.LEDState[uiIndex].LED_Blink_State & currdriverstate) { if (Adapter->LEDInfo.LEDState[uiIndex].GPIO_Num != DISABLE_GPIO_NUM) { if (*GPIO_num_tx == DISABLE_GPIO_NUM) { *GPIO_num_tx = Adapter->LEDInfo.LEDState[uiIndex].GPIO_Num; *uiLedTxIndex = uiIndex; } else { *GPIO_num_rx = Adapter->LEDInfo.LEDState[uiIndex].GPIO_Num; *uiLedRxIndex = uiIndex; } } } } else { if (Adapter->LEDInfo.LEDState[uiIndex].LED_On_State & currdriverstate) { if (Adapter->LEDInfo.LEDState[uiIndex].GPIO_Num != DISABLE_GPIO_NUM) { *GPIO_num_tx = Adapter->LEDInfo.LEDState[uiIndex].GPIO_Num; *uiLedTxIndex = uiIndex; } } } } return STATUS_SUCCESS; } static VOID LEDControlThread(PMINI_ADAPTER Adapter) { UINT uiIndex = 0; UCHAR GPIO_num = 0; UCHAR uiLedIndex = 0; UINT uiResetValue = 0; LedEventInfo_t currdriverstate = 0; ulong timeout = 0; INT Status = 0; UCHAR dummyGPIONum = 0; UCHAR dummyIndex = 0; /* currdriverstate = Adapter->DriverState; */ Adapter->LEDInfo.bIdleMode_tx_from_host = FALSE; /* * Wait till event is triggered * * wait_event(Adapter->LEDInfo.notify_led_event, * currdriverstate!= Adapter->DriverState); */ GPIO_num = DISABLE_GPIO_NUM; while (TRUE) { /* Wait till event is triggered */ if ((GPIO_num == DISABLE_GPIO_NUM) || ((currdriverstate != FW_DOWNLOAD) && (currdriverstate != NORMAL_OPERATION) && (currdriverstate != LOWPOWER_MODE_ENTER)) || (currdriverstate == LED_THREAD_INACTIVE)) Status = wait_event_interruptible( Adapter->LEDInfo.notify_led_event, currdriverstate != Adapter->DriverState || kthread_should_stop()); if (kthread_should_stop() || Adapter->device_removed) { BCM_DEBUG_PRINT(Adapter, DBG_TYPE_OTHERS, LED_DUMP_INFO, DBG_LVL_ALL, "Led thread got signal to exit..hence exiting"); Adapter->LEDInfo.led_thread_running = BCM_LED_THREAD_DISABLED; TURN_OFF_LED(1 << GPIO_num, uiLedIndex); return; /* STATUS_FAILURE; */ } if (GPIO_num != DISABLE_GPIO_NUM) TURN_OFF_LED(1 << GPIO_num, uiLedIndex); if (Adapter->LEDInfo.bLedInitDone == FALSE) { LedGpioInit(Adapter); Adapter->LEDInfo.bLedInitDone = TRUE; } switch (Adapter->DriverState) { case DRIVER_INIT: currdriverstate = DRIVER_INIT; /* Adapter->DriverState; */ BcmGetGPIOPinInfo(Adapter, &GPIO_num, &dummyGPIONum, &uiLedIndex, &dummyIndex, currdriverstate); if (GPIO_num != DISABLE_GPIO_NUM) TURN_ON_LED(1 << GPIO_num, uiLedIndex); break; case FW_DOWNLOAD: /* * BCM_DEBUG_PRINT(Adapter, DBG_TYPE_OTHERS, * LED_DUMP_INFO, DBG_LVL_ALL, * "LED Thread: FW_DN_DONE called\n"); */ currdriverstate = FW_DOWNLOAD; BcmGetGPIOPinInfo(Adapter, &GPIO_num, &dummyGPIONum, &uiLedIndex, &dummyIndex, currdriverstate); if (GPIO_num != DISABLE_GPIO_NUM) { timeout = 50; LED_Blink(Adapter, 1 << GPIO_num, uiLedIndex, timeout, -1, currdriverstate); } break; case FW_DOWNLOAD_DONE: currdriverstate = FW_DOWNLOAD_DONE; BcmGetGPIOPinInfo(Adapter, &GPIO_num, &dummyGPIONum, &uiLedIndex, &dummyIndex, currdriverstate); if (GPIO_num != DISABLE_GPIO_NUM) TURN_ON_LED(1 << GPIO_num, uiLedIndex); break; case SHUTDOWN_EXIT: /* * no break, continue to NO_NETWORK_ENTRY * state as well. */ case NO_NETWORK_ENTRY: currdriverstate = NO_NETWORK_ENTRY; BcmGetGPIOPinInfo(Adapter, &GPIO_num, &dummyGPIONum, &uiLedIndex, &dummyGPIONum, currdriverstate); if (GPIO_num != DISABLE_GPIO_NUM) TURN_ON_LED(1 << GPIO_num, uiLedIndex); break; case NORMAL_OPERATION: { UCHAR GPIO_num_tx = DISABLE_GPIO_NUM; UCHAR GPIO_num_rx = DISABLE_GPIO_NUM; UCHAR uiLEDTx = 0; UCHAR uiLEDRx = 0; currdriverstate = NORMAL_OPERATION; Adapter->LEDInfo.bIdle_led_off = FALSE; BcmGetGPIOPinInfo(Adapter, &GPIO_num_tx, &GPIO_num_rx, &uiLEDTx, &uiLEDRx, currdriverstate); if ((GPIO_num_tx == DISABLE_GPIO_NUM) && (GPIO_num_rx == DISABLE_GPIO_NUM)) { GPIO_num = DISABLE_GPIO_NUM; } else { /* * If single LED is selected, use same * for both Tx and Rx */ if (GPIO_num_tx == DISABLE_GPIO_NUM) { GPIO_num_tx = GPIO_num_rx; uiLEDTx = uiLEDRx; } else if (GPIO_num_rx == DISABLE_GPIO_NUM) { GPIO_num_rx = GPIO_num_tx; uiLEDRx = uiLEDTx; } /* * Blink the LED in proportionate * to Tx and Rx transmissions. */ LED_Proportional_Blink(Adapter, GPIO_num_tx, uiLEDTx, GPIO_num_rx, uiLEDRx, currdriverstate); } } break; case LOWPOWER_MODE_ENTER: currdriverstate = LOWPOWER_MODE_ENTER; if (DEVICE_POWERSAVE_MODE_AS_MANUAL_CLOCK_GATING == Adapter->ulPowerSaveMode) { /* Turn OFF all the LED */ uiResetValue = 0; for (uiIndex = 0; uiIndex < NUM_OF_LEDS; uiIndex++) { if (Adapter->LEDInfo.LEDState[uiIndex].GPIO_Num != DISABLE_GPIO_NUM) TURN_OFF_LED((1 << Adapter->LEDInfo.LEDState[uiIndex].GPIO_Num), uiIndex); } } /* Turn off LED And WAKE-UP for Sendinf IDLE mode ACK */ Adapter->LEDInfo.bLedInitDone = FALSE; Adapter->LEDInfo.bIdle_led_off = TRUE; wake_up(&Adapter->LEDInfo.idleModeSyncEvent); GPIO_num = DISABLE_GPIO_NUM; break; case IDLEMODE_CONTINUE: currdriverstate = IDLEMODE_CONTINUE; GPIO_num = DISABLE_GPIO_NUM; break; case IDLEMODE_EXIT: break; case DRIVER_HALT: currdriverstate = DRIVER_HALT; GPIO_num = DISABLE_GPIO_NUM; for (uiIndex = 0; uiIndex < NUM_OF_LEDS; uiIndex++) { if (Adapter->LEDInfo.LEDState[uiIndex].GPIO_Num != DISABLE_GPIO_NUM) TURN_OFF_LED((1 << Adapter->LEDInfo.LEDState[uiIndex].GPIO_Num), uiIndex); } /* Adapter->DriverState = DRIVER_INIT; */ break; case LED_THREAD_INACTIVE: BCM_DEBUG_PRINT(Adapter, DBG_TYPE_OTHERS, LED_DUMP_INFO, DBG_LVL_ALL, "InActivating LED thread..."); currdriverstate = LED_THREAD_INACTIVE; Adapter->LEDInfo.led_thread_running = BCM_LED_THREAD_RUNNING_INACTIVELY; Adapter->LEDInfo.bLedInitDone = FALSE; /* disable ALL LED */ for (uiIndex = 0; uiIndex < NUM_OF_LEDS; uiIndex++) { if (Adapter->LEDInfo.LEDState[uiIndex].GPIO_Num != DISABLE_GPIO_NUM) TURN_OFF_LED((1 << Adapter->LEDInfo.LEDState[uiIndex].GPIO_Num), uiIndex); } break; case LED_THREAD_ACTIVE: BCM_DEBUG_PRINT(Adapter, DBG_TYPE_OTHERS, LED_DUMP_INFO, DBG_LVL_ALL, "Activating LED thread again..."); if (Adapter->LinkUpStatus == FALSE) Adapter->DriverState = NO_NETWORK_ENTRY; else Adapter->DriverState = NORMAL_OPERATION; Adapter->LEDInfo.led_thread_running = BCM_LED_THREAD_RUNNING_ACTIVELY; break; /* return; */ default: break; } } Adapter->LEDInfo.led_thread_running = BCM_LED_THREAD_DISABLED; } int InitLedSettings(PMINI_ADAPTER Adapter) { int Status = STATUS_SUCCESS; BOOLEAN bEnableThread = TRUE; UCHAR uiIndex = 0; /* * Initially set BitPolarity to normal polarity. The bit 8 of LED type * is used to change the polarity of the LED. */ for (uiIndex = 0; uiIndex < NUM_OF_LEDS; uiIndex++) Adapter->LEDInfo.LEDState[uiIndex].BitPolarity = 1; /* * Read the LED settings of CONFIG file and map it * to GPIO numbers in EEPROM */ Status = ReadConfigFileStructure(Adapter, &bEnableThread); if (STATUS_SUCCESS != Status) { BCM_DEBUG_PRINT(Adapter, DBG_TYPE_OTHERS, LED_DUMP_INFO, DBG_LVL_ALL, "LED Thread: FAILED in ReadConfigFileStructure\n"); return Status; } if (Adapter->LEDInfo.led_thread_running) { if (bEnableThread) { ; } else { Adapter->DriverState = DRIVER_HALT; wake_up(&Adapter->LEDInfo.notify_led_event); Adapter->LEDInfo.led_thread_running = BCM_LED_THREAD_DISABLED; } } else if (bEnableThread) { /* Create secondary thread to handle the LEDs */ init_waitqueue_head(&Adapter->LEDInfo.notify_led_event); init_waitqueue_head(&Adapter->LEDInfo.idleModeSyncEvent); Adapter->LEDInfo.led_thread_running = BCM_LED_THREAD_RUNNING_ACTIVELY; Adapter->LEDInfo.bIdle_led_off = FALSE; Adapter->LEDInfo.led_cntrl_threadid = kthread_run((int (*)(void *)) LEDControlThread, Adapter, "led_control_thread"); if (IS_ERR(Adapter->LEDInfo.led_cntrl_threadid)) { BCM_DEBUG_PRINT(Adapter, DBG_TYPE_OTHERS, LED_DUMP_INFO, DBG_LVL_ALL, "Not able to spawn Kernel Thread\n"); Adapter->LEDInfo.led_thread_running = BCM_LED_THREAD_DISABLED; return PTR_ERR(Adapter->LEDInfo.led_cntrl_threadid); } } return Status; }