/*************************************************************************** * Copyright (c) 2005-2009, Broadcom Corporation. * * Name: crystalhd_hw . c * * Description: * BCM70010 Linux driver HW layer. * ********************************************************************** * This file is part of the crystalhd device driver. * * This driver is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, version 2 of the License. * * This driver is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this driver. If not, see . **********************************************************************/ #include #include #include #include "crystalhd_hw.h" /* Functions internal to this file */ static void crystalhd_enable_uarts(struct crystalhd_adp *adp) { bc_dec_reg_wr(adp, UartSelectA, BSVS_UART_STREAM); bc_dec_reg_wr(adp, UartSelectB, BSVS_UART_DEC_OUTER); } static void crystalhd_start_dram(struct crystalhd_adp *adp) { bc_dec_reg_wr(adp, SDRAM_PARAM, ((40 / 5 - 1) << 0) | /* tras (40ns tras)/(5ns period) -1 ((15/5 - 1) << 4) | // trcd */ ((15 / 5 - 1) << 7) | /* trp */ ((10 / 5 - 1) << 10) | /* trrd */ ((15 / 5 + 1) << 12) | /* twr */ ((2 + 1) << 16) | /* twtr */ ((70 / 5 - 2) << 19) | /* trfc */ (0 << 23)); bc_dec_reg_wr(adp, SDRAM_PRECHARGE, 0); bc_dec_reg_wr(adp, SDRAM_EXT_MODE, 2); bc_dec_reg_wr(adp, SDRAM_MODE, 0x132); bc_dec_reg_wr(adp, SDRAM_PRECHARGE, 0); bc_dec_reg_wr(adp, SDRAM_REFRESH, 0); bc_dec_reg_wr(adp, SDRAM_REFRESH, 0); bc_dec_reg_wr(adp, SDRAM_MODE, 0x32); /* setting the refresh rate here */ bc_dec_reg_wr(adp, SDRAM_REF_PARAM, ((1 << 12) | 96)); } static bool crystalhd_bring_out_of_rst(struct crystalhd_adp *adp) { union link_misc_perst_deco_ctrl rst_deco_cntrl; union link_misc_perst_clk_ctrl rst_clk_cntrl; uint32_t temp; /* * Link clocks: MISC_PERST_CLOCK_CTRL Clear PLL power down bit, * delay to allow PLL to lock Clear alternate clock, stop clock bits */ rst_clk_cntrl.whole_reg = crystalhd_reg_rd(adp, MISC_PERST_CLOCK_CTRL); rst_clk_cntrl.pll_pwr_dn = 0; crystalhd_reg_wr(adp, MISC_PERST_CLOCK_CTRL, rst_clk_cntrl.whole_reg); msleep_interruptible(50); rst_clk_cntrl.whole_reg = crystalhd_reg_rd(adp, MISC_PERST_CLOCK_CTRL); rst_clk_cntrl.stop_core_clk = 0; rst_clk_cntrl.sel_alt_clk = 0; crystalhd_reg_wr(adp, MISC_PERST_CLOCK_CTRL, rst_clk_cntrl.whole_reg); msleep_interruptible(50); /* * Bus Arbiter Timeout: GISB_ARBITER_TIMER * Set internal bus arbiter timeout to 40us based on core clock speed * (63MHz * 40us = 0x9D8) */ crystalhd_reg_wr(adp, GISB_ARBITER_TIMER, 0x9D8); /* * Decoder clocks: MISC_PERST_DECODER_CTRL * Enable clocks while 7412 reset is asserted, delay * De-assert 7412 reset */ rst_deco_cntrl.whole_reg = crystalhd_reg_rd(adp, MISC_PERST_DECODER_CTRL); rst_deco_cntrl.stop_bcm_7412_clk = 0; rst_deco_cntrl.bcm7412_rst = 1; crystalhd_reg_wr(adp, MISC_PERST_DECODER_CTRL, rst_deco_cntrl.whole_reg); msleep_interruptible(10); rst_deco_cntrl.whole_reg = crystalhd_reg_rd(adp, MISC_PERST_DECODER_CTRL); rst_deco_cntrl.bcm7412_rst = 0; crystalhd_reg_wr(adp, MISC_PERST_DECODER_CTRL, rst_deco_cntrl.whole_reg); msleep_interruptible(50); /* Disable OTP_CONTENT_MISC to 0 to disable all secure modes */ crystalhd_reg_wr(adp, OTP_CONTENT_MISC, 0); /* Clear bit 29 of 0x404 */ temp = crystalhd_reg_rd(adp, PCIE_TL_TRANSACTION_CONFIGURATION); temp &= ~BC_BIT(29); crystalhd_reg_wr(adp, PCIE_TL_TRANSACTION_CONFIGURATION, temp); /* 2.5V regulator must be set to 2.6 volts (+6%) */ /* FIXME: jarod: what's the point of this reg read? */ temp = crystalhd_reg_rd(adp, MISC_PERST_VREG_CTRL); crystalhd_reg_wr(adp, MISC_PERST_VREG_CTRL, 0xF3); return true; } static bool crystalhd_put_in_reset(struct crystalhd_adp *adp) { union link_misc_perst_deco_ctrl rst_deco_cntrl; union link_misc_perst_clk_ctrl rst_clk_cntrl; uint32_t temp; /* * Decoder clocks: MISC_PERST_DECODER_CTRL * Assert 7412 reset, delay * Assert 7412 stop clock */ rst_deco_cntrl.whole_reg = crystalhd_reg_rd(adp, MISC_PERST_DECODER_CTRL); rst_deco_cntrl.stop_bcm_7412_clk = 1; crystalhd_reg_wr(adp, MISC_PERST_DECODER_CTRL, rst_deco_cntrl.whole_reg); msleep_interruptible(50); /* Bus Arbiter Timeout: GISB_ARBITER_TIMER * Set internal bus arbiter timeout to 40us based on core clock speed * (6.75MHZ * 40us = 0x10E) */ crystalhd_reg_wr(adp, GISB_ARBITER_TIMER, 0x10E); /* Link clocks: MISC_PERST_CLOCK_CTRL * Stop core clk, delay * Set alternate clk, delay, set PLL power down */ rst_clk_cntrl.whole_reg = crystalhd_reg_rd(adp, MISC_PERST_CLOCK_CTRL); rst_clk_cntrl.stop_core_clk = 1; rst_clk_cntrl.sel_alt_clk = 1; crystalhd_reg_wr(adp, MISC_PERST_CLOCK_CTRL, rst_clk_cntrl.whole_reg); msleep_interruptible(50); rst_clk_cntrl.whole_reg = crystalhd_reg_rd(adp, MISC_PERST_CLOCK_CTRL); rst_clk_cntrl.pll_pwr_dn = 1; crystalhd_reg_wr(adp, MISC_PERST_CLOCK_CTRL, rst_clk_cntrl.whole_reg); /* * Read and restore the Transaction Configuration Register * after core reset */ temp = crystalhd_reg_rd(adp, PCIE_TL_TRANSACTION_CONFIGURATION); /* * Link core soft reset: MISC3_RESET_CTRL * - Write BIT[0]=1 and read it back for core reset to take place */ crystalhd_reg_wr(adp, MISC3_RESET_CTRL, 1); rst_deco_cntrl.whole_reg = crystalhd_reg_rd(adp, MISC3_RESET_CTRL); msleep_interruptible(50); /* restore the transaction configuration register */ crystalhd_reg_wr(adp, PCIE_TL_TRANSACTION_CONFIGURATION, temp); return true; } static void crystalhd_disable_interrupts(struct crystalhd_adp *adp) { union intr_mask_reg intr_mask; intr_mask.whole_reg = crystalhd_reg_rd(adp, INTR_INTR_MSK_STS_REG); intr_mask.mask_pcie_err = 1; intr_mask.mask_pcie_rbusmast_err = 1; intr_mask.mask_pcie_rgr_bridge = 1; intr_mask.mask_rx_done = 1; intr_mask.mask_rx_err = 1; intr_mask.mask_tx_done = 1; intr_mask.mask_tx_err = 1; crystalhd_reg_wr(adp, INTR_INTR_MSK_SET_REG, intr_mask.whole_reg); return; } static void crystalhd_enable_interrupts(struct crystalhd_adp *adp) { union intr_mask_reg intr_mask; intr_mask.whole_reg = crystalhd_reg_rd(adp, INTR_INTR_MSK_STS_REG); intr_mask.mask_pcie_err = 1; intr_mask.mask_pcie_rbusmast_err = 1; intr_mask.mask_pcie_rgr_bridge = 1; intr_mask.mask_rx_done = 1; intr_mask.mask_rx_err = 1; intr_mask.mask_tx_done = 1; intr_mask.mask_tx_err = 1; crystalhd_reg_wr(adp, INTR_INTR_MSK_CLR_REG, intr_mask.whole_reg); return; } static void crystalhd_clear_errors(struct crystalhd_adp *adp) { uint32_t reg; /* FIXME: jarod: wouldn't we want to write a 0 to the reg? Or does the write clear the bits specified? */ reg = crystalhd_reg_rd(adp, MISC1_Y_RX_ERROR_STATUS); if (reg) crystalhd_reg_wr(adp, MISC1_Y_RX_ERROR_STATUS, reg); reg = crystalhd_reg_rd(adp, MISC1_UV_RX_ERROR_STATUS); if (reg) crystalhd_reg_wr(adp, MISC1_UV_RX_ERROR_STATUS, reg); reg = crystalhd_reg_rd(adp, MISC1_TX_DMA_ERROR_STATUS); if (reg) crystalhd_reg_wr(adp, MISC1_TX_DMA_ERROR_STATUS, reg); } static void crystalhd_clear_interrupts(struct crystalhd_adp *adp) { uint32_t intr_sts = crystalhd_reg_rd(adp, INTR_INTR_STATUS); if (intr_sts) { crystalhd_reg_wr(adp, INTR_INTR_CLR_REG, intr_sts); /* Write End Of Interrupt for PCIE */ crystalhd_reg_wr(adp, INTR_EOI_CTRL, 1); } } static void crystalhd_soft_rst(struct crystalhd_adp *adp) { uint32_t val; /* Assert c011 soft reset*/ bc_dec_reg_wr(adp, DecHt_HostSwReset, 0x00000001); msleep_interruptible(50); /* Release c011 soft reset*/ bc_dec_reg_wr(adp, DecHt_HostSwReset, 0x00000000); /* Disable Stuffing..*/ val = crystalhd_reg_rd(adp, MISC2_GLOBAL_CTRL); val |= BC_BIT(8); crystalhd_reg_wr(adp, MISC2_GLOBAL_CTRL, val); } static bool crystalhd_load_firmware_config(struct crystalhd_adp *adp) { uint32_t i = 0, reg; crystalhd_reg_wr(adp, DCI_DRAM_BASE_ADDR, (BC_DRAM_FW_CFG_ADDR >> 19)); crystalhd_reg_wr(adp, AES_CMD, 0); crystalhd_reg_wr(adp, AES_CONFIG_INFO, (BC_DRAM_FW_CFG_ADDR & 0x7FFFF)); crystalhd_reg_wr(adp, AES_CMD, 0x1); /* FIXME: jarod: I've seen this fail, and introducing extra delays helps... */ for (i = 0; i < 100; ++i) { reg = crystalhd_reg_rd(adp, AES_STATUS); if (reg & 0x1) return true; msleep_interruptible(10); } return false; } static bool crystalhd_start_device(struct crystalhd_adp *adp) { uint32_t dbg_options, glb_cntrl = 0, reg_pwrmgmt = 0; BCMLOG(BCMLOG_INFO, "Starting BCM70012 Device\n"); reg_pwrmgmt = crystalhd_reg_rd(adp, PCIE_DLL_DATA_LINK_CONTROL); reg_pwrmgmt &= ~ASPM_L1_ENABLE; crystalhd_reg_wr(adp, PCIE_DLL_DATA_LINK_CONTROL, reg_pwrmgmt); if (!crystalhd_bring_out_of_rst(adp)) { BCMLOG_ERR("Failed To Bring Link Out Of Reset\n"); return false; } crystalhd_disable_interrupts(adp); crystalhd_clear_errors(adp); crystalhd_clear_interrupts(adp); crystalhd_enable_interrupts(adp); /* Enable the option for getting the total no. of DWORDS * that have been transferred by the RXDMA engine */ dbg_options = crystalhd_reg_rd(adp, MISC1_DMA_DEBUG_OPTIONS_REG); dbg_options |= 0x10; crystalhd_reg_wr(adp, MISC1_DMA_DEBUG_OPTIONS_REG, dbg_options); /* Enable PCI Global Control options */ glb_cntrl = crystalhd_reg_rd(adp, MISC2_GLOBAL_CTRL); glb_cntrl |= 0x100; glb_cntrl |= 0x8000; crystalhd_reg_wr(adp, MISC2_GLOBAL_CTRL, glb_cntrl); crystalhd_enable_interrupts(adp); crystalhd_soft_rst(adp); crystalhd_start_dram(adp); crystalhd_enable_uarts(adp); return true; } static bool crystalhd_stop_device(struct crystalhd_adp *adp) { uint32_t reg; BCMLOG(BCMLOG_INFO, "Stopping BCM70012 Device\n"); /* Clear and disable interrupts */ crystalhd_disable_interrupts(adp); crystalhd_clear_errors(adp); crystalhd_clear_interrupts(adp); if (!crystalhd_put_in_reset(adp)) BCMLOG_ERR("Failed to Put Link To Reset State\n"); reg = crystalhd_reg_rd(adp, PCIE_DLL_DATA_LINK_CONTROL); reg |= ASPM_L1_ENABLE; crystalhd_reg_wr(adp, PCIE_DLL_DATA_LINK_CONTROL, reg); /* Set PCI Clk Req */ reg = crystalhd_reg_rd(adp, PCIE_CLK_REQ_REG); reg |= PCI_CLK_REQ_ENABLE; crystalhd_reg_wr(adp, PCIE_CLK_REQ_REG, reg); return true; } static struct crystalhd_rx_dma_pkt *crystalhd_hw_alloc_rx_pkt(struct crystalhd_hw *hw) { unsigned long flags = 0; struct crystalhd_rx_dma_pkt *temp = NULL; if (!hw) return NULL; spin_lock_irqsave(&hw->lock, flags); temp = hw->rx_pkt_pool_head; if (temp) { hw->rx_pkt_pool_head = hw->rx_pkt_pool_head->next; temp->dio_req = NULL; temp->pkt_tag = 0; temp->flags = 0; } spin_unlock_irqrestore(&hw->lock, flags); return temp; } static void crystalhd_hw_free_rx_pkt(struct crystalhd_hw *hw, struct crystalhd_rx_dma_pkt *pkt) { unsigned long flags = 0; if (!hw || !pkt) return; spin_lock_irqsave(&hw->lock, flags); pkt->next = hw->rx_pkt_pool_head; hw->rx_pkt_pool_head = pkt; spin_unlock_irqrestore(&hw->lock, flags); } /* * Call back from TX - IOQ deletion. * * This routine will release the TX DMA rings allocated * druing setup_dma rings interface. * * Memory is allocated per DMA ring basis. This is just * a place holder to be able to create the dio queues. */ static void crystalhd_tx_desc_rel_call_back(void *context, void *data) { } /* * Rx Packet release callback.. * * Release All user mapped capture buffers and Our DMA packets * back to our free pool. The actual cleanup of the DMA * ring descriptors happen during dma ring release. */ static void crystalhd_rx_pkt_rel_call_back(void *context, void *data) { struct crystalhd_hw *hw = (struct crystalhd_hw *)context; struct crystalhd_rx_dma_pkt *pkt = (struct crystalhd_rx_dma_pkt *)data; if (!pkt || !hw) { BCMLOG_ERR("Invalid arg - %p %p\n", hw, pkt); return; } if (pkt->dio_req) crystalhd_unmap_dio(hw->adp, pkt->dio_req); else BCMLOG_ERR("Missing dio_req: 0x%x\n", pkt->pkt_tag); crystalhd_hw_free_rx_pkt(hw, pkt); } #define crystalhd_hw_delete_ioq(adp, q) \ if (q) { \ crystalhd_delete_dioq(adp, q); \ q = NULL; \ } static void crystalhd_hw_delete_ioqs(struct crystalhd_hw *hw) { if (!hw) return; BCMLOG(BCMLOG_DBG, "Deleting IOQs\n"); crystalhd_hw_delete_ioq(hw->adp, hw->tx_actq); crystalhd_hw_delete_ioq(hw->adp, hw->tx_freeq); crystalhd_hw_delete_ioq(hw->adp, hw->rx_actq); crystalhd_hw_delete_ioq(hw->adp, hw->rx_freeq); crystalhd_hw_delete_ioq(hw->adp, hw->rx_rdyq); } #define crystalhd_hw_create_ioq(sts, hw, q, cb) \ do { \ sts = crystalhd_create_dioq(hw->adp, &q, cb, hw); \ if (sts != BC_STS_SUCCESS) \ goto hw_create_ioq_err; \ } while (0) /* * Create IOQs.. * * TX - Active & Free * RX - Active, Ready and Free. */ static enum BC_STATUS crystalhd_hw_create_ioqs(struct crystalhd_hw *hw) { enum BC_STATUS sts = BC_STS_SUCCESS; if (!hw) { BCMLOG_ERR("Invalid Arg!!\n"); return BC_STS_INV_ARG; } crystalhd_hw_create_ioq(sts, hw, hw->tx_freeq, crystalhd_tx_desc_rel_call_back); crystalhd_hw_create_ioq(sts, hw, hw->tx_actq, crystalhd_tx_desc_rel_call_back); crystalhd_hw_create_ioq(sts, hw, hw->rx_freeq, crystalhd_rx_pkt_rel_call_back); crystalhd_hw_create_ioq(sts, hw, hw->rx_rdyq, crystalhd_rx_pkt_rel_call_back); crystalhd_hw_create_ioq(sts, hw, hw->rx_actq, crystalhd_rx_pkt_rel_call_back); return sts; hw_create_ioq_err: crystalhd_hw_delete_ioqs(hw); return sts; } static bool crystalhd_code_in_full(struct crystalhd_adp *adp, uint32_t needed_sz, bool b_188_byte_pkts, uint8_t flags) { uint32_t base, end, writep, readp; uint32_t cpbSize, cpbFullness, fifoSize; if (flags & 0x02) { /* ASF Bit is set */ base = bc_dec_reg_rd(adp, REG_Dec_TsAudCDB2Base); end = bc_dec_reg_rd(adp, REG_Dec_TsAudCDB2End); writep = bc_dec_reg_rd(adp, REG_Dec_TsAudCDB2Wrptr); readp = bc_dec_reg_rd(adp, REG_Dec_TsAudCDB2Rdptr); } else if (b_188_byte_pkts) { /*Encrypted 188 byte packets*/ base = bc_dec_reg_rd(adp, REG_Dec_TsUser0Base); end = bc_dec_reg_rd(adp, REG_Dec_TsUser0End); writep = bc_dec_reg_rd(adp, REG_Dec_TsUser0Wrptr); readp = bc_dec_reg_rd(adp, REG_Dec_TsUser0Rdptr); } else { base = bc_dec_reg_rd(adp, REG_DecCA_RegCinBase); end = bc_dec_reg_rd(adp, REG_DecCA_RegCinEnd); writep = bc_dec_reg_rd(adp, REG_DecCA_RegCinWrPtr); readp = bc_dec_reg_rd(adp, REG_DecCA_RegCinRdPtr); } cpbSize = end - base; if (writep >= readp) cpbFullness = writep - readp; else cpbFullness = (end - base) - (readp - writep); fifoSize = cpbSize - cpbFullness; if (fifoSize < BC_INFIFO_THRESHOLD) return true; if (needed_sz > (fifoSize - BC_INFIFO_THRESHOLD)) return true; return false; } static enum BC_STATUS crystalhd_hw_tx_req_complete(struct crystalhd_hw *hw, uint32_t list_id, enum BC_STATUS cs) { struct tx_dma_pkt *tx_req; if (!hw || !list_id) { BCMLOG_ERR("Invalid Arg..\n"); return BC_STS_INV_ARG; } hw->pwr_lock--; tx_req = (struct tx_dma_pkt *)crystalhd_dioq_find_and_fetch(hw->tx_actq, list_id); if (!tx_req) { if (cs != BC_STS_IO_USER_ABORT) BCMLOG_ERR("Find and Fetch Did not find req\n"); return BC_STS_NO_DATA; } if (tx_req->call_back) { tx_req->call_back(tx_req->dio_req, tx_req->cb_event, cs); tx_req->dio_req = NULL; tx_req->cb_event = NULL; tx_req->call_back = NULL; } else { BCMLOG(BCMLOG_DBG, "Missing Tx Callback - %X\n", tx_req->list_tag); } /* Now put back the tx_list back in FreeQ */ tx_req->list_tag = 0; return crystalhd_dioq_add(hw->tx_freeq, tx_req, false, 0); } static bool crystalhd_tx_list0_handler(struct crystalhd_hw *hw, uint32_t err_sts) { uint32_t err_mask, tmp; unsigned long flags = 0; err_mask = MISC1_TX_DMA_ERROR_STATUS_TX_L0_DESC_TX_ABORT_ERRORS_MASK | MISC1_TX_DMA_ERROR_STATUS_TX_L0_DMA_DATA_TX_ABORT_ERRORS_MASK | MISC1_TX_DMA_ERROR_STATUS_TX_L0_FIFO_FULL_ERRORS_MASK; if (!(err_sts & err_mask)) return false; BCMLOG_ERR("Error on Tx-L0 %x\n", err_sts); tmp = err_mask; if (err_sts & MISC1_TX_DMA_ERROR_STATUS_TX_L0_FIFO_FULL_ERRORS_MASK) tmp &= ~MISC1_TX_DMA_ERROR_STATUS_TX_L0_FIFO_FULL_ERRORS_MASK; if (tmp) { spin_lock_irqsave(&hw->lock, flags); /* reset list index.*/ hw->tx_list_post_index = 0; spin_unlock_irqrestore(&hw->lock, flags); } tmp = err_sts & err_mask; crystalhd_reg_wr(hw->adp, MISC1_TX_DMA_ERROR_STATUS, tmp); return true; } static bool crystalhd_tx_list1_handler(struct crystalhd_hw *hw, uint32_t err_sts) { uint32_t err_mask, tmp; unsigned long flags = 0; err_mask = MISC1_TX_DMA_ERROR_STATUS_TX_L1_DESC_TX_ABORT_ERRORS_MASK | MISC1_TX_DMA_ERROR_STATUS_TX_L1_DMA_DATA_TX_ABORT_ERRORS_MASK | MISC1_TX_DMA_ERROR_STATUS_TX_L1_FIFO_FULL_ERRORS_MASK; if (!(err_sts & err_mask)) return false; BCMLOG_ERR("Error on Tx-L1 %x\n", err_sts); tmp = err_mask; if (err_sts & MISC1_TX_DMA_ERROR_STATUS_TX_L1_FIFO_FULL_ERRORS_MASK) tmp &= ~MISC1_TX_DMA_ERROR_STATUS_TX_L1_FIFO_FULL_ERRORS_MASK; if (tmp) { spin_lock_irqsave(&hw->lock, flags); /* reset list index.*/ hw->tx_list_post_index = 0; spin_unlock_irqrestore(&hw->lock, flags); } tmp = err_sts & err_mask; crystalhd_reg_wr(hw->adp, MISC1_TX_DMA_ERROR_STATUS, tmp); return true; } static void crystalhd_tx_isr(struct crystalhd_hw *hw, uint32_t int_sts) { uint32_t err_sts; if (int_sts & INTR_INTR_STATUS_L0_TX_DMA_DONE_INTR_MASK) crystalhd_hw_tx_req_complete(hw, hw->tx_ioq_tag_seed + 0, BC_STS_SUCCESS); if (int_sts & INTR_INTR_STATUS_L1_TX_DMA_DONE_INTR_MASK) crystalhd_hw_tx_req_complete(hw, hw->tx_ioq_tag_seed + 1, BC_STS_SUCCESS); if (!(int_sts & (INTR_INTR_STATUS_L0_TX_DMA_ERR_INTR_MASK | INTR_INTR_STATUS_L1_TX_DMA_ERR_INTR_MASK))) { /* No error mask set.. */ return; } /* Handle Tx errors. */ err_sts = crystalhd_reg_rd(hw->adp, MISC1_TX_DMA_ERROR_STATUS); if (crystalhd_tx_list0_handler(hw, err_sts)) crystalhd_hw_tx_req_complete(hw, hw->tx_ioq_tag_seed + 0, BC_STS_ERROR); if (crystalhd_tx_list1_handler(hw, err_sts)) crystalhd_hw_tx_req_complete(hw, hw->tx_ioq_tag_seed + 1, BC_STS_ERROR); hw->stats.tx_errors++; } static void crystalhd_hw_dump_desc(struct dma_descriptor *p_dma_desc, uint32_t ul_desc_index, uint32_t cnt) { uint32_t ix, ll = 0; if (!p_dma_desc || !cnt) return; /* FIXME: jarod: perhaps a modparam desc_debug to enable this, rather than * setting ll (log level, I presume) to non-zero? */ if (!ll) return; for (ix = ul_desc_index; ix < (ul_desc_index + cnt); ix++) { BCMLOG(ll, "%s[%d] Buff[%x:%x] Next:[%x:%x] XferSz:%x Intr:%x,Last:%x\n", ((p_dma_desc[ul_desc_index].dma_dir) ? "TDesc" : "RDesc"), ul_desc_index, p_dma_desc[ul_desc_index].buff_addr_high, p_dma_desc[ul_desc_index].buff_addr_low, p_dma_desc[ul_desc_index].next_desc_addr_high, p_dma_desc[ul_desc_index].next_desc_addr_low, p_dma_desc[ul_desc_index].xfer_size, p_dma_desc[ul_desc_index].intr_enable, p_dma_desc[ul_desc_index].last_rec_indicator); } } static enum BC_STATUS crystalhd_hw_fill_desc(struct crystalhd_dio_req *ioreq, struct dma_descriptor *desc, dma_addr_t desc_paddr_base, uint32_t sg_cnt, uint32_t sg_st_ix, uint32_t sg_st_off, uint32_t xfr_sz) { uint32_t count = 0, ix = 0, sg_ix = 0, len = 0, last_desc_ix = 0; dma_addr_t desc_phy_addr = desc_paddr_base; union addr_64 addr_temp; if (!ioreq || !desc || !desc_paddr_base || !xfr_sz || (!sg_cnt && !ioreq->uinfo.dir_tx)) { BCMLOG_ERR("Invalid Args\n"); return BC_STS_INV_ARG; } for (ix = 0; ix < sg_cnt; ix++) { /* Setup SGLE index. */ sg_ix = ix + sg_st_ix; /* Get SGLE length */ len = crystalhd_get_sgle_len(ioreq, sg_ix); if (len % 4) { BCMLOG_ERR(" len in sg %d %d %d\n", len, sg_ix, sg_cnt); return BC_STS_NOT_IMPL; } /* Setup DMA desc with Phy addr & Length at current index. */ addr_temp.full_addr = crystalhd_get_sgle_paddr(ioreq, sg_ix); if (sg_ix == sg_st_ix) { addr_temp.full_addr += sg_st_off; len -= sg_st_off; } memset(&desc[ix], 0, sizeof(desc[ix])); desc[ix].buff_addr_low = addr_temp.low_part; desc[ix].buff_addr_high = addr_temp.high_part; desc[ix].dma_dir = ioreq->uinfo.dir_tx; /* Chain DMA descriptor. */ addr_temp.full_addr = desc_phy_addr + sizeof(struct dma_descriptor); desc[ix].next_desc_addr_low = addr_temp.low_part; desc[ix].next_desc_addr_high = addr_temp.high_part; if ((count + len) > xfr_sz) len = xfr_sz - count; /* Debug.. */ if ((!len) || (len > crystalhd_get_sgle_len(ioreq, sg_ix))) { BCMLOG_ERR("inv-len(%x) Ix(%d) count:%x xfr_sz:%x sg_cnt:%d\n", len, ix, count, xfr_sz, sg_cnt); return BC_STS_ERROR; } /* Length expects Multiple of 4 */ desc[ix].xfer_size = (len / 4); crystalhd_hw_dump_desc(desc, ix, 1); count += len; desc_phy_addr += sizeof(struct dma_descriptor); } last_desc_ix = ix - 1; if (ioreq->fb_size) { memset(&desc[ix], 0, sizeof(desc[ix])); addr_temp.full_addr = ioreq->fb_pa; desc[ix].buff_addr_low = addr_temp.low_part; desc[ix].buff_addr_high = addr_temp.high_part; desc[ix].dma_dir = ioreq->uinfo.dir_tx; desc[ix].xfer_size = 1; desc[ix].fill_bytes = 4 - ioreq->fb_size; count += ioreq->fb_size; last_desc_ix++; } /* setup last descriptor..*/ desc[last_desc_ix].last_rec_indicator = 1; desc[last_desc_ix].next_desc_addr_low = 0; desc[last_desc_ix].next_desc_addr_high = 0; desc[last_desc_ix].intr_enable = 1; crystalhd_hw_dump_desc(desc, last_desc_ix, 1); if (count != xfr_sz) { BCMLOG_ERR("interal error sz curr:%x exp:%x\n", count, xfr_sz); return BC_STS_ERROR; } return BC_STS_SUCCESS; } static enum BC_STATUS crystalhd_xlat_sgl_to_dma_desc(struct crystalhd_dio_req *ioreq, struct dma_desc_mem *pdesc_mem, uint32_t *uv_desc_index) { struct dma_descriptor *desc = NULL; dma_addr_t desc_paddr_base = 0; uint32_t sg_cnt = 0, sg_st_ix = 0, sg_st_off = 0; uint32_t xfr_sz = 0; enum BC_STATUS sts = BC_STS_SUCCESS; /* Check params.. */ if (!ioreq || !pdesc_mem || !uv_desc_index) { BCMLOG_ERR("Invalid Args\n"); return BC_STS_INV_ARG; } if (!pdesc_mem->sz || !pdesc_mem->pdma_desc_start || !ioreq->sg || (!ioreq->sg_cnt && !ioreq->uinfo.dir_tx)) { BCMLOG_ERR("Invalid Args\n"); return BC_STS_INV_ARG; } if ((ioreq->uinfo.dir_tx) && (ioreq->uinfo.uv_offset)) { BCMLOG_ERR("UV offset for TX??\n"); return BC_STS_INV_ARG; } desc = pdesc_mem->pdma_desc_start; desc_paddr_base = pdesc_mem->phy_addr; if (ioreq->uinfo.dir_tx || (ioreq->uinfo.uv_offset == 0)) { sg_cnt = ioreq->sg_cnt; xfr_sz = ioreq->uinfo.xfr_len; } else { sg_cnt = ioreq->uinfo.uv_sg_ix + 1; xfr_sz = ioreq->uinfo.uv_offset; } sts = crystalhd_hw_fill_desc(ioreq, desc, desc_paddr_base, sg_cnt, sg_st_ix, sg_st_off, xfr_sz); if ((sts != BC_STS_SUCCESS) || !ioreq->uinfo.uv_offset) return sts; /* Prepare for UV mapping.. */ desc = &pdesc_mem->pdma_desc_start[sg_cnt]; desc_paddr_base = pdesc_mem->phy_addr + (sg_cnt * sizeof(struct dma_descriptor)); /* Done with desc addr.. now update sg stuff.*/ sg_cnt = ioreq->sg_cnt - ioreq->uinfo.uv_sg_ix; xfr_sz = ioreq->uinfo.xfr_len - ioreq->uinfo.uv_offset; sg_st_ix = ioreq->uinfo.uv_sg_ix; sg_st_off = ioreq->uinfo.uv_sg_off; sts = crystalhd_hw_fill_desc(ioreq, desc, desc_paddr_base, sg_cnt, sg_st_ix, sg_st_off, xfr_sz); if (sts != BC_STS_SUCCESS) return sts; *uv_desc_index = sg_st_ix; return sts; } static void crystalhd_start_tx_dma_engine(struct crystalhd_hw *hw) { uint32_t dma_cntrl; dma_cntrl = crystalhd_reg_rd(hw->adp, MISC1_TX_SW_DESC_LIST_CTRL_STS); if (!(dma_cntrl & DMA_START_BIT)) { dma_cntrl |= DMA_START_BIT; crystalhd_reg_wr(hw->adp, MISC1_TX_SW_DESC_LIST_CTRL_STS, dma_cntrl); } return; } /* _CHECK_THIS_ * * Verify if the Stop generates a completion interrupt or not. * if it does not generate an interrupt, then add polling here. */ static enum BC_STATUS crystalhd_stop_tx_dma_engine(struct crystalhd_hw *hw) { uint32_t dma_cntrl, cnt = 30; uint32_t l1 = 1, l2 = 1; unsigned long flags = 0; dma_cntrl = crystalhd_reg_rd(hw->adp, MISC1_TX_SW_DESC_LIST_CTRL_STS); BCMLOG(BCMLOG_DBG, "Stopping TX DMA Engine..\n"); /* FIXME: jarod: invert dma_ctrl and check bit? or are there missing parens? */ if (!dma_cntrl & DMA_START_BIT) { BCMLOG(BCMLOG_DBG, "Already Stopped\n"); return BC_STS_SUCCESS; } crystalhd_disable_interrupts(hw->adp); /* Issue stop to HW */ /* This bit when set gave problems. Please check*/ dma_cntrl &= ~DMA_START_BIT; crystalhd_reg_wr(hw->adp, MISC1_TX_SW_DESC_LIST_CTRL_STS, dma_cntrl); BCMLOG(BCMLOG_DBG, "Cleared the DMA Start bit\n"); /* Poll for 3seconds (30 * 100ms) on both the lists..*/ while ((l1 || l2) && cnt) { if (l1) { l1 = crystalhd_reg_rd(hw->adp, MISC1_TX_FIRST_DESC_L_ADDR_LIST0); l1 &= DMA_START_BIT; } if (l2) { l2 = crystalhd_reg_rd(hw->adp, MISC1_TX_FIRST_DESC_L_ADDR_LIST1); l2 &= DMA_START_BIT; } msleep_interruptible(100); cnt--; } if (!cnt) { BCMLOG_ERR("Failed to stop TX DMA.. l1 %d, l2 %d\n", l1, l2); crystalhd_enable_interrupts(hw->adp); return BC_STS_ERROR; } spin_lock_irqsave(&hw->lock, flags); hw->tx_list_post_index = 0; spin_unlock_irqrestore(&hw->lock, flags); BCMLOG(BCMLOG_DBG, "stopped TX DMA..\n"); crystalhd_enable_interrupts(hw->adp); return BC_STS_SUCCESS; } static uint32_t crystalhd_get_pib_avail_cnt(struct crystalhd_hw *hw) { /* * Position of the PIB Entries can be found at * 0th and the 1st location of the Circular list. */ uint32_t Q_addr; uint32_t pib_cnt, r_offset, w_offset; Q_addr = hw->pib_del_Q_addr; /* Get the Read Pointer */ crystalhd_mem_rd(hw->adp, Q_addr, 1, &r_offset); /* Get the Write Pointer */ crystalhd_mem_rd(hw->adp, Q_addr + sizeof(uint32_t), 1, &w_offset); if (r_offset == w_offset) return 0; /* Queue is empty */ if (w_offset > r_offset) pib_cnt = w_offset - r_offset; else pib_cnt = (w_offset + MAX_PIB_Q_DEPTH) - (r_offset + MIN_PIB_Q_DEPTH); if (pib_cnt > MAX_PIB_Q_DEPTH) { BCMLOG_ERR("Invalid PIB Count (%u)\n", pib_cnt); return 0; } return pib_cnt; } static uint32_t crystalhd_get_addr_from_pib_Q(struct crystalhd_hw *hw) { uint32_t Q_addr; uint32_t addr_entry, r_offset, w_offset; Q_addr = hw->pib_del_Q_addr; /* Get the Read Pointer 0Th Location is Read Pointer */ crystalhd_mem_rd(hw->adp, Q_addr, 1, &r_offset); /* Get the Write Pointer 1st Location is Write pointer */ crystalhd_mem_rd(hw->adp, Q_addr + sizeof(uint32_t), 1, &w_offset); /* Queue is empty */ if (r_offset == w_offset) return 0; if ((r_offset < MIN_PIB_Q_DEPTH) || (r_offset >= MAX_PIB_Q_DEPTH)) return 0; /* Get the Actual Address of the PIB */ crystalhd_mem_rd(hw->adp, Q_addr + (r_offset * sizeof(uint32_t)), 1, &addr_entry); /* Increment the Read Pointer */ r_offset++; if (MAX_PIB_Q_DEPTH == r_offset) r_offset = MIN_PIB_Q_DEPTH; /* Write back the read pointer to It's Location */ crystalhd_mem_wr(hw->adp, Q_addr, 1, &r_offset); return addr_entry; } static bool crystalhd_rel_addr_to_pib_Q(struct crystalhd_hw *hw, uint32_t addr_to_rel) { uint32_t Q_addr; uint32_t r_offset, w_offset, n_offset; Q_addr = hw->pib_rel_Q_addr; /* Get the Read Pointer */ crystalhd_mem_rd(hw->adp, Q_addr, 1, &r_offset); /* Get the Write Pointer */ crystalhd_mem_rd(hw->adp, Q_addr + sizeof(uint32_t), 1, &w_offset); if ((r_offset < MIN_PIB_Q_DEPTH) || (r_offset >= MAX_PIB_Q_DEPTH)) return false; n_offset = w_offset + 1; if (MAX_PIB_Q_DEPTH == n_offset) n_offset = MIN_PIB_Q_DEPTH; if (r_offset == n_offset) return false; /* should never happen */ /* Write the DRAM ADDR to the Queue at Next Offset */ crystalhd_mem_wr(hw->adp, Q_addr + (w_offset * sizeof(uint32_t)), 1, &addr_to_rel); /* Put the New value of the write pointer in Queue */ crystalhd_mem_wr(hw->adp, Q_addr + sizeof(uint32_t), 1, &n_offset); return true; } static void cpy_pib_to_app(struct c011_pib *src_pib, struct BC_PIC_INFO_BLOCK *dst_pib) { if (!src_pib || !dst_pib) { BCMLOG_ERR("Invalid Arguments\n"); return; } dst_pib->timeStamp = 0; dst_pib->picture_number = src_pib->ppb.picture_number; dst_pib->width = src_pib->ppb.width; dst_pib->height = src_pib->ppb.height; dst_pib->chroma_format = src_pib->ppb.chroma_format; dst_pib->pulldown = src_pib->ppb.pulldown; dst_pib->flags = src_pib->ppb.flags; dst_pib->sess_num = src_pib->ptsStcOffset; dst_pib->aspect_ratio = src_pib->ppb.aspect_ratio; dst_pib->colour_primaries = src_pib->ppb.colour_primaries; dst_pib->picture_meta_payload = src_pib->ppb.picture_meta_payload; dst_pib->frame_rate = src_pib->resolution ; return; } static void crystalhd_hw_proc_pib(struct crystalhd_hw *hw) { unsigned int cnt; struct c011_pib src_pib; uint32_t pib_addr, pib_cnt; struct BC_PIC_INFO_BLOCK *AppPib; struct crystalhd_rx_dma_pkt *rx_pkt = NULL; pib_cnt = crystalhd_get_pib_avail_cnt(hw); if (!pib_cnt) return; for (cnt = 0; cnt < pib_cnt; cnt++) { pib_addr = crystalhd_get_addr_from_pib_Q(hw); crystalhd_mem_rd(hw->adp, pib_addr, sizeof(struct c011_pib) / 4, (uint32_t *)&src_pib); if (src_pib.bFormatChange) { rx_pkt = (struct crystalhd_rx_dma_pkt *)crystalhd_dioq_fetch(hw->rx_freeq); if (!rx_pkt) return; rx_pkt->flags = 0; rx_pkt->flags |= COMP_FLAG_PIB_VALID | COMP_FLAG_FMT_CHANGE; AppPib = &rx_pkt->pib; cpy_pib_to_app(&src_pib, AppPib); BCMLOG(BCMLOG_DBG, "App PIB:%x %x %x %x %x %x %x %x %x %x\n", rx_pkt->pib.picture_number, rx_pkt->pib.aspect_ratio, rx_pkt->pib.chroma_format, rx_pkt->pib.colour_primaries, rx_pkt->pib.frame_rate, rx_pkt->pib.height, rx_pkt->pib.height, rx_pkt->pib.n_drop, rx_pkt->pib.pulldown, rx_pkt->pib.ycom); crystalhd_dioq_add(hw->rx_rdyq, (void *)rx_pkt, true, rx_pkt->pkt_tag); } crystalhd_rel_addr_to_pib_Q(hw, pib_addr); } } static void crystalhd_start_rx_dma_engine(struct crystalhd_hw *hw) { uint32_t dma_cntrl; dma_cntrl = crystalhd_reg_rd(hw->adp, MISC1_Y_RX_SW_DESC_LIST_CTRL_STS); if (!(dma_cntrl & DMA_START_BIT)) { dma_cntrl |= DMA_START_BIT; crystalhd_reg_wr(hw->adp, MISC1_Y_RX_SW_DESC_LIST_CTRL_STS, dma_cntrl); } dma_cntrl = crystalhd_reg_rd(hw->adp, MISC1_UV_RX_SW_DESC_LIST_CTRL_STS); if (!(dma_cntrl & DMA_START_BIT)) { dma_cntrl |= DMA_START_BIT; crystalhd_reg_wr(hw->adp, MISC1_UV_RX_SW_DESC_LIST_CTRL_STS, dma_cntrl); } return; } static void crystalhd_stop_rx_dma_engine(struct crystalhd_hw *hw) { uint32_t dma_cntrl = 0, count = 30; uint32_t l0y = 1, l0uv = 1, l1y = 1, l1uv = 1; dma_cntrl = crystalhd_reg_rd(hw->adp, MISC1_Y_RX_SW_DESC_LIST_CTRL_STS); if ((dma_cntrl & DMA_START_BIT)) { dma_cntrl &= ~DMA_START_BIT; crystalhd_reg_wr(hw->adp, MISC1_Y_RX_SW_DESC_LIST_CTRL_STS, dma_cntrl); } dma_cntrl = crystalhd_reg_rd(hw->adp, MISC1_UV_RX_SW_DESC_LIST_CTRL_STS); if ((dma_cntrl & DMA_START_BIT)) { dma_cntrl &= ~DMA_START_BIT; crystalhd_reg_wr(hw->adp, MISC1_UV_RX_SW_DESC_LIST_CTRL_STS, dma_cntrl); } /* Poll for 3seconds (30 * 100ms) on both the lists..*/ while ((l0y || l0uv || l1y || l1uv) && count) { if (l0y) { l0y = crystalhd_reg_rd(hw->adp, MISC1_Y_RX_FIRST_DESC_L_ADDR_LIST0); l0y &= DMA_START_BIT; if (!l0y) hw->rx_list_sts[0] &= ~rx_waiting_y_intr; } if (l1y) { l1y = crystalhd_reg_rd(hw->adp, MISC1_Y_RX_FIRST_DESC_L_ADDR_LIST1); l1y &= DMA_START_BIT; if (!l1y) hw->rx_list_sts[1] &= ~rx_waiting_y_intr; } if (l0uv) { l0uv = crystalhd_reg_rd(hw->adp, MISC1_UV_RX_FIRST_DESC_L_ADDR_LIST0); l0uv &= DMA_START_BIT; if (!l0uv) hw->rx_list_sts[0] &= ~rx_waiting_uv_intr; } if (l1uv) { l1uv = crystalhd_reg_rd(hw->adp, MISC1_UV_RX_FIRST_DESC_L_ADDR_LIST1); l1uv &= DMA_START_BIT; if (!l1uv) hw->rx_list_sts[1] &= ~rx_waiting_uv_intr; } msleep_interruptible(100); count--; } hw->rx_list_post_index = 0; BCMLOG(BCMLOG_SSTEP, "Capture Stop: %d List0:Sts:%x List1:Sts:%x\n", count, hw->rx_list_sts[0], hw->rx_list_sts[1]); } static enum BC_STATUS crystalhd_hw_prog_rxdma(struct crystalhd_hw *hw, struct crystalhd_rx_dma_pkt *rx_pkt) { uint32_t y_low_addr_reg, y_high_addr_reg; uint32_t uv_low_addr_reg, uv_high_addr_reg; union addr_64 desc_addr; unsigned long flags; if (!hw || !rx_pkt) { BCMLOG_ERR("Invalid Arguments\n"); return BC_STS_INV_ARG; } if (hw->rx_list_post_index >= DMA_ENGINE_CNT) { BCMLOG_ERR("List Out Of bounds %x\n", hw->rx_list_post_index); return BC_STS_INV_ARG; } spin_lock_irqsave(&hw->rx_lock, flags); /* FIXME: jarod: sts_free is an enum for 0, in crystalhd_hw.h... yuk... */ if (sts_free != hw->rx_list_sts[hw->rx_list_post_index]) { spin_unlock_irqrestore(&hw->rx_lock, flags); return BC_STS_BUSY; } if (!hw->rx_list_post_index) { y_low_addr_reg = MISC1_Y_RX_FIRST_DESC_L_ADDR_LIST0; y_high_addr_reg = MISC1_Y_RX_FIRST_DESC_U_ADDR_LIST0; uv_low_addr_reg = MISC1_UV_RX_FIRST_DESC_L_ADDR_LIST0; uv_high_addr_reg = MISC1_UV_RX_FIRST_DESC_U_ADDR_LIST0; } else { y_low_addr_reg = MISC1_Y_RX_FIRST_DESC_L_ADDR_LIST1; y_high_addr_reg = MISC1_Y_RX_FIRST_DESC_U_ADDR_LIST1; uv_low_addr_reg = MISC1_UV_RX_FIRST_DESC_L_ADDR_LIST1; uv_high_addr_reg = MISC1_UV_RX_FIRST_DESC_U_ADDR_LIST1; } rx_pkt->pkt_tag = hw->rx_pkt_tag_seed + hw->rx_list_post_index; hw->rx_list_sts[hw->rx_list_post_index] |= rx_waiting_y_intr; if (rx_pkt->uv_phy_addr) hw->rx_list_sts[hw->rx_list_post_index] |= rx_waiting_uv_intr; hw->rx_list_post_index = (hw->rx_list_post_index + 1) % DMA_ENGINE_CNT; spin_unlock_irqrestore(&hw->rx_lock, flags); crystalhd_dioq_add(hw->rx_actq, (void *)rx_pkt, false, rx_pkt->pkt_tag); crystalhd_start_rx_dma_engine(hw); /* Program the Y descriptor */ desc_addr.full_addr = rx_pkt->desc_mem.phy_addr; crystalhd_reg_wr(hw->adp, y_high_addr_reg, desc_addr.high_part); crystalhd_reg_wr(hw->adp, y_low_addr_reg, desc_addr.low_part | 0x01); if (rx_pkt->uv_phy_addr) { /* Program the UV descriptor */ desc_addr.full_addr = rx_pkt->uv_phy_addr; crystalhd_reg_wr(hw->adp, uv_high_addr_reg, desc_addr.high_part); crystalhd_reg_wr(hw->adp, uv_low_addr_reg, desc_addr.low_part | 0x01); } return BC_STS_SUCCESS; } static enum BC_STATUS crystalhd_hw_post_cap_buff(struct crystalhd_hw *hw, struct crystalhd_rx_dma_pkt *rx_pkt) { enum BC_STATUS sts = crystalhd_hw_prog_rxdma(hw, rx_pkt); if (sts == BC_STS_BUSY) crystalhd_dioq_add(hw->rx_freeq, (void *)rx_pkt, false, rx_pkt->pkt_tag); return sts; } static void crystalhd_get_dnsz(struct crystalhd_hw *hw, uint32_t list_index, uint32_t *y_dw_dnsz, uint32_t *uv_dw_dnsz) { uint32_t y_dn_sz_reg, uv_dn_sz_reg; if (!list_index) { y_dn_sz_reg = MISC1_Y_RX_LIST0_CUR_BYTE_CNT; uv_dn_sz_reg = MISC1_UV_RX_LIST0_CUR_BYTE_CNT; } else { y_dn_sz_reg = MISC1_Y_RX_LIST1_CUR_BYTE_CNT; uv_dn_sz_reg = MISC1_UV_RX_LIST1_CUR_BYTE_CNT; } *y_dw_dnsz = crystalhd_reg_rd(hw->adp, y_dn_sz_reg); *uv_dw_dnsz = crystalhd_reg_rd(hw->adp, uv_dn_sz_reg); } /* * This function should be called only after making sure that the two DMA * lists are free. This function does not check if DMA's are active, before * turning off the DMA. */ static void crystalhd_hw_finalize_pause(struct crystalhd_hw *hw) { uint32_t dma_cntrl, aspm; hw->stop_pending = 0; dma_cntrl = crystalhd_reg_rd(hw->adp, MISC1_Y_RX_SW_DESC_LIST_CTRL_STS); if (dma_cntrl & DMA_START_BIT) { dma_cntrl &= ~DMA_START_BIT; crystalhd_reg_wr(hw->adp, MISC1_Y_RX_SW_DESC_LIST_CTRL_STS, dma_cntrl); } dma_cntrl = crystalhd_reg_rd(hw->adp, MISC1_UV_RX_SW_DESC_LIST_CTRL_STS); if (dma_cntrl & DMA_START_BIT) { dma_cntrl &= ~DMA_START_BIT; crystalhd_reg_wr(hw->adp, MISC1_UV_RX_SW_DESC_LIST_CTRL_STS, dma_cntrl); } hw->rx_list_post_index = 0; aspm = crystalhd_reg_rd(hw->adp, PCIE_DLL_DATA_LINK_CONTROL); aspm |= ASPM_L1_ENABLE; /* NAREN BCMLOG(BCMLOG_INFO, "aspm on\n"); */ crystalhd_reg_wr(hw->adp, PCIE_DLL_DATA_LINK_CONTROL, aspm); } static enum BC_STATUS crystalhd_rx_pkt_done(struct crystalhd_hw *hw, uint32_t list_index, enum BC_STATUS comp_sts) { struct crystalhd_rx_dma_pkt *rx_pkt = NULL; uint32_t y_dw_dnsz, uv_dw_dnsz; enum BC_STATUS sts = BC_STS_SUCCESS; if (!hw || list_index >= DMA_ENGINE_CNT) { BCMLOG_ERR("Invalid Arguments\n"); return BC_STS_INV_ARG; } rx_pkt = crystalhd_dioq_find_and_fetch(hw->rx_actq, hw->rx_pkt_tag_seed + list_index); if (!rx_pkt) { BCMLOG_ERR("Act-Q:PostIx:%x L0Sts:%x L1Sts:%x current L:%x tag:%x comp:%x\n", hw->rx_list_post_index, hw->rx_list_sts[0], hw->rx_list_sts[1], list_index, hw->rx_pkt_tag_seed + list_index, comp_sts); return BC_STS_INV_ARG; } if (comp_sts == BC_STS_SUCCESS) { crystalhd_get_dnsz(hw, list_index, &y_dw_dnsz, &uv_dw_dnsz); rx_pkt->dio_req->uinfo.y_done_sz = y_dw_dnsz; rx_pkt->flags = COMP_FLAG_DATA_VALID; if (rx_pkt->uv_phy_addr) rx_pkt->dio_req->uinfo.uv_done_sz = uv_dw_dnsz; crystalhd_dioq_add(hw->rx_rdyq, rx_pkt, true, hw->rx_pkt_tag_seed + list_index); return sts; } /* Check if we can post this DIO again. */ return crystalhd_hw_post_cap_buff(hw, rx_pkt); } static bool crystalhd_rx_list0_handler(struct crystalhd_hw *hw, uint32_t int_sts, uint32_t y_err_sts, uint32_t uv_err_sts) { uint32_t tmp; enum list_sts tmp_lsts; if (!(y_err_sts & GET_Y0_ERR_MSK) && !(uv_err_sts & GET_UV0_ERR_MSK)) return false; tmp_lsts = hw->rx_list_sts[0]; /* Y0 - DMA */ tmp = y_err_sts & GET_Y0_ERR_MSK; if (int_sts & INTR_INTR_STATUS_L0_Y_RX_DMA_DONE_INTR_MASK) hw->rx_list_sts[0] &= ~rx_waiting_y_intr; if (y_err_sts & MISC1_Y_RX_ERROR_STATUS_RX_L0_UNDERRUN_ERROR_MASK) { hw->rx_list_sts[0] &= ~rx_waiting_y_intr; tmp &= ~MISC1_Y_RX_ERROR_STATUS_RX_L0_UNDERRUN_ERROR_MASK; } if (y_err_sts & MISC1_Y_RX_ERROR_STATUS_RX_L0_FIFO_FULL_ERRORS_MASK) { hw->rx_list_sts[0] &= ~rx_y_mask; hw->rx_list_sts[0] |= rx_y_error; tmp &= ~MISC1_Y_RX_ERROR_STATUS_RX_L0_FIFO_FULL_ERRORS_MASK; } if (tmp) { hw->rx_list_sts[0] &= ~rx_y_mask; hw->rx_list_sts[0] |= rx_y_error; hw->rx_list_post_index = 0; } /* UV0 - DMA */ tmp = uv_err_sts & GET_UV0_ERR_MSK; if (int_sts & INTR_INTR_STATUS_L0_UV_RX_DMA_DONE_INTR_MASK) hw->rx_list_sts[0] &= ~rx_waiting_uv_intr; if (uv_err_sts & MISC1_UV_RX_ERROR_STATUS_RX_L0_UNDERRUN_ERROR_MASK) { hw->rx_list_sts[0] &= ~rx_waiting_uv_intr; tmp &= ~MISC1_UV_RX_ERROR_STATUS_RX_L0_UNDERRUN_ERROR_MASK; } if (uv_err_sts & MISC1_UV_RX_ERROR_STATUS_RX_L0_FIFO_FULL_ERRORS_MASK) { hw->rx_list_sts[0] &= ~rx_uv_mask; hw->rx_list_sts[0] |= rx_uv_error; tmp &= ~MISC1_UV_RX_ERROR_STATUS_RX_L0_FIFO_FULL_ERRORS_MASK; } if (tmp) { hw->rx_list_sts[0] &= ~rx_uv_mask; hw->rx_list_sts[0] |= rx_uv_error; hw->rx_list_post_index = 0; } if (y_err_sts & GET_Y0_ERR_MSK) { tmp = y_err_sts & GET_Y0_ERR_MSK; crystalhd_reg_wr(hw->adp, MISC1_Y_RX_ERROR_STATUS, tmp); } if (uv_err_sts & GET_UV0_ERR_MSK) { tmp = uv_err_sts & GET_UV0_ERR_MSK; crystalhd_reg_wr(hw->adp, MISC1_UV_RX_ERROR_STATUS, tmp); } return (tmp_lsts != hw->rx_list_sts[0]); } static bool crystalhd_rx_list1_handler(struct crystalhd_hw *hw, uint32_t int_sts, uint32_t y_err_sts, uint32_t uv_err_sts) { uint32_t tmp; enum list_sts tmp_lsts; if (!(y_err_sts & GET_Y1_ERR_MSK) && !(uv_err_sts & GET_UV1_ERR_MSK)) return false; tmp_lsts = hw->rx_list_sts[1]; /* Y1 - DMA */ tmp = y_err_sts & GET_Y1_ERR_MSK; if (int_sts & INTR_INTR_STATUS_L1_Y_RX_DMA_DONE_INTR_MASK) hw->rx_list_sts[1] &= ~rx_waiting_y_intr; if (y_err_sts & MISC1_Y_RX_ERROR_STATUS_RX_L1_UNDERRUN_ERROR_MASK) { hw->rx_list_sts[1] &= ~rx_waiting_y_intr; tmp &= ~MISC1_Y_RX_ERROR_STATUS_RX_L1_UNDERRUN_ERROR_MASK; } if (y_err_sts & MISC1_Y_RX_ERROR_STATUS_RX_L1_FIFO_FULL_ERRORS_MASK) { /* Add retry-support..*/ hw->rx_list_sts[1] &= ~rx_y_mask; hw->rx_list_sts[1] |= rx_y_error; tmp &= ~MISC1_Y_RX_ERROR_STATUS_RX_L1_FIFO_FULL_ERRORS_MASK; } if (tmp) { hw->rx_list_sts[1] &= ~rx_y_mask; hw->rx_list_sts[1] |= rx_y_error; hw->rx_list_post_index = 0; } /* UV1 - DMA */ tmp = uv_err_sts & GET_UV1_ERR_MSK; if (int_sts & INTR_INTR_STATUS_L1_UV_RX_DMA_DONE_INTR_MASK) hw->rx_list_sts[1] &= ~rx_waiting_uv_intr; if (uv_err_sts & MISC1_UV_RX_ERROR_STATUS_RX_L1_UNDERRUN_ERROR_MASK) { hw->rx_list_sts[1] &= ~rx_waiting_uv_intr; tmp &= ~MISC1_UV_RX_ERROR_STATUS_RX_L1_UNDERRUN_ERROR_MASK; } if (uv_err_sts & MISC1_UV_RX_ERROR_STATUS_RX_L1_FIFO_FULL_ERRORS_MASK) { /* Add retry-support*/ hw->rx_list_sts[1] &= ~rx_uv_mask; hw->rx_list_sts[1] |= rx_uv_error; tmp &= ~MISC1_UV_RX_ERROR_STATUS_RX_L1_FIFO_FULL_ERRORS_MASK; } if (tmp) { hw->rx_list_sts[1] &= ~rx_uv_mask; hw->rx_list_sts[1] |= rx_uv_error; hw->rx_list_post_index = 0; } if (y_err_sts & GET_Y1_ERR_MSK) { tmp = y_err_sts & GET_Y1_ERR_MSK; crystalhd_reg_wr(hw->adp, MISC1_Y_RX_ERROR_STATUS, tmp); } if (uv_err_sts & GET_UV1_ERR_MSK) { tmp = uv_err_sts & GET_UV1_ERR_MSK; crystalhd_reg_wr(hw->adp, MISC1_UV_RX_ERROR_STATUS, tmp); } return (tmp_lsts != hw->rx_list_sts[1]); } static void crystalhd_rx_isr(struct crystalhd_hw *hw, uint32_t intr_sts) { unsigned long flags; uint32_t i, list_avail = 0; enum BC_STATUS comp_sts = BC_STS_NO_DATA; uint32_t y_err_sts, uv_err_sts, y_dn_sz = 0, uv_dn_sz = 0; bool ret = 0; if (!hw) { BCMLOG_ERR("Invalid Arguments\n"); return; } if (!(intr_sts & GET_RX_INTR_MASK)) return; y_err_sts = crystalhd_reg_rd(hw->adp, MISC1_Y_RX_ERROR_STATUS); uv_err_sts = crystalhd_reg_rd(hw->adp, MISC1_UV_RX_ERROR_STATUS); for (i = 0; i < DMA_ENGINE_CNT; i++) { /* Update States..*/ spin_lock_irqsave(&hw->rx_lock, flags); if (i == 0) ret = crystalhd_rx_list0_handler(hw, intr_sts, y_err_sts, uv_err_sts); else ret = crystalhd_rx_list1_handler(hw, intr_sts, y_err_sts, uv_err_sts); if (ret) { switch (hw->rx_list_sts[i]) { case sts_free: comp_sts = BC_STS_SUCCESS; list_avail = 1; break; case rx_y_error: case rx_uv_error: case rx_sts_error: /* We got error on both or Y or uv. */ hw->stats.rx_errors++; crystalhd_get_dnsz(hw, i, &y_dn_sz, &uv_dn_sz); /* FIXME: jarod: this is where my mini pci-e card is tripping up */ BCMLOG(BCMLOG_DBG, "list_index:%x rx[%d] Y:%x " "UV:%x Int:%x YDnSz:%x UVDnSz:%x\n", i, hw->stats.rx_errors, y_err_sts, uv_err_sts, intr_sts, y_dn_sz, uv_dn_sz); hw->rx_list_sts[i] = sts_free; comp_sts = BC_STS_ERROR; break; default: /* Wait for completion..*/ comp_sts = BC_STS_NO_DATA; break; } } spin_unlock_irqrestore(&hw->rx_lock, flags); /* handle completion...*/ if (comp_sts != BC_STS_NO_DATA) { crystalhd_rx_pkt_done(hw, i, comp_sts); comp_sts = BC_STS_NO_DATA; } } if (list_avail) { if (hw->stop_pending) { if ((hw->rx_list_sts[0] == sts_free) && (hw->rx_list_sts[1] == sts_free)) crystalhd_hw_finalize_pause(hw); } else { crystalhd_hw_start_capture(hw); } } } static enum BC_STATUS crystalhd_fw_cmd_post_proc(struct crystalhd_hw *hw, struct BC_FW_CMD *fw_cmd) { enum BC_STATUS sts = BC_STS_SUCCESS; struct dec_rsp_channel_start_video *st_rsp = NULL; switch (fw_cmd->cmd[0]) { case eCMD_C011_DEC_CHAN_START_VIDEO: st_rsp = (struct dec_rsp_channel_start_video *)fw_cmd->rsp; hw->pib_del_Q_addr = st_rsp->picInfoDeliveryQ; hw->pib_rel_Q_addr = st_rsp->picInfoReleaseQ; BCMLOG(BCMLOG_DBG, "DelQAddr:%x RelQAddr:%x\n", hw->pib_del_Q_addr, hw->pib_rel_Q_addr); break; case eCMD_C011_INIT: if (!(crystalhd_load_firmware_config(hw->adp))) { BCMLOG_ERR("Invalid Params.\n"); sts = BC_STS_FW_AUTH_FAILED; } break; default: break; } return sts; } static enum BC_STATUS crystalhd_put_ddr2sleep(struct crystalhd_hw *hw) { uint32_t reg; union link_misc_perst_decoder_ctrl rst_cntrl_reg; /* Pulse reset pin of 7412 (MISC_PERST_DECODER_CTRL) */ rst_cntrl_reg.whole_reg = crystalhd_reg_rd(hw->adp, MISC_PERST_DECODER_CTRL); rst_cntrl_reg.bcm_7412_rst = 1; crystalhd_reg_wr(hw->adp, MISC_PERST_DECODER_CTRL, rst_cntrl_reg.whole_reg); msleep_interruptible(50); rst_cntrl_reg.bcm_7412_rst = 0; crystalhd_reg_wr(hw->adp, MISC_PERST_DECODER_CTRL, rst_cntrl_reg.whole_reg); /* Close all banks, put DDR in idle */ bc_dec_reg_wr(hw->adp, SDRAM_PRECHARGE, 0); /* Set bit 25 (drop CKE pin of DDR) */ reg = bc_dec_reg_rd(hw->adp, SDRAM_PARAM); reg |= 0x02000000; bc_dec_reg_wr(hw->adp, SDRAM_PARAM, reg); /* Reset the audio block */ bc_dec_reg_wr(hw->adp, AUD_DSP_MISC_SOFT_RESET, 0x1); /* Power down Raptor PLL */ reg = bc_dec_reg_rd(hw->adp, DecHt_PllCCtl); reg |= 0x00008000; bc_dec_reg_wr(hw->adp, DecHt_PllCCtl, reg); /* Power down all Audio PLL */ bc_dec_reg_wr(hw->adp, AIO_MISC_PLL_RESET, 0x1); /* Power down video clock (75MHz) */ reg = bc_dec_reg_rd(hw->adp, DecHt_PllECtl); reg |= 0x00008000; bc_dec_reg_wr(hw->adp, DecHt_PllECtl, reg); /* Power down video clock (75MHz) */ reg = bc_dec_reg_rd(hw->adp, DecHt_PllDCtl); reg |= 0x00008000; bc_dec_reg_wr(hw->adp, DecHt_PllDCtl, reg); /* Power down core clock (200MHz) */ reg = bc_dec_reg_rd(hw->adp, DecHt_PllACtl); reg |= 0x00008000; bc_dec_reg_wr(hw->adp, DecHt_PllACtl, reg); /* Power down core clock (200MHz) */ reg = bc_dec_reg_rd(hw->adp, DecHt_PllBCtl); reg |= 0x00008000; bc_dec_reg_wr(hw->adp, DecHt_PllBCtl, reg); return BC_STS_SUCCESS; } /************************************************ ** *************************************************/ enum BC_STATUS crystalhd_download_fw(struct crystalhd_adp *adp, void *buffer, uint32_t sz) { uint32_t reg_data, cnt, *temp_buff; uint32_t fw_sig_len = 36; uint32_t dram_offset = BC_FWIMG_ST_ADDR, sig_reg; BCMLOG_ENTER; if (!adp || !buffer || !sz) { BCMLOG_ERR("Invalid Params.\n"); return BC_STS_INV_ARG; } reg_data = crystalhd_reg_rd(adp, OTP_CMD); if (!(reg_data & 0x02)) { BCMLOG_ERR("Invalid hw config.. otp not programmed\n"); return BC_STS_ERROR; } reg_data = 0; crystalhd_reg_wr(adp, DCI_CMD, 0); reg_data |= BC_BIT(0); crystalhd_reg_wr(adp, DCI_CMD, reg_data); reg_data = 0; cnt = 1000; msleep_interruptible(10); while (reg_data != BC_BIT(4)) { reg_data = crystalhd_reg_rd(adp, DCI_STATUS); reg_data &= BC_BIT(4); if (--cnt == 0) { BCMLOG_ERR("Firmware Download RDY Timeout.\n"); return BC_STS_TIMEOUT; } } msleep_interruptible(10); /* Load the FW to the FW_ADDR field in the DCI_FIRMWARE_ADDR */ crystalhd_reg_wr(adp, DCI_FIRMWARE_ADDR, dram_offset); temp_buff = (uint32_t *)buffer; for (cnt = 0; cnt < (sz - fw_sig_len); cnt += 4) { crystalhd_reg_wr(adp, DCI_DRAM_BASE_ADDR, (dram_offset >> 19)); crystalhd_reg_wr(adp, DCI_FIRMWARE_DATA, *temp_buff); dram_offset += 4; temp_buff++; } msleep_interruptible(10); temp_buff++; sig_reg = (uint32_t)DCI_SIGNATURE_DATA_7; for (cnt = 0; cnt < 8; cnt++) { uint32_t swapped_data = *temp_buff; swapped_data = bswap_32_1(swapped_data); crystalhd_reg_wr(adp, sig_reg, swapped_data); sig_reg -= 4; temp_buff++; } msleep_interruptible(10); reg_data = 0; reg_data |= BC_BIT(1); crystalhd_reg_wr(adp, DCI_CMD, reg_data); msleep_interruptible(10); reg_data = 0; reg_data = crystalhd_reg_rd(adp, DCI_STATUS); if ((reg_data & BC_BIT(9)) == BC_BIT(9)) { cnt = 1000; while ((reg_data & BC_BIT(0)) != BC_BIT(0)) { reg_data = crystalhd_reg_rd(adp, DCI_STATUS); reg_data &= BC_BIT(0); if (!(--cnt)) break; msleep_interruptible(10); } reg_data = 0; reg_data = crystalhd_reg_rd(adp, DCI_CMD); reg_data |= BC_BIT(4); crystalhd_reg_wr(adp, DCI_CMD, reg_data); } else { BCMLOG_ERR("F/w Signature mismatch\n"); return BC_STS_FW_AUTH_FAILED; } BCMLOG(BCMLOG_INFO, "Firmware Downloaded Successfully\n"); return BC_STS_SUCCESS; } enum BC_STATUS crystalhd_do_fw_cmd(struct crystalhd_hw *hw, struct BC_FW_CMD *fw_cmd) { uint32_t cnt = 0, cmd_res_addr; uint32_t *cmd_buff, *res_buff; wait_queue_head_t fw_cmd_event; int rc = 0; enum BC_STATUS sts; crystalhd_create_event(&fw_cmd_event); BCMLOG_ENTER; if (!hw || !fw_cmd) { BCMLOG_ERR("Invalid Arguments\n"); return BC_STS_INV_ARG; } cmd_buff = fw_cmd->cmd; res_buff = fw_cmd->rsp; if (!cmd_buff || !res_buff) { BCMLOG_ERR("Invalid Parameters for F/W Command\n"); return BC_STS_INV_ARG; } hw->pwr_lock++; hw->fwcmd_evt_sts = 0; hw->pfw_cmd_event = &fw_cmd_event; /*Write the command to the memory*/ crystalhd_mem_wr(hw->adp, TS_Host2CpuSnd, FW_CMD_BUFF_SZ, cmd_buff); /*Memory Read for memory arbitrator flush*/ crystalhd_mem_rd(hw->adp, TS_Host2CpuSnd, 1, &cnt); /* Write the command address to mailbox */ bc_dec_reg_wr(hw->adp, Hst2CpuMbx1, TS_Host2CpuSnd); msleep_interruptible(50); crystalhd_wait_on_event(&fw_cmd_event, hw->fwcmd_evt_sts, 20000, rc, 0); if (!rc) { sts = BC_STS_SUCCESS; } else if (rc == -EBUSY) { BCMLOG_ERR("Firmware command T/O\n"); sts = BC_STS_TIMEOUT; } else if (rc == -EINTR) { BCMLOG(BCMLOG_DBG, "FwCmd Wait Signal int.\n"); sts = BC_STS_IO_USER_ABORT; } else { BCMLOG_ERR("FwCmd IO Error.\n"); sts = BC_STS_IO_ERROR; } if (sts != BC_STS_SUCCESS) { BCMLOG_ERR("FwCmd Failed.\n"); hw->pwr_lock--; return sts; } /*Get the Response Address*/ cmd_res_addr = bc_dec_reg_rd(hw->adp, Cpu2HstMbx1); /*Read the Response*/ crystalhd_mem_rd(hw->adp, cmd_res_addr, FW_CMD_BUFF_SZ, res_buff); hw->pwr_lock--; if (res_buff[2] != C011_RET_SUCCESS) { BCMLOG_ERR("res_buff[2] != C011_RET_SUCCESS\n"); return BC_STS_FW_CMD_ERR; } sts = crystalhd_fw_cmd_post_proc(hw, fw_cmd); if (sts != BC_STS_SUCCESS) BCMLOG_ERR("crystalhd_fw_cmd_post_proc Failed.\n"); return sts; } bool crystalhd_hw_interrupt(struct crystalhd_adp *adp, struct crystalhd_hw *hw) { uint32_t intr_sts = 0; uint32_t deco_intr = 0; bool rc = 0; if (!adp || !hw->dev_started) return rc; hw->stats.num_interrupts++; hw->pwr_lock++; deco_intr = bc_dec_reg_rd(adp, Stream2Host_Intr_Sts); intr_sts = crystalhd_reg_rd(adp, INTR_INTR_STATUS); if (intr_sts) { /* let system know we processed interrupt..*/ rc = 1; hw->stats.dev_interrupts++; } if (deco_intr && (deco_intr != 0xdeaddead)) { if (deco_intr & 0x80000000) { /*Set the Event and the status flag*/ if (hw->pfw_cmd_event) { hw->fwcmd_evt_sts = 1; crystalhd_set_event(hw->pfw_cmd_event); } } if (deco_intr & BC_BIT(1)) crystalhd_hw_proc_pib(hw); bc_dec_reg_wr(adp, Stream2Host_Intr_Sts, deco_intr); /* FIXME: jarod: No udelay? might this be the real reason mini pci-e cards were stalling out? */ bc_dec_reg_wr(adp, Stream2Host_Intr_Sts, 0); rc = 1; } /* Rx interrupts */ crystalhd_rx_isr(hw, intr_sts); /* Tx interrupts*/ crystalhd_tx_isr(hw, intr_sts); /* Clear interrupts */ if (rc) { if (intr_sts) crystalhd_reg_wr(adp, INTR_INTR_CLR_REG, intr_sts); crystalhd_reg_wr(adp, INTR_EOI_CTRL, 1); } hw->pwr_lock--; return rc; } enum BC_STATUS crystalhd_hw_open(struct crystalhd_hw *hw, struct crystalhd_adp *adp) { if (!hw || !adp) { BCMLOG_ERR("Invalid Arguments\n"); return BC_STS_INV_ARG; } if (hw->dev_started) return BC_STS_SUCCESS; memset(hw, 0, sizeof(struct crystalhd_hw)); hw->adp = adp; spin_lock_init(&hw->lock); spin_lock_init(&hw->rx_lock); /* FIXME: jarod: what are these magic numbers?!? */ hw->tx_ioq_tag_seed = 0x70023070; hw->rx_pkt_tag_seed = 0x70029070; hw->stop_pending = 0; crystalhd_start_device(hw->adp); hw->dev_started = true; /* set initial core clock */ hw->core_clock_mhz = CLOCK_PRESET; hw->prev_n = 0; hw->pwr_lock = 0; crystalhd_hw_set_core_clock(hw); return BC_STS_SUCCESS; } enum BC_STATUS crystalhd_hw_close(struct crystalhd_hw *hw) { if (!hw) { BCMLOG_ERR("Invalid Arguments\n"); return BC_STS_INV_ARG; } if (!hw->dev_started) return BC_STS_SUCCESS; /* Stop and DDR sleep will happen in here */ crystalhd_hw_suspend(hw); hw->dev_started = false; return BC_STS_SUCCESS; } enum BC_STATUS crystalhd_hw_setup_dma_rings(struct crystalhd_hw *hw) { unsigned int i; void *mem; size_t mem_len; dma_addr_t phy_addr; enum BC_STATUS sts = BC_STS_SUCCESS; struct crystalhd_rx_dma_pkt *rpkt; if (!hw || !hw->adp) { BCMLOG_ERR("Invalid Arguments\n"); return BC_STS_INV_ARG; } sts = crystalhd_hw_create_ioqs(hw); if (sts != BC_STS_SUCCESS) { BCMLOG_ERR("Failed to create IOQs..\n"); return sts; } mem_len = BC_LINK_MAX_SGLS * sizeof(struct dma_descriptor); for (i = 0; i < BC_TX_LIST_CNT; i++) { mem = bc_kern_dma_alloc(hw->adp, mem_len, &phy_addr); if (mem) { memset(mem, 0, mem_len); } else { BCMLOG_ERR("Insufficient Memory For TX\n"); crystalhd_hw_free_dma_rings(hw); return BC_STS_INSUFF_RES; } /* rx_pkt_pool -- static memory allocation */ hw->tx_pkt_pool[i].desc_mem.pdma_desc_start = mem; hw->tx_pkt_pool[i].desc_mem.phy_addr = phy_addr; hw->tx_pkt_pool[i].desc_mem.sz = BC_LINK_MAX_SGLS * sizeof(struct dma_descriptor); hw->tx_pkt_pool[i].list_tag = 0; /* Add TX dma requests to Free Queue..*/ sts = crystalhd_dioq_add(hw->tx_freeq, &hw->tx_pkt_pool[i], false, 0); if (sts != BC_STS_SUCCESS) { crystalhd_hw_free_dma_rings(hw); return sts; } } for (i = 0; i < BC_RX_LIST_CNT; i++) { rpkt = kzalloc(sizeof(*rpkt), GFP_KERNEL); if (!rpkt) { BCMLOG_ERR("Insufficient Memory For RX\n"); crystalhd_hw_free_dma_rings(hw); return BC_STS_INSUFF_RES; } mem = bc_kern_dma_alloc(hw->adp, mem_len, &phy_addr); if (mem) { memset(mem, 0, mem_len); } else { BCMLOG_ERR("Insufficient Memory For RX\n"); crystalhd_hw_free_dma_rings(hw); kfree(rpkt); return BC_STS_INSUFF_RES; } rpkt->desc_mem.pdma_desc_start = mem; rpkt->desc_mem.phy_addr = phy_addr; rpkt->desc_mem.sz = BC_LINK_MAX_SGLS * sizeof(struct dma_descriptor); rpkt->pkt_tag = hw->rx_pkt_tag_seed + i; crystalhd_hw_free_rx_pkt(hw, rpkt); } return BC_STS_SUCCESS; } enum BC_STATUS crystalhd_hw_free_dma_rings(struct crystalhd_hw *hw) { unsigned int i; struct crystalhd_rx_dma_pkt *rpkt = NULL; if (!hw || !hw->adp) { BCMLOG_ERR("Invalid Arguments\n"); return BC_STS_INV_ARG; } /* Delete all IOQs.. */ crystalhd_hw_delete_ioqs(hw); for (i = 0; i < BC_TX_LIST_CNT; i++) { if (hw->tx_pkt_pool[i].desc_mem.pdma_desc_start) { bc_kern_dma_free(hw->adp, hw->tx_pkt_pool[i].desc_mem.sz, hw->tx_pkt_pool[i].desc_mem.pdma_desc_start, hw->tx_pkt_pool[i].desc_mem.phy_addr); hw->tx_pkt_pool[i].desc_mem.pdma_desc_start = NULL; } } BCMLOG(BCMLOG_DBG, "Releasing RX Pkt pool\n"); do { rpkt = crystalhd_hw_alloc_rx_pkt(hw); if (!rpkt) break; bc_kern_dma_free(hw->adp, rpkt->desc_mem.sz, rpkt->desc_mem.pdma_desc_start, rpkt->desc_mem.phy_addr); kfree(rpkt); } while (rpkt); return BC_STS_SUCCESS; } enum BC_STATUS crystalhd_hw_post_tx(struct crystalhd_hw *hw, struct crystalhd_dio_req *ioreq, hw_comp_callback call_back, wait_queue_head_t *cb_event, uint32_t *list_id, uint8_t data_flags) { struct tx_dma_pkt *tx_dma_packet = NULL; uint32_t first_desc_u_addr, first_desc_l_addr; uint32_t low_addr, high_addr; union addr_64 desc_addr; enum BC_STATUS sts, add_sts; uint32_t dummy_index = 0; unsigned long flags; bool rc; if (!hw || !ioreq || !call_back || !cb_event || !list_id) { BCMLOG_ERR("Invalid Arguments\n"); return BC_STS_INV_ARG; } /* * Since we hit code in busy condition very frequently, * we will check the code in status first before * checking the availability of free elem. * * This will avoid the Q fetch/add in normal condition. */ rc = crystalhd_code_in_full(hw->adp, ioreq->uinfo.xfr_len, false, data_flags); if (rc) { hw->stats.cin_busy++; return BC_STS_BUSY; } /* Get a list from TxFreeQ */ tx_dma_packet = (struct tx_dma_pkt *)crystalhd_dioq_fetch(hw->tx_freeq); if (!tx_dma_packet) { BCMLOG_ERR("No empty elements..\n"); return BC_STS_ERR_USAGE; } sts = crystalhd_xlat_sgl_to_dma_desc(ioreq, &tx_dma_packet->desc_mem, &dummy_index); if (sts != BC_STS_SUCCESS) { add_sts = crystalhd_dioq_add(hw->tx_freeq, tx_dma_packet, false, 0); if (add_sts != BC_STS_SUCCESS) BCMLOG_ERR("double fault..\n"); return sts; } hw->pwr_lock++; desc_addr.full_addr = tx_dma_packet->desc_mem.phy_addr; low_addr = desc_addr.low_part; high_addr = desc_addr.high_part; tx_dma_packet->call_back = call_back; tx_dma_packet->cb_event = cb_event; tx_dma_packet->dio_req = ioreq; spin_lock_irqsave(&hw->lock, flags); if (hw->tx_list_post_index == 0) { first_desc_u_addr = MISC1_TX_FIRST_DESC_U_ADDR_LIST0; first_desc_l_addr = MISC1_TX_FIRST_DESC_L_ADDR_LIST0; } else { first_desc_u_addr = MISC1_TX_FIRST_DESC_U_ADDR_LIST1; first_desc_l_addr = MISC1_TX_FIRST_DESC_L_ADDR_LIST1; } *list_id = tx_dma_packet->list_tag = hw->tx_ioq_tag_seed + hw->tx_list_post_index; hw->tx_list_post_index = (hw->tx_list_post_index + 1) % DMA_ENGINE_CNT; spin_unlock_irqrestore(&hw->lock, flags); /* Insert in Active Q..*/ crystalhd_dioq_add(hw->tx_actq, tx_dma_packet, false, tx_dma_packet->list_tag); /* * Interrupt will come as soon as you write * the valid bit. So be ready for that. All * the initialization should happen before that. */ crystalhd_start_tx_dma_engine(hw); crystalhd_reg_wr(hw->adp, first_desc_u_addr, desc_addr.high_part); crystalhd_reg_wr(hw->adp, first_desc_l_addr, desc_addr.low_part | 0x01); /* Be sure we set the valid bit ^^^^ */ return BC_STS_SUCCESS; } /* * This is a force cancel and we are racing with ISR. * * Will try to remove the req from ActQ before ISR gets it. * If ISR gets it first then the completion happens in the * normal path and we will return _STS_NO_DATA from here. * * FIX_ME: Not Tested the actual condition.. */ enum BC_STATUS crystalhd_hw_cancel_tx(struct crystalhd_hw *hw, uint32_t list_id) { if (!hw || !list_id) { BCMLOG_ERR("Invalid Arguments\n"); return BC_STS_INV_ARG; } crystalhd_stop_tx_dma_engine(hw); crystalhd_hw_tx_req_complete(hw, list_id, BC_STS_IO_USER_ABORT); return BC_STS_SUCCESS; } enum BC_STATUS crystalhd_hw_add_cap_buffer(struct crystalhd_hw *hw, struct crystalhd_dio_req *ioreq, bool en_post) { struct crystalhd_rx_dma_pkt *rpkt; uint32_t tag, uv_desc_ix = 0; enum BC_STATUS sts; if (!hw || !ioreq) { BCMLOG_ERR("Invalid Arguments\n"); return BC_STS_INV_ARG; } rpkt = crystalhd_hw_alloc_rx_pkt(hw); if (!rpkt) { BCMLOG_ERR("Insufficient resources\n"); return BC_STS_INSUFF_RES; } rpkt->dio_req = ioreq; tag = rpkt->pkt_tag; sts = crystalhd_xlat_sgl_to_dma_desc(ioreq, &rpkt->desc_mem, &uv_desc_ix); if (sts != BC_STS_SUCCESS) return sts; rpkt->uv_phy_addr = 0; /* Store the address of UV in the rx packet for post*/ if (uv_desc_ix) rpkt->uv_phy_addr = rpkt->desc_mem.phy_addr + (sizeof(struct dma_descriptor) * (uv_desc_ix + 1)); if (en_post) sts = crystalhd_hw_post_cap_buff(hw, rpkt); else sts = crystalhd_dioq_add(hw->rx_freeq, rpkt, false, tag); return sts; } enum BC_STATUS crystalhd_hw_get_cap_buffer(struct crystalhd_hw *hw, struct BC_PIC_INFO_BLOCK *pib, struct crystalhd_dio_req **ioreq) { struct crystalhd_rx_dma_pkt *rpkt; uint32_t timeout = BC_PROC_OUTPUT_TIMEOUT / 1000; uint32_t sig_pending = 0; if (!hw || !ioreq || !pib) { BCMLOG_ERR("Invalid Arguments\n"); return BC_STS_INV_ARG; } rpkt = crystalhd_dioq_fetch_wait(hw->rx_rdyq, timeout, &sig_pending); if (!rpkt) { if (sig_pending) { BCMLOG(BCMLOG_INFO, "wait on frame time out %d\n", sig_pending); return BC_STS_IO_USER_ABORT; } else { return BC_STS_TIMEOUT; } } rpkt->dio_req->uinfo.comp_flags = rpkt->flags; if (rpkt->flags & COMP_FLAG_PIB_VALID) memcpy(pib, &rpkt->pib, sizeof(*pib)); *ioreq = rpkt->dio_req; crystalhd_hw_free_rx_pkt(hw, rpkt); return BC_STS_SUCCESS; } enum BC_STATUS crystalhd_hw_start_capture(struct crystalhd_hw *hw) { struct crystalhd_rx_dma_pkt *rx_pkt; enum BC_STATUS sts; uint32_t i; if (!hw) { BCMLOG_ERR("Invalid Arguments\n"); return BC_STS_INV_ARG; } /* This is start of capture.. Post to both the lists.. */ for (i = 0; i < DMA_ENGINE_CNT; i++) { rx_pkt = crystalhd_dioq_fetch(hw->rx_freeq); if (!rx_pkt) return BC_STS_NO_DATA; sts = crystalhd_hw_post_cap_buff(hw, rx_pkt); if (BC_STS_SUCCESS != sts) break; } return BC_STS_SUCCESS; } enum BC_STATUS crystalhd_hw_stop_capture(struct crystalhd_hw *hw) { void *temp = NULL; if (!hw) { BCMLOG_ERR("Invalid Arguments\n"); return BC_STS_INV_ARG; } crystalhd_stop_rx_dma_engine(hw); do { temp = crystalhd_dioq_fetch(hw->rx_freeq); if (temp) crystalhd_rx_pkt_rel_call_back(hw, temp); } while (temp); return BC_STS_SUCCESS; } enum BC_STATUS crystalhd_hw_pause(struct crystalhd_hw *hw) { hw->stats.pause_cnt++; hw->stop_pending = 1; if ((hw->rx_list_sts[0] == sts_free) && (hw->rx_list_sts[1] == sts_free)) crystalhd_hw_finalize_pause(hw); return BC_STS_SUCCESS; } enum BC_STATUS crystalhd_hw_unpause(struct crystalhd_hw *hw) { enum BC_STATUS sts; uint32_t aspm; hw->stop_pending = 0; aspm = crystalhd_reg_rd(hw->adp, PCIE_DLL_DATA_LINK_CONTROL); aspm &= ~ASPM_L1_ENABLE; /* NAREN BCMLOG(BCMLOG_INFO, "aspm off\n"); */ crystalhd_reg_wr(hw->adp, PCIE_DLL_DATA_LINK_CONTROL, aspm); sts = crystalhd_hw_start_capture(hw); return sts; } enum BC_STATUS crystalhd_hw_suspend(struct crystalhd_hw *hw) { enum BC_STATUS sts; if (!hw) { BCMLOG_ERR("Invalid Arguments\n"); return BC_STS_INV_ARG; } sts = crystalhd_put_ddr2sleep(hw); if (sts != BC_STS_SUCCESS) { BCMLOG_ERR("Failed to Put DDR To Sleep!!\n"); return BC_STS_ERROR; } if (!crystalhd_stop_device(hw->adp)) { BCMLOG_ERR("Failed to Stop Device!!\n"); return BC_STS_ERROR; } return BC_STS_SUCCESS; } void crystalhd_hw_stats(struct crystalhd_hw *hw, struct crystalhd_hw_stats *stats) { if (!hw) { BCMLOG_ERR("Invalid Arguments\n"); return; } /* if called w/NULL stats, its a req to zero out the stats */ if (!stats) { memset(&hw->stats, 0, sizeof(hw->stats)); return; } hw->stats.freeq_count = crystalhd_dioq_count(hw->rx_freeq); hw->stats.rdyq_count = crystalhd_dioq_count(hw->rx_rdyq); memcpy(stats, &hw->stats, sizeof(*stats)); } enum BC_STATUS crystalhd_hw_set_core_clock(struct crystalhd_hw *hw) { uint32_t reg, n, i; uint32_t vco_mg, refresh_reg; if (!hw) { BCMLOG_ERR("Invalid Arguments\n"); return BC_STS_INV_ARG; } /* FIXME: jarod: wha? */ /*n = (hw->core_clock_mhz * 3) / 20 + 1; */ n = hw->core_clock_mhz/5; if (n == hw->prev_n) return BC_STS_CLK_NOCHG; if (hw->pwr_lock > 0) { /* BCMLOG(BCMLOG_INFO,"pwr_lock is %u\n", hw->pwr_lock) */ return BC_STS_CLK_NOCHG; } i = n * 27; if (i < 560) vco_mg = 0; else if (i < 900) vco_mg = 1; else if (i < 1030) vco_mg = 2; else vco_mg = 3; reg = bc_dec_reg_rd(hw->adp, DecHt_PllACtl); reg &= 0xFFFFCFC0; reg |= n; reg |= vco_mg << 12; BCMLOG(BCMLOG_INFO, "clock is moving to %d with n %d with vco_mg %d\n", hw->core_clock_mhz, n, vco_mg); /* Change the DRAM refresh rate to accommodate the new frequency */ /* refresh reg = ((refresh_rate * clock_rate)/16) - 1; rounding up*/ refresh_reg = (7 * hw->core_clock_mhz / 16); bc_dec_reg_wr(hw->adp, SDRAM_REF_PARAM, ((1 << 12) | refresh_reg)); bc_dec_reg_wr(hw->adp, DecHt_PllACtl, reg); i = 0; for (i = 0; i < 10; i++) { reg = bc_dec_reg_rd(hw->adp, DecHt_PllACtl); if (reg & 0x00020000) { hw->prev_n = n; /* FIXME: jarod: outputting a random "C" is... confusing... */ BCMLOG(BCMLOG_INFO, "C"); return BC_STS_SUCCESS; } else { msleep_interruptible(10); } } BCMLOG(BCMLOG_INFO, "clk change failed\n"); return BC_STS_CLK_NOCHG; }