/* * hcd_ddma.c - DesignWare HS OTG Controller descriptor DMA routines * * Copyright (C) 2004-2013 Synopsys, Inc. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions, and the following disclaimer, * without modification. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. The names of the above-listed copyright holders may not be used * to endorse or promote products derived from this software without * specific prior written permission. * * ALTERNATIVELY, this software may be distributed under the terms of the * GNU General Public License ("GPL") as published by the Free Software * Foundation; either version 2 of the License, or (at your option) any * later version. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS * IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, * THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ /* * This file contains the Descriptor DMA implementation for Host mode */ #include #include #include #include #include #include #include #include #include #include #include "core.h" #include "hcd.h" static u16 dwc2_frame_list_idx(u16 frame) { return frame & (FRLISTEN_64_SIZE - 1); } static u16 dwc2_desclist_idx_inc(u16 idx, u16 inc, u8 speed) { return (idx + inc) & ((speed == USB_SPEED_HIGH ? MAX_DMA_DESC_NUM_HS_ISOC : MAX_DMA_DESC_NUM_GENERIC) - 1); } static u16 dwc2_desclist_idx_dec(u16 idx, u16 inc, u8 speed) { return (idx - inc) & ((speed == USB_SPEED_HIGH ? MAX_DMA_DESC_NUM_HS_ISOC : MAX_DMA_DESC_NUM_GENERIC) - 1); } static u16 dwc2_max_desc_num(struct dwc2_qh *qh) { return (qh->ep_type == USB_ENDPOINT_XFER_ISOC && qh->dev_speed == USB_SPEED_HIGH) ? MAX_DMA_DESC_NUM_HS_ISOC : MAX_DMA_DESC_NUM_GENERIC; } static u16 dwc2_frame_incr_val(struct dwc2_qh *qh) { return qh->dev_speed == USB_SPEED_HIGH ? (qh->interval + 8 - 1) / 8 : qh->interval; } static int dwc2_desc_list_alloc(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh, gfp_t flags) { qh->desc_list = dma_alloc_coherent(hsotg->dev, sizeof(struct dwc2_hcd_dma_desc) * dwc2_max_desc_num(qh), &qh->desc_list_dma, flags); if (!qh->desc_list) return -ENOMEM; memset(qh->desc_list, 0, sizeof(struct dwc2_hcd_dma_desc) * dwc2_max_desc_num(qh)); qh->n_bytes = kzalloc(sizeof(u32) * dwc2_max_desc_num(qh), flags); if (!qh->n_bytes) { dma_free_coherent(hsotg->dev, sizeof(struct dwc2_hcd_dma_desc) * dwc2_max_desc_num(qh), qh->desc_list, qh->desc_list_dma); qh->desc_list = NULL; return -ENOMEM; } return 0; } static void dwc2_desc_list_free(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh) { if (qh->desc_list) { dma_free_coherent(hsotg->dev, sizeof(struct dwc2_hcd_dma_desc) * dwc2_max_desc_num(qh), qh->desc_list, qh->desc_list_dma); qh->desc_list = NULL; } kfree(qh->n_bytes); qh->n_bytes = NULL; } static int dwc2_frame_list_alloc(struct dwc2_hsotg *hsotg, gfp_t mem_flags) { if (hsotg->frame_list) return 0; hsotg->frame_list = dma_alloc_coherent(hsotg->dev, 4 * FRLISTEN_64_SIZE, &hsotg->frame_list_dma, mem_flags); if (!hsotg->frame_list) return -ENOMEM; memset(hsotg->frame_list, 0, 4 * FRLISTEN_64_SIZE); return 0; } static void dwc2_frame_list_free(struct dwc2_hsotg *hsotg) { u32 *frame_list; dma_addr_t frame_list_dma; unsigned long flags; spin_lock_irqsave(&hsotg->lock, flags); if (!hsotg->frame_list) { spin_unlock_irqrestore(&hsotg->lock, flags); return; } frame_list = hsotg->frame_list; frame_list_dma = hsotg->frame_list_dma; hsotg->frame_list = NULL; spin_unlock_irqrestore(&hsotg->lock, flags); dma_free_coherent(hsotg->dev, 4 * FRLISTEN_64_SIZE, frame_list, frame_list_dma); } static void dwc2_per_sched_enable(struct dwc2_hsotg *hsotg, u32 fr_list_en) { u32 hcfg; unsigned long flags; spin_lock_irqsave(&hsotg->lock, flags); hcfg = readl(hsotg->regs + HCFG); if (hcfg & HCFG_PERSCHEDENA) { /* already enabled */ spin_unlock_irqrestore(&hsotg->lock, flags); return; } writel(hsotg->frame_list_dma, hsotg->regs + HFLBADDR); hcfg &= ~HCFG_FRLISTEN_MASK; hcfg |= fr_list_en | HCFG_PERSCHEDENA; dev_vdbg(hsotg->dev, "Enabling Periodic schedule\n"); writel(hcfg, hsotg->regs + HCFG); spin_unlock_irqrestore(&hsotg->lock, flags); } static void dwc2_per_sched_disable(struct dwc2_hsotg *hsotg) { u32 hcfg; unsigned long flags; spin_lock_irqsave(&hsotg->lock, flags); hcfg = readl(hsotg->regs + HCFG); if (!(hcfg & HCFG_PERSCHEDENA)) { /* already disabled */ spin_unlock_irqrestore(&hsotg->lock, flags); return; } hcfg &= ~HCFG_PERSCHEDENA; dev_vdbg(hsotg->dev, "Disabling Periodic schedule\n"); writel(hcfg, hsotg->regs + HCFG); spin_unlock_irqrestore(&hsotg->lock, flags); } /* * Activates/Deactivates FrameList entries for the channel based on endpoint * servicing period */ static void dwc2_update_frame_list(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh, int enable) { struct dwc2_host_chan *chan; u16 i, j, inc; if (!hsotg) { pr_err("hsotg = %p\n", hsotg); return; } if (!qh->channel) { dev_err(hsotg->dev, "qh->channel = %p\n", qh->channel); return; } if (!hsotg->frame_list) { dev_err(hsotg->dev, "hsotg->frame_list = %p\n", hsotg->frame_list); return; } chan = qh->channel; inc = dwc2_frame_incr_val(qh); if (qh->ep_type == USB_ENDPOINT_XFER_ISOC) i = dwc2_frame_list_idx(qh->sched_frame); else i = 0; j = i; do { if (enable) hsotg->frame_list[j] |= 1 << chan->hc_num; else hsotg->frame_list[j] &= ~(1 << chan->hc_num); j = (j + inc) & (FRLISTEN_64_SIZE - 1); } while (j != i); if (!enable) return; chan->schinfo = 0; if (chan->speed == USB_SPEED_HIGH && qh->interval) { j = 1; /* TODO - check this */ inc = (8 + qh->interval - 1) / qh->interval; for (i = 0; i < inc; i++) { chan->schinfo |= j; j = j << qh->interval; } } else { chan->schinfo = 0xff; } } static void dwc2_release_channel_ddma(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh) { struct dwc2_host_chan *chan = qh->channel; if (dwc2_qh_is_non_per(qh)) hsotg->non_periodic_channels--; else dwc2_update_frame_list(hsotg, qh, 0); /* * The condition is added to prevent double cleanup try in case of * device disconnect. See channel cleanup in dwc2_hcd_disconnect(). */ if (chan->qh) { if (!list_empty(&chan->hc_list_entry)) list_del(&chan->hc_list_entry); dwc2_hc_cleanup(hsotg, chan); list_add_tail(&chan->hc_list_entry, &hsotg->free_hc_list); chan->qh = NULL; } qh->channel = NULL; qh->ntd = 0; if (qh->desc_list) memset(qh->desc_list, 0, sizeof(struct dwc2_hcd_dma_desc) * dwc2_max_desc_num(qh)); } /** * dwc2_hcd_qh_init_ddma() - Initializes a QH structure's Descriptor DMA * related members * * @hsotg: The HCD state structure for the DWC OTG controller * @qh: The QH to init * * Return: 0 if successful, negative error code otherwise * * Allocates memory for the descriptor list. For the first periodic QH, * allocates memory for the FrameList and enables periodic scheduling. */ int dwc2_hcd_qh_init_ddma(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh, gfp_t mem_flags) { int retval; if (qh->do_split) { dev_err(hsotg->dev, "SPLIT Transfers are not supported in Descriptor DMA mode.\n"); retval = -EINVAL; goto err0; } retval = dwc2_desc_list_alloc(hsotg, qh, mem_flags); if (retval) goto err0; if (qh->ep_type == USB_ENDPOINT_XFER_ISOC || qh->ep_type == USB_ENDPOINT_XFER_INT) { if (!hsotg->frame_list) { retval = dwc2_frame_list_alloc(hsotg, mem_flags); if (retval) goto err1; /* Enable periodic schedule on first periodic QH */ dwc2_per_sched_enable(hsotg, HCFG_FRLISTEN_64); } } qh->ntd = 0; return 0; err1: dwc2_desc_list_free(hsotg, qh); err0: return retval; } /** * dwc2_hcd_qh_free_ddma() - Frees a QH structure's Descriptor DMA related * members * * @hsotg: The HCD state structure for the DWC OTG controller * @qh: The QH to free * * Frees descriptor list memory associated with the QH. If QH is periodic and * the last, frees FrameList memory and disables periodic scheduling. */ void dwc2_hcd_qh_free_ddma(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh) { dwc2_desc_list_free(hsotg, qh); /* * Channel still assigned due to some reasons. * Seen on Isoc URB dequeue. Channel halted but no subsequent * ChHalted interrupt to release the channel. Afterwards * when it comes here from endpoint disable routine * channel remains assigned. */ if (qh->channel) dwc2_release_channel_ddma(hsotg, qh); if ((qh->ep_type == USB_ENDPOINT_XFER_ISOC || qh->ep_type == USB_ENDPOINT_XFER_INT) && !hsotg->periodic_channels && hsotg->frame_list) { dwc2_per_sched_disable(hsotg); dwc2_frame_list_free(hsotg); } } static u8 dwc2_frame_to_desc_idx(struct dwc2_qh *qh, u16 frame_idx) { if (qh->dev_speed == USB_SPEED_HIGH) /* Descriptor set (8 descriptors) index which is 8-aligned */ return (frame_idx & ((MAX_DMA_DESC_NUM_HS_ISOC / 8) - 1)) * 8; else return frame_idx & (MAX_DMA_DESC_NUM_GENERIC - 1); } /* * Determine starting frame for Isochronous transfer. * Few frames skipped to prevent race condition with HC. */ static u16 dwc2_calc_starting_frame(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh, u16 *skip_frames) { u16 frame; hsotg->frame_number = dwc2_hcd_get_frame_number(hsotg); /* sched_frame is always frame number (not uFrame) both in FS and HS! */ /* * skip_frames is used to limit activated descriptors number * to avoid the situation when HC services the last activated * descriptor firstly. * Example for FS: * Current frame is 1, scheduled frame is 3. Since HC always fetches * the descriptor corresponding to curr_frame+1, the descriptor * corresponding to frame 2 will be fetched. If the number of * descriptors is max=64 (or greather) the list will be fully programmed * with Active descriptors and it is possible case (rare) that the * latest descriptor(considering rollback) corresponding to frame 2 will * be serviced first. HS case is more probable because, in fact, up to * 11 uframes (16 in the code) may be skipped. */ if (qh->dev_speed == USB_SPEED_HIGH) { /* * Consider uframe counter also, to start xfer asap. If half of * the frame elapsed skip 2 frames otherwise just 1 frame. * Starting descriptor index must be 8-aligned, so if the * current frame is near to complete the next one is skipped as * well. */ if (dwc2_micro_frame_num(hsotg->frame_number) >= 5) { *skip_frames = 2 * 8; frame = dwc2_frame_num_inc(hsotg->frame_number, *skip_frames); } else { *skip_frames = 1 * 8; frame = dwc2_frame_num_inc(hsotg->frame_number, *skip_frames); } frame = dwc2_full_frame_num(frame); } else { /* * Two frames are skipped for FS - the current and the next. * But for descriptor programming, 1 frame (descriptor) is * enough, see example above. */ *skip_frames = 1; frame = dwc2_frame_num_inc(hsotg->frame_number, 2); } return frame; } /* * Calculate initial descriptor index for isochronous transfer based on * scheduled frame */ static u16 dwc2_recalc_initial_desc_idx(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh) { u16 frame, fr_idx, fr_idx_tmp, skip_frames; /* * With current ISOC processing algorithm the channel is being released * when no more QTDs in the list (qh->ntd == 0). Thus this function is * called only when qh->ntd == 0 and qh->channel == 0. * * So qh->channel != NULL branch is not used and just not removed from * the source file. It is required for another possible approach which * is, do not disable and release the channel when ISOC session * completed, just move QH to inactive schedule until new QTD arrives. * On new QTD, the QH moved back to 'ready' schedule, starting frame and * therefore starting desc_index are recalculated. In this case channel * is released only on ep_disable. */ /* * Calculate starting descriptor index. For INTERRUPT endpoint it is * always 0. */ if (qh->channel) { frame = dwc2_calc_starting_frame(hsotg, qh, &skip_frames); /* * Calculate initial descriptor index based on FrameList current * bitmap and servicing period */ fr_idx_tmp = dwc2_frame_list_idx(frame); fr_idx = (FRLISTEN_64_SIZE + dwc2_frame_list_idx(qh->sched_frame) - fr_idx_tmp) % dwc2_frame_incr_val(qh); fr_idx = (fr_idx + fr_idx_tmp) % FRLISTEN_64_SIZE; } else { qh->sched_frame = dwc2_calc_starting_frame(hsotg, qh, &skip_frames); fr_idx = dwc2_frame_list_idx(qh->sched_frame); } qh->td_first = qh->td_last = dwc2_frame_to_desc_idx(qh, fr_idx); return skip_frames; } #define ISOC_URB_GIVEBACK_ASAP #define MAX_ISOC_XFER_SIZE_FS 1023 #define MAX_ISOC_XFER_SIZE_HS 3072 #define DESCNUM_THRESHOLD 4 static void dwc2_fill_host_isoc_dma_desc(struct dwc2_hsotg *hsotg, struct dwc2_qtd *qtd, struct dwc2_qh *qh, u32 max_xfer_size, u16 idx) { struct dwc2_hcd_dma_desc *dma_desc = &qh->desc_list[idx]; struct dwc2_hcd_iso_packet_desc *frame_desc; memset(dma_desc, 0, sizeof(*dma_desc)); frame_desc = &qtd->urb->iso_descs[qtd->isoc_frame_index_last]; if (frame_desc->length > max_xfer_size) qh->n_bytes[idx] = max_xfer_size; else qh->n_bytes[idx] = frame_desc->length; dma_desc->buf = (u32)(qtd->urb->dma + frame_desc->offset); dma_desc->status = qh->n_bytes[idx] << HOST_DMA_ISOC_NBYTES_SHIFT & HOST_DMA_ISOC_NBYTES_MASK; #ifdef ISOC_URB_GIVEBACK_ASAP /* Set IOC for each descriptor corresponding to last frame of URB */ if (qtd->isoc_frame_index_last == qtd->urb->packet_count) dma_desc->status |= HOST_DMA_IOC; #endif qh->ntd++; qtd->isoc_frame_index_last++; } static void dwc2_init_isoc_dma_desc(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh, u16 skip_frames) { struct dwc2_qtd *qtd; u32 max_xfer_size; u16 idx, inc, n_desc, ntd_max = 0; idx = qh->td_last; inc = qh->interval; n_desc = 0; if (qh->interval) { ntd_max = (dwc2_max_desc_num(qh) + qh->interval - 1) / qh->interval; if (skip_frames && !qh->channel) ntd_max -= skip_frames / qh->interval; } max_xfer_size = qh->dev_speed == USB_SPEED_HIGH ? MAX_ISOC_XFER_SIZE_HS : MAX_ISOC_XFER_SIZE_FS; list_for_each_entry(qtd, &qh->qtd_list, qtd_list_entry) { while (qh->ntd < ntd_max && qtd->isoc_frame_index_last < qtd->urb->packet_count) { if (n_desc > 1) qh->desc_list[n_desc - 1].status |= HOST_DMA_A; dwc2_fill_host_isoc_dma_desc(hsotg, qtd, qh, max_xfer_size, idx); idx = dwc2_desclist_idx_inc(idx, inc, qh->dev_speed); n_desc++; } qtd->in_process = 1; } qh->td_last = idx; #ifdef ISOC_URB_GIVEBACK_ASAP /* Set IOC for last descriptor if descriptor list is full */ if (qh->ntd == ntd_max) { idx = dwc2_desclist_idx_dec(qh->td_last, inc, qh->dev_speed); qh->desc_list[idx].status |= HOST_DMA_IOC; } #else /* * Set IOC bit only for one descriptor. Always try to be ahead of HW * processing, i.e. on IOC generation driver activates next descriptor * but core continues to process descriptors following the one with IOC * set. */ if (n_desc > DESCNUM_THRESHOLD) /* * Move IOC "up". Required even if there is only one QTD * in the list, because QTDs might continue to be queued, * but during the activation it was only one queued. * Actually more than one QTD might be in the list if this * function called from XferCompletion - QTDs was queued during * HW processing of the previous descriptor chunk. */ idx = dwc2_desclist_idx_dec(idx, inc * ((qh->ntd + 1) / 2), qh->dev_speed); else /* * Set the IOC for the latest descriptor if either number of * descriptors is not greater than threshold or no more new * descriptors activated */ idx = dwc2_desclist_idx_dec(qh->td_last, inc, qh->dev_speed); qh->desc_list[idx].status |= HOST_DMA_IOC; #endif if (n_desc) { qh->desc_list[n_desc - 1].status |= HOST_DMA_A; if (n_desc > 1) qh->desc_list[0].status |= HOST_DMA_A; } } static void dwc2_fill_host_dma_desc(struct dwc2_hsotg *hsotg, struct dwc2_host_chan *chan, struct dwc2_qtd *qtd, struct dwc2_qh *qh, int n_desc) { struct dwc2_hcd_dma_desc *dma_desc = &qh->desc_list[n_desc]; int len = chan->xfer_len; if (len > MAX_DMA_DESC_SIZE) len = MAX_DMA_DESC_SIZE - chan->max_packet + 1; if (chan->ep_is_in) { int num_packets; if (len > 0 && chan->max_packet) num_packets = (len + chan->max_packet - 1) / chan->max_packet; else /* Need 1 packet for transfer length of 0 */ num_packets = 1; /* Always program an integral # of packets for IN transfers */ len = num_packets * chan->max_packet; } dma_desc->status = len << HOST_DMA_NBYTES_SHIFT & HOST_DMA_NBYTES_MASK; qh->n_bytes[n_desc] = len; if (qh->ep_type == USB_ENDPOINT_XFER_CONTROL && qtd->control_phase == DWC2_CONTROL_SETUP) dma_desc->status |= HOST_DMA_SUP; dma_desc->buf = (u32)chan->xfer_dma; /* * Last (or only) descriptor of IN transfer with actual size less * than MaxPacket */ if (len > chan->xfer_len) { chan->xfer_len = 0; } else { chan->xfer_dma += len; chan->xfer_len -= len; } } static void dwc2_init_non_isoc_dma_desc(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh) { struct dwc2_qtd *qtd; struct dwc2_host_chan *chan = qh->channel; int n_desc = 0; dev_vdbg(hsotg->dev, "%s(): qh=%p dma=%08lx len=%d\n", __func__, qh, (unsigned long)chan->xfer_dma, chan->xfer_len); /* * Start with chan->xfer_dma initialized in assign_and_init_hc(), then * if SG transfer consists of multiple URBs, this pointer is re-assigned * to the buffer of the currently processed QTD. For non-SG request * there is always one QTD active. */ list_for_each_entry(qtd, &qh->qtd_list, qtd_list_entry) { dev_vdbg(hsotg->dev, "qtd=%p\n", qtd); if (n_desc) { /* SG request - more than 1 QTD */ chan->xfer_dma = qtd->urb->dma + qtd->urb->actual_length; chan->xfer_len = qtd->urb->length - qtd->urb->actual_length; dev_vdbg(hsotg->dev, "buf=%08lx len=%d\n", (unsigned long)chan->xfer_dma, chan->xfer_len); } qtd->n_desc = 0; do { if (n_desc > 1) { qh->desc_list[n_desc - 1].status |= HOST_DMA_A; dev_vdbg(hsotg->dev, "set A bit in desc %d (%p)\n", n_desc - 1, &qh->desc_list[n_desc - 1]); } dwc2_fill_host_dma_desc(hsotg, chan, qtd, qh, n_desc); dev_vdbg(hsotg->dev, "desc %d (%p) buf=%08x status=%08x\n", n_desc, &qh->desc_list[n_desc], qh->desc_list[n_desc].buf, qh->desc_list[n_desc].status); qtd->n_desc++; n_desc++; } while (chan->xfer_len > 0 && n_desc != MAX_DMA_DESC_NUM_GENERIC); dev_vdbg(hsotg->dev, "n_desc=%d\n", n_desc); qtd->in_process = 1; if (qh->ep_type == USB_ENDPOINT_XFER_CONTROL) break; if (n_desc == MAX_DMA_DESC_NUM_GENERIC) break; } if (n_desc) { qh->desc_list[n_desc - 1].status |= HOST_DMA_IOC | HOST_DMA_EOL | HOST_DMA_A; dev_vdbg(hsotg->dev, "set IOC/EOL/A bits in desc %d (%p)\n", n_desc - 1, &qh->desc_list[n_desc - 1]); if (n_desc > 1) { qh->desc_list[0].status |= HOST_DMA_A; dev_vdbg(hsotg->dev, "set A bit in desc 0 (%p)\n", &qh->desc_list[0]); } chan->ntd = n_desc; } } /** * dwc2_hcd_start_xfer_ddma() - Starts a transfer in Descriptor DMA mode * * @hsotg: The HCD state structure for the DWC OTG controller * @qh: The QH to init * * Return: 0 if successful, negative error code otherwise * * For Control and Bulk endpoints, initializes descriptor list and starts the * transfer. For Interrupt and Isochronous endpoints, initializes descriptor * list then updates FrameList, marking appropriate entries as active. * * For Isochronous endpoints the starting descriptor index is calculated based * on the scheduled frame, but only on the first transfer descriptor within a * session. Then the transfer is started via enabling the channel. * * For Isochronous endpoints the channel is not halted on XferComplete * interrupt so remains assigned to the endpoint(QH) until session is done. */ void dwc2_hcd_start_xfer_ddma(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh) { /* Channel is already assigned */ struct dwc2_host_chan *chan = qh->channel; u16 skip_frames = 0; switch (chan->ep_type) { case USB_ENDPOINT_XFER_CONTROL: case USB_ENDPOINT_XFER_BULK: dwc2_init_non_isoc_dma_desc(hsotg, qh); dwc2_hc_start_transfer_ddma(hsotg, chan); break; case USB_ENDPOINT_XFER_INT: dwc2_init_non_isoc_dma_desc(hsotg, qh); dwc2_update_frame_list(hsotg, qh, 1); dwc2_hc_start_transfer_ddma(hsotg, chan); break; case USB_ENDPOINT_XFER_ISOC: if (!qh->ntd) skip_frames = dwc2_recalc_initial_desc_idx(hsotg, qh); dwc2_init_isoc_dma_desc(hsotg, qh, skip_frames); if (!chan->xfer_started) { dwc2_update_frame_list(hsotg, qh, 1); /* * Always set to max, instead of actual size. Otherwise * ntd will be changed with channel being enabled. Not * recommended. */ chan->ntd = dwc2_max_desc_num(qh); /* Enable channel only once for ISOC */ dwc2_hc_start_transfer_ddma(hsotg, chan); } break; default: break; } } #define DWC2_CMPL_DONE 1 #define DWC2_CMPL_STOP 2 static int dwc2_cmpl_host_isoc_dma_desc(struct dwc2_hsotg *hsotg, struct dwc2_host_chan *chan, struct dwc2_qtd *qtd, struct dwc2_qh *qh, u16 idx) { struct dwc2_hcd_dma_desc *dma_desc = &qh->desc_list[idx]; struct dwc2_hcd_iso_packet_desc *frame_desc; u16 remain = 0; int rc = 0; frame_desc = &qtd->urb->iso_descs[qtd->isoc_frame_index_last]; dma_desc->buf = (u32)(qtd->urb->dma + frame_desc->offset); if (chan->ep_is_in) remain = dma_desc->status >> HOST_DMA_ISOC_NBYTES_SHIFT & HOST_DMA_ISOC_NBYTES_MASK >> HOST_DMA_ISOC_NBYTES_SHIFT; if ((dma_desc->status & HOST_DMA_STS_MASK) == HOST_DMA_STS_PKTERR) { /* * XactError, or unable to complete all the transactions * in the scheduled micro-frame/frame, both indicated by * HOST_DMA_STS_PKTERR */ qtd->urb->error_count++; frame_desc->actual_length = qh->n_bytes[idx] - remain; frame_desc->status = -EPROTO; } else { /* Success */ frame_desc->actual_length = qh->n_bytes[idx] - remain; frame_desc->status = 0; } if (++qtd->isoc_frame_index == qtd->urb->packet_count) { /* * urb->status is not used for isoc transfers here. The * individual frame_desc status are used instead. */ dwc2_host_complete(hsotg, qtd->urb->priv, qtd->urb, 0); dwc2_hcd_qtd_unlink_and_free(hsotg, qtd, qh); /* * This check is necessary because urb_dequeue can be called * from urb complete callback (sound driver for example). All * pending URBs are dequeued there, so no need for further * processing. */ if (chan->halt_status == DWC2_HC_XFER_URB_DEQUEUE) return -1; rc = DWC2_CMPL_DONE; } qh->ntd--; /* Stop if IOC requested descriptor reached */ if (dma_desc->status & HOST_DMA_IOC) rc = DWC2_CMPL_STOP; return rc; } static void dwc2_complete_isoc_xfer_ddma(struct dwc2_hsotg *hsotg, struct dwc2_host_chan *chan, enum dwc2_halt_status halt_status) { struct dwc2_hcd_iso_packet_desc *frame_desc; struct dwc2_qtd *qtd, *qtd_tmp; struct dwc2_qh *qh; u16 idx; int rc; qh = chan->qh; idx = qh->td_first; if (chan->halt_status == DWC2_HC_XFER_URB_DEQUEUE) { list_for_each_entry(qtd, &qh->qtd_list, qtd_list_entry) qtd->in_process = 0; return; } if (halt_status == DWC2_HC_XFER_AHB_ERR || halt_status == DWC2_HC_XFER_BABBLE_ERR) { /* * Channel is halted in these error cases, considered as serious * issues. * Complete all URBs marking all frames as failed, irrespective * whether some of the descriptors (frames) succeeded or not. * Pass error code to completion routine as well, to update * urb->status, some of class drivers might use it to stop * queing transfer requests. */ int err = halt_status == DWC2_HC_XFER_AHB_ERR ? -EIO : -EOVERFLOW; list_for_each_entry_safe(qtd, qtd_tmp, &qh->qtd_list, qtd_list_entry) { for (idx = 0; idx < qtd->urb->packet_count; idx++) { frame_desc = &qtd->urb->iso_descs[idx]; frame_desc->status = err; } dwc2_host_complete(hsotg, qtd->urb->priv, qtd->urb, err); dwc2_hcd_qtd_unlink_and_free(hsotg, qtd, qh); } return; } list_for_each_entry_safe(qtd, qtd_tmp, &qh->qtd_list, qtd_list_entry) { if (!qtd->in_process) break; do { rc = dwc2_cmpl_host_isoc_dma_desc(hsotg, chan, qtd, qh, idx); if (rc < 0) return; idx = dwc2_desclist_idx_inc(idx, qh->interval, chan->speed); if (rc == DWC2_CMPL_STOP) goto stop_scan; if (rc == DWC2_CMPL_DONE) break; } while (idx != qh->td_first); } stop_scan: qh->td_first = idx; } static int dwc2_update_non_isoc_urb_state_ddma(struct dwc2_hsotg *hsotg, struct dwc2_host_chan *chan, struct dwc2_qtd *qtd, struct dwc2_hcd_dma_desc *dma_desc, enum dwc2_halt_status halt_status, u32 n_bytes, int *xfer_done) { struct dwc2_hcd_urb *urb = qtd->urb; u16 remain = 0; if (chan->ep_is_in) remain = dma_desc->status >> HOST_DMA_NBYTES_SHIFT & HOST_DMA_NBYTES_MASK >> HOST_DMA_NBYTES_SHIFT; dev_vdbg(hsotg->dev, "remain=%d dwc2_urb=%p\n", remain, urb); if (halt_status == DWC2_HC_XFER_AHB_ERR) { dev_err(hsotg->dev, "EIO\n"); urb->status = -EIO; return 1; } if ((dma_desc->status & HOST_DMA_STS_MASK) == HOST_DMA_STS_PKTERR) { switch (halt_status) { case DWC2_HC_XFER_STALL: dev_vdbg(hsotg->dev, "Stall\n"); urb->status = -EPIPE; break; case DWC2_HC_XFER_BABBLE_ERR: dev_err(hsotg->dev, "Babble\n"); urb->status = -EOVERFLOW; break; case DWC2_HC_XFER_XACT_ERR: dev_err(hsotg->dev, "XactErr\n"); urb->status = -EPROTO; break; default: dev_err(hsotg->dev, "%s: Unhandled descriptor error status (%d)\n", __func__, halt_status); break; } return 1; } if (dma_desc->status & HOST_DMA_A) { dev_vdbg(hsotg->dev, "Active descriptor encountered on channel %d\n", chan->hc_num); return 0; } if (chan->ep_type == USB_ENDPOINT_XFER_CONTROL) { if (qtd->control_phase == DWC2_CONTROL_DATA) { urb->actual_length += n_bytes - remain; if (remain || urb->actual_length >= urb->length) { /* * For Control Data stage do not set urb->status * to 0, to prevent URB callback. Set it when * Status phase is done. See below. */ *xfer_done = 1; } } else if (qtd->control_phase == DWC2_CONTROL_STATUS) { urb->status = 0; *xfer_done = 1; } /* No handling for SETUP stage */ } else { /* BULK and INTR */ urb->actual_length += n_bytes - remain; dev_vdbg(hsotg->dev, "length=%d actual=%d\n", urb->length, urb->actual_length); if (remain || urb->actual_length >= urb->length) { urb->status = 0; *xfer_done = 1; } } return 0; } static int dwc2_process_non_isoc_desc(struct dwc2_hsotg *hsotg, struct dwc2_host_chan *chan, int chnum, struct dwc2_qtd *qtd, int desc_num, enum dwc2_halt_status halt_status, int *xfer_done) { struct dwc2_qh *qh = chan->qh; struct dwc2_hcd_urb *urb = qtd->urb; struct dwc2_hcd_dma_desc *dma_desc; u32 n_bytes; int failed; dev_vdbg(hsotg->dev, "%s()\n", __func__); dma_desc = &qh->desc_list[desc_num]; n_bytes = qh->n_bytes[desc_num]; dev_vdbg(hsotg->dev, "qtd=%p dwc2_urb=%p desc_num=%d desc=%p n_bytes=%d\n", qtd, urb, desc_num, dma_desc, n_bytes); failed = dwc2_update_non_isoc_urb_state_ddma(hsotg, chan, qtd, dma_desc, halt_status, n_bytes, xfer_done); if (failed || (*xfer_done && urb->status != -EINPROGRESS)) { dwc2_host_complete(hsotg, urb->priv, urb, urb->status); dwc2_hcd_qtd_unlink_and_free(hsotg, qtd, qh); dev_vdbg(hsotg->dev, "failed=%1x xfer_done=%1x status=%08x\n", failed, *xfer_done, urb->status); return failed; } if (qh->ep_type == USB_ENDPOINT_XFER_CONTROL) { switch (qtd->control_phase) { case DWC2_CONTROL_SETUP: if (urb->length > 0) qtd->control_phase = DWC2_CONTROL_DATA; else qtd->control_phase = DWC2_CONTROL_STATUS; dev_vdbg(hsotg->dev, " Control setup transaction done\n"); break; case DWC2_CONTROL_DATA: if (*xfer_done) { qtd->control_phase = DWC2_CONTROL_STATUS; dev_vdbg(hsotg->dev, " Control data transfer done\n"); } else if (desc_num + 1 == qtd->n_desc) { /* * Last descriptor for Control data stage which * is not completed yet */ dwc2_hcd_save_data_toggle(hsotg, chan, chnum, qtd); } break; default: break; } } return 0; } static void dwc2_complete_non_isoc_xfer_ddma(struct dwc2_hsotg *hsotg, struct dwc2_host_chan *chan, int chnum, enum dwc2_halt_status halt_status) { struct list_head *qtd_item, *qtd_tmp; struct dwc2_qh *qh = chan->qh; struct dwc2_qtd *qtd = NULL; int xfer_done; int desc_num = 0; if (chan->halt_status == DWC2_HC_XFER_URB_DEQUEUE) { list_for_each_entry(qtd, &qh->qtd_list, qtd_list_entry) qtd->in_process = 0; return; } list_for_each_safe(qtd_item, qtd_tmp, &qh->qtd_list) { int i; qtd = list_entry(qtd_item, struct dwc2_qtd, qtd_list_entry); xfer_done = 0; for (i = 0; i < qtd->n_desc; i++) { if (dwc2_process_non_isoc_desc(hsotg, chan, chnum, qtd, desc_num, halt_status, &xfer_done)) break; desc_num++; } } if (qh->ep_type != USB_ENDPOINT_XFER_CONTROL) { /* * Resetting the data toggle for bulk and interrupt endpoints * in case of stall. See handle_hc_stall_intr(). */ if (halt_status == DWC2_HC_XFER_STALL) qh->data_toggle = DWC2_HC_PID_DATA0; else if (qtd) dwc2_hcd_save_data_toggle(hsotg, chan, chnum, qtd); } if (halt_status == DWC2_HC_XFER_COMPLETE) { if (chan->hcint & HCINTMSK_NYET) { /* * Got a NYET on the last transaction of the transfer. * It means that the endpoint should be in the PING * state at the beginning of the next transfer. */ qh->ping_state = 1; } } } /** * dwc2_hcd_complete_xfer_ddma() - Scans the descriptor list, updates URB's * status and calls completion routine for the URB if it's done. Called from * interrupt handlers. * * @hsotg: The HCD state structure for the DWC OTG controller * @chan: Host channel the transfer is completed on * @chnum: Index of Host channel registers * @halt_status: Reason the channel is being halted or just XferComplete * for isochronous transfers * * Releases the channel to be used by other transfers. * In case of Isochronous endpoint the channel is not halted until the end of * the session, i.e. QTD list is empty. * If periodic channel released the FrameList is updated accordingly. * Calls transaction selection routines to activate pending transfers. */ void dwc2_hcd_complete_xfer_ddma(struct dwc2_hsotg *hsotg, struct dwc2_host_chan *chan, int chnum, enum dwc2_halt_status halt_status) { struct dwc2_qh *qh = chan->qh; int continue_isoc_xfer = 0; enum dwc2_transaction_type tr_type; if (chan->ep_type == USB_ENDPOINT_XFER_ISOC) { dwc2_complete_isoc_xfer_ddma(hsotg, chan, halt_status); /* Release the channel if halted or session completed */ if (halt_status != DWC2_HC_XFER_COMPLETE || list_empty(&qh->qtd_list)) { /* Halt the channel if session completed */ if (halt_status == DWC2_HC_XFER_COMPLETE) dwc2_hc_halt(hsotg, chan, halt_status); dwc2_release_channel_ddma(hsotg, qh); dwc2_hcd_qh_unlink(hsotg, qh); } else { /* Keep in assigned schedule to continue transfer */ list_move(&qh->qh_list_entry, &hsotg->periodic_sched_assigned); continue_isoc_xfer = 1; } /* * Todo: Consider the case when period exceeds FrameList size. * Frame Rollover interrupt should be used. */ } else { /* * Scan descriptor list to complete the URB(s), then release * the channel */ dwc2_complete_non_isoc_xfer_ddma(hsotg, chan, chnum, halt_status); dwc2_release_channel_ddma(hsotg, qh); dwc2_hcd_qh_unlink(hsotg, qh); if (!list_empty(&qh->qtd_list)) { /* * Add back to inactive non-periodic schedule on normal * completion */ dwc2_hcd_qh_add(hsotg, qh); } } tr_type = dwc2_hcd_select_transactions(hsotg); if (tr_type != DWC2_TRANSACTION_NONE || continue_isoc_xfer) { if (continue_isoc_xfer) { if (tr_type == DWC2_TRANSACTION_NONE) tr_type = DWC2_TRANSACTION_PERIODIC; else if (tr_type == DWC2_TRANSACTION_NON_PERIODIC) tr_type = DWC2_TRANSACTION_ALL; } dwc2_hcd_queue_transactions(hsotg, tr_type); } }