/* * SpanDSP - a series of DSP components for telephony * * fir.h - General telephony FIR routines * * Written by Steve Underwood * * Copyright (C) 2002 Steve Underwood * * All rights reserved. * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2, as * published by the Free Software Foundation. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */ #if !defined(_FIR_H_) #define _FIR_H_ /* Blackfin NOTES & IDEAS: A simple dot product function is used to implement the filter. This performs just one MAC/cycle which is inefficient but was easy to implement as a first pass. The current Blackfin code also uses an unrolled form of the filter history to avoid 0 length hardware loop issues. This is wasteful of memory. Ideas for improvement: 1/ Rewrite filter for dual MAC inner loop. The issue here is handling history sample offsets that are 16 bit aligned - the dual MAC needs 32 bit aligmnent. There are some good examples in libbfdsp. 2/ Use the hardware circular buffer facility tohalve memory usage. 3/ Consider using internal memory. Using less memory might also improve speed as cache misses will be reduced. A drop in MIPs and memory approaching 50% should be possible. The foreground and background filters currenlty use a total of about 10 MIPs/ch as measured with speedtest.c on a 256 TAP echo can. */ /* * 16 bit integer FIR descriptor. This defines the working state for a single * instance of an FIR filter using 16 bit integer coefficients. */ struct fir16_state_t { int taps; int curr_pos; const int16_t *coeffs; int16_t *history; }; /* * 32 bit integer FIR descriptor. This defines the working state for a single * instance of an FIR filter using 32 bit integer coefficients, and filtering * 16 bit integer data. */ struct fir32_state_t { int taps; int curr_pos; const int32_t *coeffs; int16_t *history; }; /* * Floating point FIR descriptor. This defines the working state for a single * instance of an FIR filter using floating point coefficients and data. */ struct fir_float_state_t { int taps; int curr_pos; const float *coeffs; float *history; }; static inline const int16_t *fir16_create(struct fir16_state_t *fir, const int16_t *coeffs, int taps) { fir->taps = taps; fir->curr_pos = taps - 1; fir->coeffs = coeffs; #if defined(__bfin__) fir->history = kcalloc(2 * taps, sizeof(int16_t), GFP_KERNEL); #else fir->history = kcalloc(taps, sizeof(int16_t), GFP_KERNEL); #endif return fir->history; } static inline void fir16_flush(struct fir16_state_t *fir) { #if defined(__bfin__) memset(fir->history, 0, 2 * fir->taps * sizeof(int16_t)); #else memset(fir->history, 0, fir->taps * sizeof(int16_t)); #endif } static inline void fir16_free(struct fir16_state_t *fir) { kfree(fir->history); } #ifdef __bfin__ static inline int32_t dot_asm(short *x, short *y, int len) { int dot; len--; __asm__("I0 = %1;\n\t" "I1 = %2;\n\t" "A0 = 0;\n\t" "R0.L = W[I0++] || R1.L = W[I1++];\n\t" "LOOP dot%= LC0 = %3;\n\t" "LOOP_BEGIN dot%=;\n\t" "A0 += R0.L * R1.L (IS) || R0.L = W[I0++] || R1.L = W[I1++];\n\t" "LOOP_END dot%=;\n\t" "A0 += R0.L*R1.L (IS);\n\t" "R0 = A0;\n\t" "%0 = R0;\n\t" : "=&d"(dot) : "a"(x), "a"(y), "a"(len) : "I0", "I1", "A1", "A0", "R0", "R1" ); return dot; } #endif static inline int16_t fir16(struct fir16_state_t *fir, int16_t sample) { int32_t y; #if defined(__bfin__) fir->history[fir->curr_pos] = sample; fir->history[fir->curr_pos + fir->taps] = sample; y = dot_asm((int16_t *) fir->coeffs, &fir->history[fir->curr_pos], fir->taps); #else int i; int offset1; int offset2; fir->history[fir->curr_pos] = sample; offset2 = fir->curr_pos; offset1 = fir->taps - offset2; y = 0; for (i = fir->taps - 1; i >= offset1; i--) y += fir->coeffs[i] * fir->history[i - offset1]; for (; i >= 0; i--) y += fir->coeffs[i] * fir->history[i + offset2]; #endif if (fir->curr_pos <= 0) fir->curr_pos = fir->taps; fir->curr_pos--; return (int16_t) (y >> 15); } static inline const int16_t *fir32_create(struct fir32_state_t *fir, const int32_t *coeffs, int taps) { fir->taps = taps; fir->curr_pos = taps - 1; fir->coeffs = coeffs; fir->history = kcalloc(taps, sizeof(int16_t), GFP_KERNEL); return fir->history; } static inline void fir32_flush(struct fir32_state_t *fir) { memset(fir->history, 0, fir->taps * sizeof(int16_t)); } static inline void fir32_free(struct fir32_state_t *fir) { kfree(fir->history); } static inline int16_t fir32(struct fir32_state_t *fir, int16_t sample) { int i; int32_t y; int offset1; int offset2; fir->history[fir->curr_pos] = sample; offset2 = fir->curr_pos; offset1 = fir->taps - offset2; y = 0; for (i = fir->taps - 1; i >= offset1; i--) y += fir->coeffs[i] * fir->history[i - offset1]; for (; i >= 0; i--) y += fir->coeffs[i] * fir->history[i + offset2]; if (fir->curr_pos <= 0) fir->curr_pos = fir->taps; fir->curr_pos--; return (int16_t) (y >> 15); } #endif