/* * Copyright © 2006-2011 Intel Corporation * * This program is free software; you can redistribute it and/or modify it * under the terms and conditions of the GNU General Public License, * version 2, as published by the Free Software Foundation. * * This program is distributed in the hope it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for * more details. * * You should have received a copy of the GNU General Public License along with * this program; if not, write to the Free Software Foundation, Inc., * 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA. * * Authors: * Eric Anholt */ #include #include #include #include "framebuffer.h" #include "psb_drv.h" #include "psb_intel_drv.h" #include "psb_intel_reg.h" #include "psb_intel_display.h" #include "power.h" #include "mdfld_output.h" struct psb_intel_clock_t { /* given values */ int n; int m1, m2; int p1, p2; /* derived values */ int dot; int vco; int m; int p; }; struct psb_intel_range_t { int min, max; }; struct psb_intel_p2_t { int dot_limit; int p2_slow, p2_fast; }; #define INTEL_P2_NUM 2 struct psb_intel_limit_t { struct psb_intel_range_t dot, vco, n, m, m1, m2, p, p1; struct psb_intel_p2_t p2; }; #define I8XX_DOT_MIN 25000 #define I8XX_DOT_MAX 350000 #define I8XX_VCO_MIN 930000 #define I8XX_VCO_MAX 1400000 #define I8XX_N_MIN 3 #define I8XX_N_MAX 16 #define I8XX_M_MIN 96 #define I8XX_M_MAX 140 #define I8XX_M1_MIN 18 #define I8XX_M1_MAX 26 #define I8XX_M2_MIN 6 #define I8XX_M2_MAX 16 #define I8XX_P_MIN 4 #define I8XX_P_MAX 128 #define I8XX_P1_MIN 2 #define I8XX_P1_MAX 33 #define I8XX_P1_LVDS_MIN 1 #define I8XX_P1_LVDS_MAX 6 #define I8XX_P2_SLOW 4 #define I8XX_P2_FAST 2 #define I8XX_P2_LVDS_SLOW 14 #define I8XX_P2_LVDS_FAST 14 /* No fast option */ #define I8XX_P2_SLOW_LIMIT 165000 #define I9XX_DOT_MIN 20000 #define I9XX_DOT_MAX 400000 #define I9XX_VCO_MIN 1400000 #define I9XX_VCO_MAX 2800000 #define I9XX_N_MIN 3 #define I9XX_N_MAX 8 #define I9XX_M_MIN 70 #define I9XX_M_MAX 120 #define I9XX_M1_MIN 10 #define I9XX_M1_MAX 20 #define I9XX_M2_MIN 5 #define I9XX_M2_MAX 9 #define I9XX_P_SDVO_DAC_MIN 5 #define I9XX_P_SDVO_DAC_MAX 80 #define I9XX_P_LVDS_MIN 7 #define I9XX_P_LVDS_MAX 98 #define I9XX_P1_MIN 1 #define I9XX_P1_MAX 8 #define I9XX_P2_SDVO_DAC_SLOW 10 #define I9XX_P2_SDVO_DAC_FAST 5 #define I9XX_P2_SDVO_DAC_SLOW_LIMIT 200000 #define I9XX_P2_LVDS_SLOW 14 #define I9XX_P2_LVDS_FAST 7 #define I9XX_P2_LVDS_SLOW_LIMIT 112000 #define INTEL_LIMIT_I8XX_DVO_DAC 0 #define INTEL_LIMIT_I8XX_LVDS 1 #define INTEL_LIMIT_I9XX_SDVO_DAC 2 #define INTEL_LIMIT_I9XX_LVDS 3 static const struct psb_intel_limit_t psb_intel_limits[] = { { /* INTEL_LIMIT_I8XX_DVO_DAC */ .dot = {.min = I8XX_DOT_MIN, .max = I8XX_DOT_MAX}, .vco = {.min = I8XX_VCO_MIN, .max = I8XX_VCO_MAX}, .n = {.min = I8XX_N_MIN, .max = I8XX_N_MAX}, .m = {.min = I8XX_M_MIN, .max = I8XX_M_MAX}, .m1 = {.min = I8XX_M1_MIN, .max = I8XX_M1_MAX}, .m2 = {.min = I8XX_M2_MIN, .max = I8XX_M2_MAX}, .p = {.min = I8XX_P_MIN, .max = I8XX_P_MAX}, .p1 = {.min = I8XX_P1_MIN, .max = I8XX_P1_MAX}, .p2 = {.dot_limit = I8XX_P2_SLOW_LIMIT, .p2_slow = I8XX_P2_SLOW, .p2_fast = I8XX_P2_FAST}, }, { /* INTEL_LIMIT_I8XX_LVDS */ .dot = {.min = I8XX_DOT_MIN, .max = I8XX_DOT_MAX}, .vco = {.min = I8XX_VCO_MIN, .max = I8XX_VCO_MAX}, .n = {.min = I8XX_N_MIN, .max = I8XX_N_MAX}, .m = {.min = I8XX_M_MIN, .max = I8XX_M_MAX}, .m1 = {.min = I8XX_M1_MIN, .max = I8XX_M1_MAX}, .m2 = {.min = I8XX_M2_MIN, .max = I8XX_M2_MAX}, .p = {.min = I8XX_P_MIN, .max = I8XX_P_MAX}, .p1 = {.min = I8XX_P1_LVDS_MIN, .max = I8XX_P1_LVDS_MAX}, .p2 = {.dot_limit = I8XX_P2_SLOW_LIMIT, .p2_slow = I8XX_P2_LVDS_SLOW, .p2_fast = I8XX_P2_LVDS_FAST}, }, { /* INTEL_LIMIT_I9XX_SDVO_DAC */ .dot = {.min = I9XX_DOT_MIN, .max = I9XX_DOT_MAX}, .vco = {.min = I9XX_VCO_MIN, .max = I9XX_VCO_MAX}, .n = {.min = I9XX_N_MIN, .max = I9XX_N_MAX}, .m = {.min = I9XX_M_MIN, .max = I9XX_M_MAX}, .m1 = {.min = I9XX_M1_MIN, .max = I9XX_M1_MAX}, .m2 = {.min = I9XX_M2_MIN, .max = I9XX_M2_MAX}, .p = {.min = I9XX_P_SDVO_DAC_MIN, .max = I9XX_P_SDVO_DAC_MAX}, .p1 = {.min = I9XX_P1_MIN, .max = I9XX_P1_MAX}, .p2 = {.dot_limit = I9XX_P2_SDVO_DAC_SLOW_LIMIT, .p2_slow = I9XX_P2_SDVO_DAC_SLOW, .p2_fast = I9XX_P2_SDVO_DAC_FAST}, }, { /* INTEL_LIMIT_I9XX_LVDS */ .dot = {.min = I9XX_DOT_MIN, .max = I9XX_DOT_MAX}, .vco = {.min = I9XX_VCO_MIN, .max = I9XX_VCO_MAX}, .n = {.min = I9XX_N_MIN, .max = I9XX_N_MAX}, .m = {.min = I9XX_M_MIN, .max = I9XX_M_MAX}, .m1 = {.min = I9XX_M1_MIN, .max = I9XX_M1_MAX}, .m2 = {.min = I9XX_M2_MIN, .max = I9XX_M2_MAX}, .p = {.min = I9XX_P_LVDS_MIN, .max = I9XX_P_LVDS_MAX}, .p1 = {.min = I9XX_P1_MIN, .max = I9XX_P1_MAX}, /* The single-channel range is 25-112Mhz, and dual-channel * is 80-224Mhz. Prefer single channel as much as possible. */ .p2 = {.dot_limit = I9XX_P2_LVDS_SLOW_LIMIT, .p2_slow = I9XX_P2_LVDS_SLOW, .p2_fast = I9XX_P2_LVDS_FAST}, }, }; static const struct psb_intel_limit_t *psb_intel_limit(struct drm_crtc *crtc) { const struct psb_intel_limit_t *limit; if (psb_intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) limit = &psb_intel_limits[INTEL_LIMIT_I9XX_LVDS]; else limit = &psb_intel_limits[INTEL_LIMIT_I9XX_SDVO_DAC]; return limit; } /** Derive the pixel clock for the given refclk and divisors for 8xx chips. */ static void i8xx_clock(int refclk, struct psb_intel_clock_t *clock) { clock->m = 5 * (clock->m1 + 2) + (clock->m2 + 2); clock->p = clock->p1 * clock->p2; clock->vco = refclk * clock->m / (clock->n + 2); clock->dot = clock->vco / clock->p; } /** Derive the pixel clock for the given refclk and divisors for 9xx chips. */ static void i9xx_clock(int refclk, struct psb_intel_clock_t *clock) { clock->m = 5 * (clock->m1 + 2) + (clock->m2 + 2); clock->p = clock->p1 * clock->p2; clock->vco = refclk * clock->m / (clock->n + 2); clock->dot = clock->vco / clock->p; } static void psb_intel_clock(struct drm_device *dev, int refclk, struct psb_intel_clock_t *clock) { return i9xx_clock(refclk, clock); } /** * Returns whether any output on the specified pipe is of the specified type */ bool psb_intel_pipe_has_type(struct drm_crtc *crtc, int type) { struct drm_device *dev = crtc->dev; struct drm_mode_config *mode_config = &dev->mode_config; struct drm_connector *l_entry; list_for_each_entry(l_entry, &mode_config->connector_list, head) { if (l_entry->encoder && l_entry->encoder->crtc == crtc) { struct psb_intel_output *psb_intel_output = to_psb_intel_output(l_entry); if (psb_intel_output->type == type) return true; } } return false; } #define INTELPllInvalid(s) { /* ErrorF (s) */; return false; } /** * Returns whether the given set of divisors are valid for a given refclk with * the given connectors. */ static bool psb_intel_PLL_is_valid(struct drm_crtc *crtc, struct psb_intel_clock_t *clock) { const struct psb_intel_limit_t *limit = psb_intel_limit(crtc); if (clock->p1 < limit->p1.min || limit->p1.max < clock->p1) INTELPllInvalid("p1 out of range\n"); if (clock->p < limit->p.min || limit->p.max < clock->p) INTELPllInvalid("p out of range\n"); if (clock->m2 < limit->m2.min || limit->m2.max < clock->m2) INTELPllInvalid("m2 out of range\n"); if (clock->m1 < limit->m1.min || limit->m1.max < clock->m1) INTELPllInvalid("m1 out of range\n"); if (clock->m1 <= clock->m2) INTELPllInvalid("m1 <= m2\n"); if (clock->m < limit->m.min || limit->m.max < clock->m) INTELPllInvalid("m out of range\n"); if (clock->n < limit->n.min || limit->n.max < clock->n) INTELPllInvalid("n out of range\n"); if (clock->vco < limit->vco.min || limit->vco.max < clock->vco) INTELPllInvalid("vco out of range\n"); /* XXX: We may need to be checking "Dot clock" * depending on the multiplier, connector, etc., * rather than just a single range. */ if (clock->dot < limit->dot.min || limit->dot.max < clock->dot) INTELPllInvalid("dot out of range\n"); return true; } /** * Returns a set of divisors for the desired target clock with the given * refclk, or FALSE. The returned values represent the clock equation: * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2. */ static bool psb_intel_find_best_PLL(struct drm_crtc *crtc, int target, int refclk, struct psb_intel_clock_t *best_clock) { struct drm_device *dev = crtc->dev; struct psb_intel_clock_t clock; const struct psb_intel_limit_t *limit = psb_intel_limit(crtc); int err = target; if (psb_intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) && (REG_READ(LVDS) & LVDS_PORT_EN) != 0) { /* * For LVDS, if the panel is on, just rely on its current * settings for dual-channel. We haven't figured out how to * reliably set up different single/dual channel state, if we * even can. */ if ((REG_READ(LVDS) & LVDS_CLKB_POWER_MASK) == LVDS_CLKB_POWER_UP) clock.p2 = limit->p2.p2_fast; else clock.p2 = limit->p2.p2_slow; } else { if (target < limit->p2.dot_limit) clock.p2 = limit->p2.p2_slow; else clock.p2 = limit->p2.p2_fast; } memset(best_clock, 0, sizeof(*best_clock)); for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max; clock.m1++) { for (clock.m2 = limit->m2.min; clock.m2 < clock.m1 && clock.m2 <= limit->m2.max; clock.m2++) { for (clock.n = limit->n.min; clock.n <= limit->n.max; clock.n++) { for (clock.p1 = limit->p1.min; clock.p1 <= limit->p1.max; clock.p1++) { int this_err; psb_intel_clock(dev, refclk, &clock); if (!psb_intel_PLL_is_valid (crtc, &clock)) continue; this_err = abs(clock.dot - target); if (this_err < err) { *best_clock = clock; err = this_err; } } } } } return err != target; } void psb_intel_wait_for_vblank(struct drm_device *dev) { /* Wait for 20ms, i.e. one cycle at 50hz. */ mdelay(20); } int psb_intel_pipe_set_base(struct drm_crtc *crtc, int x, int y, struct drm_framebuffer *old_fb) { struct drm_device *dev = crtc->dev; /* struct drm_i915_master_private *master_priv; */ struct psb_intel_crtc *psb_intel_crtc = to_psb_intel_crtc(crtc); struct psb_framebuffer *psbfb = to_psb_fb(crtc->fb); int pipe = psb_intel_crtc->pipe; unsigned long start, offset; int dspbase = (pipe == 0 ? DSPABASE : DSPBBASE); int dspsurf = (pipe == 0 ? DSPASURF : DSPBSURF); int dspstride = (pipe == 0) ? DSPASTRIDE : DSPBSTRIDE; int dspcntr_reg = (pipe == 0) ? DSPACNTR : DSPBCNTR; u32 dspcntr; int ret = 0; if (!gma_power_begin(dev, true)) return 0; /* no fb bound */ if (!crtc->fb) { dev_dbg(dev->dev, "No FB bound\n"); goto psb_intel_pipe_cleaner; } /* We are displaying this buffer, make sure it is actually loaded into the GTT */ ret = psb_gtt_pin(psbfb->gtt); if (ret < 0) goto psb_intel_pipe_set_base_exit; start = psbfb->gtt->offset; offset = y * crtc->fb->pitch + x * (crtc->fb->bits_per_pixel / 8); REG_WRITE(dspstride, crtc->fb->pitch); dspcntr = REG_READ(dspcntr_reg); dspcntr &= ~DISPPLANE_PIXFORMAT_MASK; switch (crtc->fb->bits_per_pixel) { case 8: dspcntr |= DISPPLANE_8BPP; break; case 16: if (crtc->fb->depth == 15) dspcntr |= DISPPLANE_15_16BPP; else dspcntr |= DISPPLANE_16BPP; break; case 24: case 32: dspcntr |= DISPPLANE_32BPP_NO_ALPHA; break; default: dev_err(dev->dev, "Unknown color depth\n"); ret = -EINVAL; psb_gtt_unpin(psbfb->gtt); goto psb_intel_pipe_set_base_exit; } REG_WRITE(dspcntr_reg, dspcntr); if (0 /* FIXMEAC - check what PSB needs */) { REG_WRITE(dspbase, offset); REG_READ(dspbase); REG_WRITE(dspsurf, start); REG_READ(dspsurf); } else { REG_WRITE(dspbase, start + offset); REG_READ(dspbase); } psb_intel_pipe_cleaner: /* If there was a previous display we can now unpin it */ if (old_fb) psb_gtt_unpin(to_psb_fb(old_fb)->gtt); psb_intel_pipe_set_base_exit: gma_power_end(dev); return ret; } /** * Sets the power management mode of the pipe and plane. * * This code should probably grow support for turning the cursor off and back * on appropriately at the same time as we're turning the pipe off/on. */ static void psb_intel_crtc_dpms(struct drm_crtc *crtc, int mode) { struct drm_device *dev = crtc->dev; /* struct drm_i915_master_private *master_priv; */ /* struct drm_i915_private *dev_priv = dev->dev_private; */ struct psb_intel_crtc *psb_intel_crtc = to_psb_intel_crtc(crtc); int pipe = psb_intel_crtc->pipe; int dpll_reg = (pipe == 0) ? DPLL_A : DPLL_B; int dspcntr_reg = (pipe == 0) ? DSPACNTR : DSPBCNTR; int dspbase_reg = (pipe == 0) ? DSPABASE : DSPBBASE; int pipeconf_reg = (pipe == 0) ? PIPEACONF : PIPEBCONF; u32 temp; bool enabled; /* XXX: When our outputs are all unaware of DPMS modes other than off * and on, we should map those modes to DRM_MODE_DPMS_OFF in the CRTC. */ switch (mode) { case DRM_MODE_DPMS_ON: case DRM_MODE_DPMS_STANDBY: case DRM_MODE_DPMS_SUSPEND: /* Enable the DPLL */ temp = REG_READ(dpll_reg); if ((temp & DPLL_VCO_ENABLE) == 0) { REG_WRITE(dpll_reg, temp); REG_READ(dpll_reg); /* Wait for the clocks to stabilize. */ udelay(150); REG_WRITE(dpll_reg, temp | DPLL_VCO_ENABLE); REG_READ(dpll_reg); /* Wait for the clocks to stabilize. */ udelay(150); REG_WRITE(dpll_reg, temp | DPLL_VCO_ENABLE); REG_READ(dpll_reg); /* Wait for the clocks to stabilize. */ udelay(150); } /* Enable the pipe */ temp = REG_READ(pipeconf_reg); if ((temp & PIPEACONF_ENABLE) == 0) REG_WRITE(pipeconf_reg, temp | PIPEACONF_ENABLE); /* Enable the plane */ temp = REG_READ(dspcntr_reg); if ((temp & DISPLAY_PLANE_ENABLE) == 0) { REG_WRITE(dspcntr_reg, temp | DISPLAY_PLANE_ENABLE); /* Flush the plane changes */ REG_WRITE(dspbase_reg, REG_READ(dspbase_reg)); } psb_intel_crtc_load_lut(crtc); /* Give the overlay scaler a chance to enable * if it's on this pipe */ /* psb_intel_crtc_dpms_video(crtc, true); TODO */ break; case DRM_MODE_DPMS_OFF: /* Give the overlay scaler a chance to disable * if it's on this pipe */ /* psb_intel_crtc_dpms_video(crtc, FALSE); TODO */ /* Disable the VGA plane that we never use */ REG_WRITE(VGACNTRL, VGA_DISP_DISABLE); /* Disable display plane */ temp = REG_READ(dspcntr_reg); if ((temp & DISPLAY_PLANE_ENABLE) != 0) { REG_WRITE(dspcntr_reg, temp & ~DISPLAY_PLANE_ENABLE); /* Flush the plane changes */ REG_WRITE(dspbase_reg, REG_READ(dspbase_reg)); REG_READ(dspbase_reg); } /* Next, disable display pipes */ temp = REG_READ(pipeconf_reg); if ((temp & PIPEACONF_ENABLE) != 0) { REG_WRITE(pipeconf_reg, temp & ~PIPEACONF_ENABLE); REG_READ(pipeconf_reg); } /* Wait for vblank for the disable to take effect. */ psb_intel_wait_for_vblank(dev); temp = REG_READ(dpll_reg); if ((temp & DPLL_VCO_ENABLE) != 0) { REG_WRITE(dpll_reg, temp & ~DPLL_VCO_ENABLE); REG_READ(dpll_reg); } /* Wait for the clocks to turn off. */ udelay(150); break; } enabled = crtc->enabled && mode != DRM_MODE_DPMS_OFF; /*Set FIFO Watermarks*/ REG_WRITE(DSPARB, 0x3F3E); } static void psb_intel_crtc_prepare(struct drm_crtc *crtc) { struct drm_crtc_helper_funcs *crtc_funcs = crtc->helper_private; crtc_funcs->dpms(crtc, DRM_MODE_DPMS_OFF); } static void psb_intel_crtc_commit(struct drm_crtc *crtc) { struct drm_crtc_helper_funcs *crtc_funcs = crtc->helper_private; crtc_funcs->dpms(crtc, DRM_MODE_DPMS_ON); } void psb_intel_encoder_prepare(struct drm_encoder *encoder) { struct drm_encoder_helper_funcs *encoder_funcs = encoder->helper_private; /* lvds has its own version of prepare see psb_intel_lvds_prepare */ encoder_funcs->dpms(encoder, DRM_MODE_DPMS_OFF); } void psb_intel_encoder_commit(struct drm_encoder *encoder) { struct drm_encoder_helper_funcs *encoder_funcs = encoder->helper_private; /* lvds has its own version of commit see psb_intel_lvds_commit */ encoder_funcs->dpms(encoder, DRM_MODE_DPMS_ON); } static bool psb_intel_crtc_mode_fixup(struct drm_crtc *crtc, struct drm_display_mode *mode, struct drm_display_mode *adjusted_mode) { return true; } /** * Return the pipe currently connected to the panel fitter, * or -1 if the panel fitter is not present or not in use */ static int psb_intel_panel_fitter_pipe(struct drm_device *dev) { u32 pfit_control; pfit_control = REG_READ(PFIT_CONTROL); /* See if the panel fitter is in use */ if ((pfit_control & PFIT_ENABLE) == 0) return -1; /* Must be on PIPE 1 for PSB */ return 1; } static int psb_intel_crtc_mode_set(struct drm_crtc *crtc, struct drm_display_mode *mode, struct drm_display_mode *adjusted_mode, int x, int y, struct drm_framebuffer *old_fb) { struct drm_device *dev = crtc->dev; struct psb_intel_crtc *psb_intel_crtc = to_psb_intel_crtc(crtc); struct drm_crtc_helper_funcs *crtc_funcs = crtc->helper_private; int pipe = psb_intel_crtc->pipe; int fp_reg = (pipe == 0) ? FPA0 : FPB0; int dpll_reg = (pipe == 0) ? DPLL_A : DPLL_B; int dspcntr_reg = (pipe == 0) ? DSPACNTR : DSPBCNTR; int pipeconf_reg = (pipe == 0) ? PIPEACONF : PIPEBCONF; int htot_reg = (pipe == 0) ? HTOTAL_A : HTOTAL_B; int hblank_reg = (pipe == 0) ? HBLANK_A : HBLANK_B; int hsync_reg = (pipe == 0) ? HSYNC_A : HSYNC_B; int vtot_reg = (pipe == 0) ? VTOTAL_A : VTOTAL_B; int vblank_reg = (pipe == 0) ? VBLANK_A : VBLANK_B; int vsync_reg = (pipe == 0) ? VSYNC_A : VSYNC_B; int dspsize_reg = (pipe == 0) ? DSPASIZE : DSPBSIZE; int dsppos_reg = (pipe == 0) ? DSPAPOS : DSPBPOS; int pipesrc_reg = (pipe == 0) ? PIPEASRC : PIPEBSRC; int refclk; struct psb_intel_clock_t clock; u32 dpll = 0, fp = 0, dspcntr, pipeconf; bool ok, is_sdvo = false, is_dvo = false; bool is_crt = false, is_lvds = false, is_tv = false; struct drm_mode_config *mode_config = &dev->mode_config; struct drm_connector *connector; /* No scan out no play */ if (crtc->fb == NULL) { crtc_funcs->mode_set_base(crtc, x, y, old_fb); return 0; } list_for_each_entry(connector, &mode_config->connector_list, head) { struct psb_intel_output *psb_intel_output = to_psb_intel_output(connector); if (!connector->encoder || connector->encoder->crtc != crtc) continue; switch (psb_intel_output->type) { case INTEL_OUTPUT_LVDS: is_lvds = true; break; case INTEL_OUTPUT_SDVO: is_sdvo = true; break; case INTEL_OUTPUT_DVO: is_dvo = true; break; case INTEL_OUTPUT_TVOUT: is_tv = true; break; case INTEL_OUTPUT_ANALOG: is_crt = true; break; } } refclk = 96000; ok = psb_intel_find_best_PLL(crtc, adjusted_mode->clock, refclk, &clock); if (!ok) { dev_err(dev->dev, "Couldn't find PLL settings for mode!\n"); return 0; } fp = clock.n << 16 | clock.m1 << 8 | clock.m2; dpll = DPLL_VGA_MODE_DIS; if (is_lvds) { dpll |= DPLLB_MODE_LVDS; dpll |= DPLL_DVO_HIGH_SPEED; } else dpll |= DPLLB_MODE_DAC_SERIAL; if (is_sdvo) { int sdvo_pixel_multiply = adjusted_mode->clock / mode->clock; dpll |= DPLL_DVO_HIGH_SPEED; dpll |= (sdvo_pixel_multiply - 1) << SDVO_MULTIPLIER_SHIFT_HIRES; } /* compute bitmask from p1 value */ dpll |= (1 << (clock.p1 - 1)) << 16; switch (clock.p2) { case 5: dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5; break; case 7: dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7; break; case 10: dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10; break; case 14: dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14; break; } if (is_tv) { /* XXX: just matching BIOS for now */ /* dpll |= PLL_REF_INPUT_TVCLKINBC; */ dpll |= 3; } dpll |= PLL_REF_INPUT_DREFCLK; /* setup pipeconf */ pipeconf = REG_READ(pipeconf_reg); /* Set up the display plane register */ dspcntr = DISPPLANE_GAMMA_ENABLE; if (pipe == 0) dspcntr |= DISPPLANE_SEL_PIPE_A; else dspcntr |= DISPPLANE_SEL_PIPE_B; dspcntr |= DISPLAY_PLANE_ENABLE; pipeconf |= PIPEACONF_ENABLE; dpll |= DPLL_VCO_ENABLE; /* Disable the panel fitter if it was on our pipe */ if (psb_intel_panel_fitter_pipe(dev) == pipe) REG_WRITE(PFIT_CONTROL, 0); drm_mode_debug_printmodeline(mode); if (dpll & DPLL_VCO_ENABLE) { REG_WRITE(fp_reg, fp); REG_WRITE(dpll_reg, dpll & ~DPLL_VCO_ENABLE); REG_READ(dpll_reg); udelay(150); } /* The LVDS pin pair needs to be on before the DPLLs are enabled. * This is an exception to the general rule that mode_set doesn't turn * things on. */ if (is_lvds) { u32 lvds = REG_READ(LVDS); lvds &= ~LVDS_PIPEB_SELECT; if (pipe == 1) lvds |= LVDS_PIPEB_SELECT; lvds |= LVDS_PORT_EN | LVDS_A0A2_CLKA_POWER_UP; /* Set the B0-B3 data pairs corresponding to * whether we're going to * set the DPLLs for dual-channel mode or not. */ lvds &= ~(LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP); if (clock.p2 == 7) lvds |= LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP; /* It would be nice to set 24 vs 18-bit mode (LVDS_A3_POWER_UP) * appropriately here, but we need to look more * thoroughly into how panels behave in the two modes. */ REG_WRITE(LVDS, lvds); REG_READ(LVDS); } REG_WRITE(fp_reg, fp); REG_WRITE(dpll_reg, dpll); REG_READ(dpll_reg); /* Wait for the clocks to stabilize. */ udelay(150); /* write it again -- the BIOS does, after all */ REG_WRITE(dpll_reg, dpll); REG_READ(dpll_reg); /* Wait for the clocks to stabilize. */ udelay(150); REG_WRITE(htot_reg, (adjusted_mode->crtc_hdisplay - 1) | ((adjusted_mode->crtc_htotal - 1) << 16)); REG_WRITE(hblank_reg, (adjusted_mode->crtc_hblank_start - 1) | ((adjusted_mode->crtc_hblank_end - 1) << 16)); REG_WRITE(hsync_reg, (adjusted_mode->crtc_hsync_start - 1) | ((adjusted_mode->crtc_hsync_end - 1) << 16)); REG_WRITE(vtot_reg, (adjusted_mode->crtc_vdisplay - 1) | ((adjusted_mode->crtc_vtotal - 1) << 16)); REG_WRITE(vblank_reg, (adjusted_mode->crtc_vblank_start - 1) | ((adjusted_mode->crtc_vblank_end - 1) << 16)); REG_WRITE(vsync_reg, (adjusted_mode->crtc_vsync_start - 1) | ((adjusted_mode->crtc_vsync_end - 1) << 16)); /* pipesrc and dspsize control the size that is scaled from, * which should always be the user's requested size. */ REG_WRITE(dspsize_reg, ((mode->vdisplay - 1) << 16) | (mode->hdisplay - 1)); REG_WRITE(dsppos_reg, 0); REG_WRITE(pipesrc_reg, ((mode->hdisplay - 1) << 16) | (mode->vdisplay - 1)); REG_WRITE(pipeconf_reg, pipeconf); REG_READ(pipeconf_reg); psb_intel_wait_for_vblank(dev); REG_WRITE(dspcntr_reg, dspcntr); /* Flush the plane changes */ crtc_funcs->mode_set_base(crtc, x, y, old_fb); psb_intel_wait_for_vblank(dev); return 0; } /** Loads the palette/gamma unit for the CRTC with the prepared values */ void psb_intel_crtc_load_lut(struct drm_crtc *crtc) { struct drm_device *dev = crtc->dev; struct drm_psb_private *dev_priv = (struct drm_psb_private *)dev->dev_private; struct psb_intel_crtc *psb_intel_crtc = to_psb_intel_crtc(crtc); int palreg = PALETTE_A; int i; /* The clocks have to be on to load the palette. */ if (!crtc->enabled) return; switch (psb_intel_crtc->pipe) { case 0: break; case 1: palreg = PALETTE_B; break; case 2: palreg = PALETTE_C; break; default: dev_err(dev->dev, "Illegal Pipe Number.\n"); return; } if (gma_power_begin(dev, false)) { for (i = 0; i < 256; i++) { REG_WRITE(palreg + 4 * i, ((psb_intel_crtc->lut_r[i] + psb_intel_crtc->lut_adj[i]) << 16) | ((psb_intel_crtc->lut_g[i] + psb_intel_crtc->lut_adj[i]) << 8) | (psb_intel_crtc->lut_b[i] + psb_intel_crtc->lut_adj[i])); } gma_power_end(dev); } else { for (i = 0; i < 256; i++) { dev_priv->save_palette_a[i] = ((psb_intel_crtc->lut_r[i] + psb_intel_crtc->lut_adj[i]) << 16) | ((psb_intel_crtc->lut_g[i] + psb_intel_crtc->lut_adj[i]) << 8) | (psb_intel_crtc->lut_b[i] + psb_intel_crtc->lut_adj[i]); } } } /** * Save HW states of giving crtc */ static void psb_intel_crtc_save(struct drm_crtc *crtc) { struct drm_device *dev = crtc->dev; /* struct drm_psb_private *dev_priv = (struct drm_psb_private *)dev->dev_private; */ struct psb_intel_crtc *psb_intel_crtc = to_psb_intel_crtc(crtc); struct psb_intel_crtc_state *crtc_state = psb_intel_crtc->crtc_state; int pipeA = (psb_intel_crtc->pipe == 0); uint32_t paletteReg; int i; if (!crtc_state) { dev_err(dev->dev, "No CRTC state found\n"); return; } crtc_state->saveDSPCNTR = REG_READ(pipeA ? DSPACNTR : DSPBCNTR); crtc_state->savePIPECONF = REG_READ(pipeA ? PIPEACONF : PIPEBCONF); crtc_state->savePIPESRC = REG_READ(pipeA ? PIPEASRC : PIPEBSRC); crtc_state->saveFP0 = REG_READ(pipeA ? FPA0 : FPB0); crtc_state->saveFP1 = REG_READ(pipeA ? FPA1 : FPB1); crtc_state->saveDPLL = REG_READ(pipeA ? DPLL_A : DPLL_B); crtc_state->saveHTOTAL = REG_READ(pipeA ? HTOTAL_A : HTOTAL_B); crtc_state->saveHBLANK = REG_READ(pipeA ? HBLANK_A : HBLANK_B); crtc_state->saveHSYNC = REG_READ(pipeA ? HSYNC_A : HSYNC_B); crtc_state->saveVTOTAL = REG_READ(pipeA ? VTOTAL_A : VTOTAL_B); crtc_state->saveVBLANK = REG_READ(pipeA ? VBLANK_A : VBLANK_B); crtc_state->saveVSYNC = REG_READ(pipeA ? VSYNC_A : VSYNC_B); crtc_state->saveDSPSTRIDE = REG_READ(pipeA ? DSPASTRIDE : DSPBSTRIDE); /*NOTE: DSPSIZE DSPPOS only for psb*/ crtc_state->saveDSPSIZE = REG_READ(pipeA ? DSPASIZE : DSPBSIZE); crtc_state->saveDSPPOS = REG_READ(pipeA ? DSPAPOS : DSPBPOS); crtc_state->saveDSPBASE = REG_READ(pipeA ? DSPABASE : DSPBBASE); paletteReg = pipeA ? PALETTE_A : PALETTE_B; for (i = 0; i < 256; ++i) crtc_state->savePalette[i] = REG_READ(paletteReg + (i << 2)); } /** * Restore HW states of giving crtc */ static void psb_intel_crtc_restore(struct drm_crtc *crtc) { struct drm_device *dev = crtc->dev; /* struct drm_psb_private * dev_priv = (struct drm_psb_private *)dev->dev_private; */ struct psb_intel_crtc *psb_intel_crtc = to_psb_intel_crtc(crtc); struct psb_intel_crtc_state *crtc_state = psb_intel_crtc->crtc_state; /* struct drm_crtc_helper_funcs * crtc_funcs = crtc->helper_private; */ int pipeA = (psb_intel_crtc->pipe == 0); uint32_t paletteReg; int i; if (!crtc_state) { dev_err(dev->dev, "No crtc state\n"); return; } if (crtc_state->saveDPLL & DPLL_VCO_ENABLE) { REG_WRITE(pipeA ? DPLL_A : DPLL_B, crtc_state->saveDPLL & ~DPLL_VCO_ENABLE); REG_READ(pipeA ? DPLL_A : DPLL_B); udelay(150); } REG_WRITE(pipeA ? FPA0 : FPB0, crtc_state->saveFP0); REG_READ(pipeA ? FPA0 : FPB0); REG_WRITE(pipeA ? FPA1 : FPB1, crtc_state->saveFP1); REG_READ(pipeA ? FPA1 : FPB1); REG_WRITE(pipeA ? DPLL_A : DPLL_B, crtc_state->saveDPLL); REG_READ(pipeA ? DPLL_A : DPLL_B); udelay(150); REG_WRITE(pipeA ? HTOTAL_A : HTOTAL_B, crtc_state->saveHTOTAL); REG_WRITE(pipeA ? HBLANK_A : HBLANK_B, crtc_state->saveHBLANK); REG_WRITE(pipeA ? HSYNC_A : HSYNC_B, crtc_state->saveHSYNC); REG_WRITE(pipeA ? VTOTAL_A : VTOTAL_B, crtc_state->saveVTOTAL); REG_WRITE(pipeA ? VBLANK_A : VBLANK_B, crtc_state->saveVBLANK); REG_WRITE(pipeA ? VSYNC_A : VSYNC_B, crtc_state->saveVSYNC); REG_WRITE(pipeA ? DSPASTRIDE : DSPBSTRIDE, crtc_state->saveDSPSTRIDE); REG_WRITE(pipeA ? DSPASIZE : DSPBSIZE, crtc_state->saveDSPSIZE); REG_WRITE(pipeA ? DSPAPOS : DSPBPOS, crtc_state->saveDSPPOS); REG_WRITE(pipeA ? PIPEASRC : PIPEBSRC, crtc_state->savePIPESRC); REG_WRITE(pipeA ? DSPABASE : DSPBBASE, crtc_state->saveDSPBASE); REG_WRITE(pipeA ? PIPEACONF : PIPEBCONF, crtc_state->savePIPECONF); psb_intel_wait_for_vblank(dev); REG_WRITE(pipeA ? DSPACNTR : DSPBCNTR, crtc_state->saveDSPCNTR); REG_WRITE(pipeA ? DSPABASE : DSPBBASE, crtc_state->saveDSPBASE); psb_intel_wait_for_vblank(dev); paletteReg = pipeA ? PALETTE_A : PALETTE_B; for (i = 0; i < 256; ++i) REG_WRITE(paletteReg + (i << 2), crtc_state->savePalette[i]); } static int psb_intel_crtc_cursor_set(struct drm_crtc *crtc, struct drm_file *file_priv, uint32_t handle, uint32_t width, uint32_t height) { struct drm_device *dev = crtc->dev; struct psb_intel_crtc *psb_intel_crtc = to_psb_intel_crtc(crtc); int pipe = psb_intel_crtc->pipe; uint32_t control = (pipe == 0) ? CURACNTR : CURBCNTR; uint32_t base = (pipe == 0) ? CURABASE : CURBBASE; uint32_t temp; size_t addr = 0; struct gtt_range *gt; struct drm_gem_object *obj; int ret; /* if we want to turn of the cursor ignore width and height */ if (!handle) { /* turn off the cursor */ temp = CURSOR_MODE_DISABLE; if (gma_power_begin(dev, false)) { REG_WRITE(control, temp); REG_WRITE(base, 0); gma_power_end(dev); } /* Unpin the old GEM object */ if (psb_intel_crtc->cursor_obj) { gt = container_of(psb_intel_crtc->cursor_obj, struct gtt_range, gem); psb_gtt_unpin(gt); drm_gem_object_unreference(psb_intel_crtc->cursor_obj); psb_intel_crtc->cursor_obj = NULL; } return 0; } /* Currently we only support 64x64 cursors */ if (width != 64 || height != 64) { dev_dbg(dev->dev, "we currently only support 64x64 cursors\n"); return -EINVAL; } obj = drm_gem_object_lookup(dev, file_priv, handle); if (!obj) return -ENOENT; if (obj->size < width * height * 4) { dev_dbg(dev->dev, "buffer is to small\n"); return -ENOMEM; } gt = container_of(obj, struct gtt_range, gem); /* Pin the memory into the GTT */ ret = psb_gtt_pin(gt); if (ret) { dev_err(dev->dev, "Can not pin down handle 0x%x\n", handle); return ret; } addr = gt->offset; /* Or resource.start ??? */ psb_intel_crtc->cursor_addr = addr; temp = 0; /* set the pipe for the cursor */ temp |= (pipe << 28); temp |= CURSOR_MODE_64_ARGB_AX | MCURSOR_GAMMA_ENABLE; if (gma_power_begin(dev, false)) { REG_WRITE(control, temp); REG_WRITE(base, addr); gma_power_end(dev); } /* unpin the old bo */ if (psb_intel_crtc->cursor_obj) { gt = container_of(psb_intel_crtc->cursor_obj, struct gtt_range, gem); psb_gtt_unpin(gt); drm_gem_object_unreference(psb_intel_crtc->cursor_obj); psb_intel_crtc->cursor_obj = obj; } return 0; } static int psb_intel_crtc_cursor_move(struct drm_crtc *crtc, int x, int y) { struct drm_device *dev = crtc->dev; struct psb_intel_crtc *psb_intel_crtc = to_psb_intel_crtc(crtc); int pipe = psb_intel_crtc->pipe; uint32_t temp = 0; uint32_t addr; if (x < 0) { temp |= (CURSOR_POS_SIGN << CURSOR_X_SHIFT); x = -x; } if (y < 0) { temp |= (CURSOR_POS_SIGN << CURSOR_Y_SHIFT); y = -y; } temp |= ((x & CURSOR_POS_MASK) << CURSOR_X_SHIFT); temp |= ((y & CURSOR_POS_MASK) << CURSOR_Y_SHIFT); addr = psb_intel_crtc->cursor_addr; if (gma_power_begin(dev, false)) { REG_WRITE((pipe == 0) ? CURAPOS : CURBPOS, temp); REG_WRITE((pipe == 0) ? CURABASE : CURBBASE, addr); gma_power_end(dev); } return 0; } void psb_intel_crtc_gamma_set(struct drm_crtc *crtc, u16 *red, u16 *green, u16 *blue, uint32_t type, uint32_t size) { struct psb_intel_crtc *psb_intel_crtc = to_psb_intel_crtc(crtc); int i; if (size != 256) return; for (i = 0; i < 256; i++) { psb_intel_crtc->lut_r[i] = red[i] >> 8; psb_intel_crtc->lut_g[i] = green[i] >> 8; psb_intel_crtc->lut_b[i] = blue[i] >> 8; } psb_intel_crtc_load_lut(crtc); } static int psb_crtc_set_config(struct drm_mode_set *set) { int ret; struct drm_device *dev = set->crtc->dev; pm_runtime_forbid(&dev->pdev->dev); ret = drm_crtc_helper_set_config(set); pm_runtime_allow(&dev->pdev->dev); return ret; } /* Returns the clock of the currently programmed mode of the given pipe. */ static int psb_intel_crtc_clock_get(struct drm_device *dev, struct drm_crtc *crtc) { struct psb_intel_crtc *psb_intel_crtc = to_psb_intel_crtc(crtc); int pipe = psb_intel_crtc->pipe; u32 dpll; u32 fp; struct psb_intel_clock_t clock; bool is_lvds; struct drm_psb_private *dev_priv = dev->dev_private; if (gma_power_begin(dev, false)) { dpll = REG_READ((pipe == 0) ? DPLL_A : DPLL_B); if ((dpll & DISPLAY_RATE_SELECT_FPA1) == 0) fp = REG_READ((pipe == 0) ? FPA0 : FPB0); else fp = REG_READ((pipe == 0) ? FPA1 : FPB1); is_lvds = (pipe == 1) && (REG_READ(LVDS) & LVDS_PORT_EN); gma_power_end(dev); } else { dpll = (pipe == 0) ? dev_priv->saveDPLL_A : dev_priv->saveDPLL_B; if ((dpll & DISPLAY_RATE_SELECT_FPA1) == 0) fp = (pipe == 0) ? dev_priv->saveFPA0 : dev_priv->saveFPB0; else fp = (pipe == 0) ? dev_priv->saveFPA1 : dev_priv->saveFPB1; is_lvds = (pipe == 1) && (dev_priv->saveLVDS & LVDS_PORT_EN); } clock.m1 = (fp & FP_M1_DIV_MASK) >> FP_M1_DIV_SHIFT; clock.m2 = (fp & FP_M2_DIV_MASK) >> FP_M2_DIV_SHIFT; clock.n = (fp & FP_N_DIV_MASK) >> FP_N_DIV_SHIFT; if (is_lvds) { clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830_LVDS) >> DPLL_FPA01_P1_POST_DIV_SHIFT); clock.p2 = 14; if ((dpll & PLL_REF_INPUT_MASK) == PLLB_REF_INPUT_SPREADSPECTRUMIN) { /* XXX: might not be 66MHz */ i8xx_clock(66000, &clock); } else i8xx_clock(48000, &clock); } else { if (dpll & PLL_P1_DIVIDE_BY_TWO) clock.p1 = 2; else { clock.p1 = ((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830) >> DPLL_FPA01_P1_POST_DIV_SHIFT) + 2; } if (dpll & PLL_P2_DIVIDE_BY_4) clock.p2 = 4; else clock.p2 = 2; i8xx_clock(48000, &clock); } /* XXX: It would be nice to validate the clocks, but we can't reuse * i830PllIsValid() because it relies on the xf86_config connector * configuration being accurate, which it isn't necessarily. */ return clock.dot; } /** Returns the currently programmed mode of the given pipe. */ struct drm_display_mode *psb_intel_crtc_mode_get(struct drm_device *dev, struct drm_crtc *crtc) { struct psb_intel_crtc *psb_intel_crtc = to_psb_intel_crtc(crtc); int pipe = psb_intel_crtc->pipe; struct drm_display_mode *mode; int htot; int hsync; int vtot; int vsync; struct drm_psb_private *dev_priv = dev->dev_private; if (gma_power_begin(dev, false)) { htot = REG_READ((pipe == 0) ? HTOTAL_A : HTOTAL_B); hsync = REG_READ((pipe == 0) ? HSYNC_A : HSYNC_B); vtot = REG_READ((pipe == 0) ? VTOTAL_A : VTOTAL_B); vsync = REG_READ((pipe == 0) ? VSYNC_A : VSYNC_B); gma_power_end(dev); } else { htot = (pipe == 0) ? dev_priv->saveHTOTAL_A : dev_priv->saveHTOTAL_B; hsync = (pipe == 0) ? dev_priv->saveHSYNC_A : dev_priv->saveHSYNC_B; vtot = (pipe == 0) ? dev_priv->saveVTOTAL_A : dev_priv->saveVTOTAL_B; vsync = (pipe == 0) ? dev_priv->saveVSYNC_A : dev_priv->saveVSYNC_B; } mode = kzalloc(sizeof(*mode), GFP_KERNEL); if (!mode) return NULL; mode->clock = psb_intel_crtc_clock_get(dev, crtc); mode->hdisplay = (htot & 0xffff) + 1; mode->htotal = ((htot & 0xffff0000) >> 16) + 1; mode->hsync_start = (hsync & 0xffff) + 1; mode->hsync_end = ((hsync & 0xffff0000) >> 16) + 1; mode->vdisplay = (vtot & 0xffff) + 1; mode->vtotal = ((vtot & 0xffff0000) >> 16) + 1; mode->vsync_start = (vsync & 0xffff) + 1; mode->vsync_end = ((vsync & 0xffff0000) >> 16) + 1; drm_mode_set_name(mode); drm_mode_set_crtcinfo(mode, 0); return mode; } void psb_intel_crtc_destroy(struct drm_crtc *crtc) { struct psb_intel_crtc *psb_intel_crtc = to_psb_intel_crtc(crtc); struct gtt_range *gt; /* Unpin the old GEM object */ if (psb_intel_crtc->cursor_obj) { gt = container_of(psb_intel_crtc->cursor_obj, struct gtt_range, gem); psb_gtt_unpin(gt); drm_gem_object_unreference(psb_intel_crtc->cursor_obj); psb_intel_crtc->cursor_obj = NULL; } kfree(psb_intel_crtc->crtc_state); drm_crtc_cleanup(crtc); kfree(psb_intel_crtc); } const struct drm_crtc_helper_funcs psb_intel_helper_funcs = { .dpms = psb_intel_crtc_dpms, .mode_fixup = psb_intel_crtc_mode_fixup, .mode_set = psb_intel_crtc_mode_set, .mode_set_base = psb_intel_pipe_set_base, .prepare = psb_intel_crtc_prepare, .commit = psb_intel_crtc_commit, }; const struct drm_crtc_funcs psb_intel_crtc_funcs = { .save = psb_intel_crtc_save, .restore = psb_intel_crtc_restore, .cursor_set = psb_intel_crtc_cursor_set, .cursor_move = psb_intel_crtc_cursor_move, .gamma_set = psb_intel_crtc_gamma_set, .set_config = psb_crtc_set_config, .destroy = psb_intel_crtc_destroy, }; /* * Set the default value of cursor control and base register * to zero. This is a workaround for h/w defect on Oaktrail */ static void psb_intel_cursor_init(struct drm_device *dev, int pipe) { u32 control[3] = { CURACNTR, CURBCNTR, CURCCNTR }; u32 base[3] = { CURABASE, CURBBASE, CURCBASE }; REG_WRITE(control[pipe], 0); REG_WRITE(base[pipe], 0); } void psb_intel_crtc_init(struct drm_device *dev, int pipe, struct psb_intel_mode_device *mode_dev) { struct drm_psb_private *dev_priv = dev->dev_private; struct psb_intel_crtc *psb_intel_crtc; int i; uint16_t *r_base, *g_base, *b_base; /* We allocate a extra array of drm_connector pointers * for fbdev after the crtc */ psb_intel_crtc = kzalloc(sizeof(struct psb_intel_crtc) + (INTELFB_CONN_LIMIT * sizeof(struct drm_connector *)), GFP_KERNEL); if (psb_intel_crtc == NULL) return; psb_intel_crtc->crtc_state = kzalloc(sizeof(struct psb_intel_crtc_state), GFP_KERNEL); if (!psb_intel_crtc->crtc_state) { dev_err(dev->dev, "Crtc state error: No memory\n"); kfree(psb_intel_crtc); return; } /* Set the CRTC operations from the chip specific data */ drm_crtc_init(dev, &psb_intel_crtc->base, dev_priv->ops->crtc_funcs); drm_mode_crtc_set_gamma_size(&psb_intel_crtc->base, 256); psb_intel_crtc->pipe = pipe; psb_intel_crtc->plane = pipe; r_base = psb_intel_crtc->base.gamma_store; g_base = r_base + 256; b_base = g_base + 256; for (i = 0; i < 256; i++) { psb_intel_crtc->lut_r[i] = i; psb_intel_crtc->lut_g[i] = i; psb_intel_crtc->lut_b[i] = i; r_base[i] = i << 8; g_base[i] = i << 8; b_base[i] = i << 8; psb_intel_crtc->lut_adj[i] = 0; } psb_intel_crtc->mode_dev = mode_dev; psb_intel_crtc->cursor_addr = 0; drm_crtc_helper_add(&psb_intel_crtc->base, dev_priv->ops->crtc_helper); /* Setup the array of drm_connector pointer array */ psb_intel_crtc->mode_set.crtc = &psb_intel_crtc->base; BUG_ON(pipe >= ARRAY_SIZE(dev_priv->plane_to_crtc_mapping) || dev_priv->plane_to_crtc_mapping[psb_intel_crtc->plane] != NULL); dev_priv->plane_to_crtc_mapping[psb_intel_crtc->plane] = &psb_intel_crtc->base; dev_priv->pipe_to_crtc_mapping[psb_intel_crtc->pipe] = &psb_intel_crtc->base; psb_intel_crtc->mode_set.connectors = (struct drm_connector **) (psb_intel_crtc + 1); psb_intel_crtc->mode_set.num_connectors = 0; psb_intel_cursor_init(dev, pipe); } int psb_intel_get_pipe_from_crtc_id(struct drm_device *dev, void *data, struct drm_file *file_priv) { struct drm_psb_private *dev_priv = dev->dev_private; struct drm_psb_get_pipe_from_crtc_id_arg *pipe_from_crtc_id = data; struct drm_mode_object *drmmode_obj; struct psb_intel_crtc *crtc; if (!dev_priv) { dev_err(dev->dev, "called with no initialization\n"); return -EINVAL; } drmmode_obj = drm_mode_object_find(dev, pipe_from_crtc_id->crtc_id, DRM_MODE_OBJECT_CRTC); if (!drmmode_obj) { dev_err(dev->dev, "no such CRTC id\n"); return -EINVAL; } crtc = to_psb_intel_crtc(obj_to_crtc(drmmode_obj)); pipe_from_crtc_id->pipe = crtc->pipe; return 0; } struct drm_crtc *psb_intel_get_crtc_from_pipe(struct drm_device *dev, int pipe) { struct drm_crtc *crtc = NULL; list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) { struct psb_intel_crtc *psb_intel_crtc = to_psb_intel_crtc(crtc); if (psb_intel_crtc->pipe == pipe) break; } return crtc; } int psb_intel_connector_clones(struct drm_device *dev, int type_mask) { int index_mask = 0; struct drm_connector *connector; int entry = 0; list_for_each_entry(connector, &dev->mode_config.connector_list, head) { struct psb_intel_output *psb_intel_output = to_psb_intel_output(connector); if (type_mask & (1 << psb_intel_output->type)) index_mask |= (1 << entry); entry++; } return index_mask; } void psb_intel_modeset_cleanup(struct drm_device *dev) { drm_mode_config_cleanup(dev); } /* current intel driver doesn't take advantage of encoders always give back the encoder for the connector */ struct drm_encoder *psb_intel_best_encoder(struct drm_connector *connector) { struct psb_intel_output *psb_intel_output = to_psb_intel_output(connector); return &psb_intel_output->enc; }