/* * Device driver for monitoring ambient light intensity in (lux) * and proximity detection (prox) within the TAOS TSL2X7X family of devices. * * Copyright (c) 2012, TAOS Corporation. * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for * more details. * * You should have received a copy of the GNU General Public License along * with this program; if not, write to the Free Software Foundation, Inc., * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ #include #include #include #include #include #include #include #include #include #include #include #include "tsl2x7x.h" /* Cal defs*/ #define PROX_STAT_CAL 0 #define PROX_STAT_SAMP 1 #define MAX_SAMPLES_CAL 200 /* TSL2X7X Device ID */ #define TRITON_ID 0x00 #define SWORDFISH_ID 0x30 #define HALIBUT_ID 0x20 /* Lux calculation constants */ #define TSL2X7X_LUX_CALC_OVER_FLOW 65535 /* TAOS Register definitions - note: * depending on device, some of these register are not used and the * register address is benign. */ /* 2X7X register offsets */ #define TSL2X7X_MAX_CONFIG_REG 16 /* Device Registers and Masks */ #define TSL2X7X_CNTRL 0x00 #define TSL2X7X_ALS_TIME 0X01 #define TSL2X7X_PRX_TIME 0x02 #define TSL2X7X_WAIT_TIME 0x03 #define TSL2X7X_ALS_MINTHRESHLO 0X04 #define TSL2X7X_ALS_MINTHRESHHI 0X05 #define TSL2X7X_ALS_MAXTHRESHLO 0X06 #define TSL2X7X_ALS_MAXTHRESHHI 0X07 #define TSL2X7X_PRX_MINTHRESHLO 0X08 #define TSL2X7X_PRX_MINTHRESHHI 0X09 #define TSL2X7X_PRX_MAXTHRESHLO 0X0A #define TSL2X7X_PRX_MAXTHRESHHI 0X0B #define TSL2X7X_PERSISTENCE 0x0C #define TSL2X7X_PRX_CONFIG 0x0D #define TSL2X7X_PRX_COUNT 0x0E #define TSL2X7X_GAIN 0x0F #define TSL2X7X_NOTUSED 0x10 #define TSL2X7X_REVID 0x11 #define TSL2X7X_CHIPID 0x12 #define TSL2X7X_STATUS 0x13 #define TSL2X7X_ALS_CHAN0LO 0x14 #define TSL2X7X_ALS_CHAN0HI 0x15 #define TSL2X7X_ALS_CHAN1LO 0x16 #define TSL2X7X_ALS_CHAN1HI 0x17 #define TSL2X7X_PRX_LO 0x18 #define TSL2X7X_PRX_HI 0x19 /* tsl2X7X cmd reg masks */ #define TSL2X7X_CMD_REG 0x80 #define TSL2X7X_CMD_SPL_FN 0x60 #define TSL2X7X_CMD_PROX_INT_CLR 0X05 #define TSL2X7X_CMD_ALS_INT_CLR 0x06 #define TSL2X7X_CMD_PROXALS_INT_CLR 0X07 /* tsl2X7X cntrl reg masks */ #define TSL2X7X_CNTL_ADC_ENBL 0x02 #define TSL2X7X_CNTL_PWR_ON 0x01 /* tsl2X7X status reg masks */ #define TSL2X7X_STA_ADC_VALID 0x01 #define TSL2X7X_STA_PRX_VALID 0x02 #define TSL2X7X_STA_ADC_PRX_VALID (TSL2X7X_STA_ADC_VALID |\ TSL2X7X_STA_PRX_VALID) #define TSL2X7X_STA_ALS_INTR 0x10 #define TSL2X7X_STA_PRX_INTR 0x20 /* tsl2X7X cntrl reg masks */ #define TSL2X7X_CNTL_REG_CLEAR 0x00 #define TSL2X7X_CNTL_PROX_INT_ENBL 0X20 #define TSL2X7X_CNTL_ALS_INT_ENBL 0X10 #define TSL2X7X_CNTL_WAIT_TMR_ENBL 0X08 #define TSL2X7X_CNTL_PROX_DET_ENBL 0X04 #define TSL2X7X_CNTL_PWRON 0x01 #define TSL2X7X_CNTL_ALSPON_ENBL 0x03 #define TSL2X7X_CNTL_INTALSPON_ENBL 0x13 #define TSL2X7X_CNTL_PROXPON_ENBL 0x0F #define TSL2X7X_CNTL_INTPROXPON_ENBL 0x2F /*Prox diode to use */ #define TSL2X7X_DIODE0 0x10 #define TSL2X7X_DIODE1 0x20 #define TSL2X7X_DIODE_BOTH 0x30 /* LED Power */ #define TSL2X7X_mA100 0x00 #define TSL2X7X_mA50 0x40 #define TSL2X7X_mA25 0x80 #define TSL2X7X_mA13 0xD0 #define TSL2X7X_MAX_TIMER_CNT (0xFF) /*Common device IIO EventMask */ #define TSL2X7X_EVENT_MASK \ (IIO_EV_BIT(IIO_EV_TYPE_THRESH, IIO_EV_DIR_RISING) | \ IIO_EV_BIT(IIO_EV_TYPE_THRESH, IIO_EV_DIR_FALLING)), #define TSL2X7X_MIN_ITIME 3 /* TAOS txx2x7x Device family members */ enum { tsl2571, tsl2671, tmd2671, tsl2771, tmd2771, tsl2572, tsl2672, tmd2672, tsl2772, tmd2772 }; enum { TSL2X7X_CHIP_UNKNOWN = 0, TSL2X7X_CHIP_WORKING = 1, TSL2X7X_CHIP_SUSPENDED = 2 }; struct tsl2x7x_parse_result { int integer; int fract; }; /* Per-device data */ struct tsl2x7x_als_info { u16 als_ch0; u16 als_ch1; u16 lux; }; struct tsl2x7x_prox_stat { int min; int max; int mean; unsigned long stddev; }; struct tsl2x7x_chip_info { int chan_table_elements; struct iio_chan_spec channel[4]; const struct iio_info *info; }; struct tsl2X7X_chip { kernel_ulong_t id; struct mutex prox_mutex; struct mutex als_mutex; struct i2c_client *client; u16 prox_data; struct tsl2x7x_als_info als_cur_info; struct tsl2x7x_settings tsl2x7x_settings; struct tsl2X7X_platform_data *pdata; int als_time_scale; int als_saturation; int tsl2x7x_chip_status; u8 tsl2x7x_config[TSL2X7X_MAX_CONFIG_REG]; const struct tsl2x7x_chip_info *chip_info; const struct iio_info *info; s64 event_timestamp; /* This structure is intentionally large to accommodate * updates via sysfs. */ /* Sized to 9 = max 8 segments + 1 termination segment */ struct tsl2x7x_lux tsl2x7x_device_lux[TSL2X7X_MAX_LUX_TABLE_SIZE]; }; /* Different devices require different coefficents */ static const struct tsl2x7x_lux tsl2x71_lux_table[] = { { 14461, 611, 1211 }, { 18540, 352, 623 }, { 0, 0, 0 }, }; static const struct tsl2x7x_lux tmd2x71_lux_table[] = { { 11635, 115, 256 }, { 15536, 87, 179 }, { 0, 0, 0 }, }; static const struct tsl2x7x_lux tsl2x72_lux_table[] = { { 14013, 466, 917 }, { 18222, 310, 552 }, { 0, 0, 0 }, }; static const struct tsl2x7x_lux tmd2x72_lux_table[] = { { 13218, 130, 262 }, { 17592, 92, 169 }, { 0, 0, 0 }, }; static const struct tsl2x7x_lux *tsl2x7x_default_lux_table_group[] = { [tsl2571] = tsl2x71_lux_table, [tsl2671] = tsl2x71_lux_table, [tmd2671] = tmd2x71_lux_table, [tsl2771] = tsl2x71_lux_table, [tmd2771] = tmd2x71_lux_table, [tsl2572] = tsl2x72_lux_table, [tsl2672] = tsl2x72_lux_table, [tmd2672] = tmd2x72_lux_table, [tsl2772] = tsl2x72_lux_table, [tmd2772] = tmd2x72_lux_table, }; static const struct tsl2x7x_settings tsl2x7x_default_settings = { .als_time = 219, /* 101 ms */ .als_gain = 0, .prx_time = 254, /* 5.4 ms */ .prox_gain = 1, .wait_time = 245, .prox_config = 0, .als_gain_trim = 1000, .als_cal_target = 150, .als_thresh_low = 200, .als_thresh_high = 256, .persistence = 255, .interrupts_en = 0, .prox_thres_low = 0, .prox_thres_high = 512, .prox_max_samples_cal = 30, .prox_pulse_count = 8 }; static const s16 tsl2X7X_als_gainadj[] = { 1, 8, 16, 120 }; static const s16 tsl2X7X_prx_gainadj[] = { 1, 2, 4, 8 }; /* Channel variations */ enum { ALS, PRX, ALSPRX, PRX2, ALSPRX2, }; static const u8 device_channel_config[] = { ALS, PRX, PRX, ALSPRX, ALSPRX, ALS, PRX2, PRX2, ALSPRX2, ALSPRX2 }; /** * tsl2x7x_i2c_read() - Read a byte from a register. * @client: i2c client * @reg: device register to read from * @*val: pointer to location to store register contents. * */ static int tsl2x7x_i2c_read(struct i2c_client *client, u8 reg, u8 *val) { int ret = 0; /* select register to write */ ret = i2c_smbus_write_byte(client, (TSL2X7X_CMD_REG | reg)); if (ret < 0) { dev_err(&client->dev, "%s: failed to write register %x\n" , __func__, reg); return ret; } /* read the data */ ret = i2c_smbus_read_byte(client); if (ret >= 0) *val = (u8)ret; else dev_err(&client->dev, "%s: failed to read register %x\n" , __func__, reg); return ret; } /** * tsl2x7x_get_lux() - Reads and calculates current lux value. * @indio_dev: pointer to IIO device * * The raw ch0 and ch1 values of the ambient light sensed in the last * integration cycle are read from the device. * Time scale factor array values are adjusted based on the integration time. * The raw values are multiplied by a scale factor, and device gain is obtained * using gain index. Limit checks are done next, then the ratio of a multiple * of ch1 value, to the ch0 value, is calculated. Array tsl2x7x_device_lux[] * is then scanned to find the first ratio value that is just above the ratio * we just calculated. The ch0 and ch1 multiplier constants in the array are * then used along with the time scale factor array values, to calculate the * lux. */ static int tsl2x7x_get_lux(struct iio_dev *indio_dev) { u16 ch0, ch1; /* separated ch0/ch1 data from device */ u32 lux; /* raw lux calculated from device data */ u64 lux64; u32 ratio; u8 buf[4]; struct tsl2x7x_lux *p; struct tsl2X7X_chip *chip = iio_priv(indio_dev); int i, ret; u32 ch0lux = 0; u32 ch1lux = 0; if (mutex_trylock(&chip->als_mutex) == 0) return chip->als_cur_info.lux; /* busy, so return LAST VALUE */ if (chip->tsl2x7x_chip_status != TSL2X7X_CHIP_WORKING) { /* device is not enabled */ dev_err(&chip->client->dev, "%s: device is not enabled\n", __func__); ret = -EBUSY ; goto out_unlock; } ret = tsl2x7x_i2c_read(chip->client, (TSL2X7X_CMD_REG | TSL2X7X_STATUS), &buf[0]); if (ret < 0) { dev_err(&chip->client->dev, "%s: Failed to read STATUS Reg\n", __func__); goto out_unlock; } /* is data new & valid */ if (!(buf[0] & TSL2X7X_STA_ADC_VALID)) { dev_err(&chip->client->dev, "%s: data not valid yet\n", __func__); ret = chip->als_cur_info.lux; /* return LAST VALUE */ goto out_unlock; } for (i = 0; i < 4; i++) { ret = tsl2x7x_i2c_read(chip->client, (TSL2X7X_CMD_REG | (TSL2X7X_ALS_CHAN0LO + i)), &buf[i]); if (ret < 0) { dev_err(&chip->client->dev, "%s: failed to read. err=%x\n", __func__, ret); goto out_unlock; } } /* clear any existing interrupt status */ ret = i2c_smbus_write_byte(chip->client, (TSL2X7X_CMD_REG | TSL2X7X_CMD_SPL_FN | TSL2X7X_CMD_ALS_INT_CLR)); if (ret < 0) { dev_err(&chip->client->dev, "%s: i2c_write_command failed - err = %d\n", __func__, ret); goto out_unlock; /* have no data, so return failure */ } /* extract ALS/lux data */ ch0 = le16_to_cpup((const __le16 *)&buf[0]); ch1 = le16_to_cpup((const __le16 *)&buf[2]); chip->als_cur_info.als_ch0 = ch0; chip->als_cur_info.als_ch1 = ch1; if ((ch0 >= chip->als_saturation) || (ch1 >= chip->als_saturation)) { lux = TSL2X7X_LUX_CALC_OVER_FLOW; goto return_max; } if (ch0 == 0) { /* have no data, so return LAST VALUE */ ret = chip->als_cur_info.lux; goto out_unlock; } /* calculate ratio */ ratio = (ch1 << 15) / ch0; /* convert to unscaled lux using the pointer to the table */ p = (struct tsl2x7x_lux *) chip->tsl2x7x_device_lux; while (p->ratio != 0 && p->ratio < ratio) p++; if (p->ratio == 0) { lux = 0; } else { ch0lux = DIV_ROUND_UP((ch0 * p->ch0), tsl2X7X_als_gainadj[chip->tsl2x7x_settings.als_gain]); ch1lux = DIV_ROUND_UP((ch1 * p->ch1), tsl2X7X_als_gainadj[chip->tsl2x7x_settings.als_gain]); lux = ch0lux - ch1lux; } /* note: lux is 31 bit max at this point */ if (ch1lux > ch0lux) { dev_dbg(&chip->client->dev, "ch1lux > ch0lux-return last value\n"); ret = chip->als_cur_info.lux; goto out_unlock; } /* adjust for active time scale */ if (chip->als_time_scale == 0) lux = 0; else lux = (lux + (chip->als_time_scale >> 1)) / chip->als_time_scale; /* adjust for active gain scale * The tsl2x7x_device_lux tables have a factor of 256 built-in. * User-specified gain provides a multiplier. * Apply user-specified gain before shifting right to retain precision. * Use 64 bits to avoid overflow on multiplication. * Then go back to 32 bits before division to avoid using div_u64(). */ lux64 = lux; lux64 = lux64 * chip->tsl2x7x_settings.als_gain_trim; lux64 >>= 8; lux = lux64; lux = (lux + 500) / 1000; if (lux > TSL2X7X_LUX_CALC_OVER_FLOW) /* check for overflow */ lux = TSL2X7X_LUX_CALC_OVER_FLOW; /* Update the structure with the latest lux. */ return_max: chip->als_cur_info.lux = lux; ret = lux; out_unlock: mutex_unlock(&chip->als_mutex); return ret; } /** * tsl2x7x_get_prox() - Reads proximity data registers and updates * chip->prox_data. * * @indio_dev: pointer to IIO device */ static int tsl2x7x_get_prox(struct iio_dev *indio_dev) { int i; int ret; u8 status; u8 chdata[2]; struct tsl2X7X_chip *chip = iio_priv(indio_dev); if (mutex_trylock(&chip->prox_mutex) == 0) { dev_err(&chip->client->dev, "%s: Can't get prox mutex\n", __func__); return -EBUSY; } ret = tsl2x7x_i2c_read(chip->client, (TSL2X7X_CMD_REG | TSL2X7X_STATUS), &status); if (ret < 0) { dev_err(&chip->client->dev, "%s: i2c err=%d\n", __func__, ret); goto prox_poll_err; } switch (chip->id) { case tsl2571: case tsl2671: case tmd2671: case tsl2771: case tmd2771: if (!(status & TSL2X7X_STA_ADC_VALID)) goto prox_poll_err; break; case tsl2572: case tsl2672: case tmd2672: case tsl2772: case tmd2772: if (!(status & TSL2X7X_STA_PRX_VALID)) goto prox_poll_err; break; } for (i = 0; i < 2; i++) { ret = tsl2x7x_i2c_read(chip->client, (TSL2X7X_CMD_REG | (TSL2X7X_PRX_LO + i)), &chdata[i]); if (ret < 0) goto prox_poll_err; } chip->prox_data = le16_to_cpup((const __le16 *)&chdata[0]); prox_poll_err: mutex_unlock(&chip->prox_mutex); return chip->prox_data; } /** * tsl2x7x_defaults() - Populates the device nominal operating parameters * with those provided by a 'platform' data struct or * with prefined defaults. * * @chip: pointer to device structure. */ static void tsl2x7x_defaults(struct tsl2X7X_chip *chip) { /* If Operational settings defined elsewhere.. */ if (chip->pdata && chip->pdata->platform_default_settings != 0) memcpy(&(chip->tsl2x7x_settings), chip->pdata->platform_default_settings, sizeof(tsl2x7x_default_settings)); else memcpy(&(chip->tsl2x7x_settings), &tsl2x7x_default_settings, sizeof(tsl2x7x_default_settings)); /* Load up the proper lux table. */ if (chip->pdata && chip->pdata->platform_lux_table[0].ratio != 0) memcpy(chip->tsl2x7x_device_lux, chip->pdata->platform_lux_table, sizeof(chip->pdata->platform_lux_table)); else memcpy(chip->tsl2x7x_device_lux, (struct tsl2x7x_lux *)tsl2x7x_default_lux_table_group[chip->id], MAX_DEFAULT_TABLE_BYTES); } /** * tsl2x7x_als_calibrate() - Obtain single reading and calculate * the als_gain_trim. * * @indio_dev: pointer to IIO device */ static int tsl2x7x_als_calibrate(struct iio_dev *indio_dev) { struct tsl2X7X_chip *chip = iio_priv(indio_dev); u8 reg_val; int gain_trim_val; int ret; int lux_val; ret = i2c_smbus_write_byte(chip->client, (TSL2X7X_CMD_REG | TSL2X7X_CNTRL)); if (ret < 0) { dev_err(&chip->client->dev, "%s: failed to write CNTRL register, ret=%d\n", __func__, ret); return ret; } reg_val = i2c_smbus_read_byte(chip->client); if ((reg_val & (TSL2X7X_CNTL_ADC_ENBL | TSL2X7X_CNTL_PWR_ON)) != (TSL2X7X_CNTL_ADC_ENBL | TSL2X7X_CNTL_PWR_ON)) { dev_err(&chip->client->dev, "%s: failed: ADC not enabled\n", __func__); return -1; } ret = i2c_smbus_write_byte(chip->client, (TSL2X7X_CMD_REG | TSL2X7X_CNTRL)); if (ret < 0) { dev_err(&chip->client->dev, "%s: failed to write ctrl reg: ret=%d\n", __func__, ret); return ret; } reg_val = i2c_smbus_read_byte(chip->client); if ((reg_val & TSL2X7X_STA_ADC_VALID) != TSL2X7X_STA_ADC_VALID) { dev_err(&chip->client->dev, "%s: failed: STATUS - ADC not valid.\n", __func__); return -ENODATA; } lux_val = tsl2x7x_get_lux(indio_dev); if (lux_val < 0) { dev_err(&chip->client->dev, "%s: failed to get lux\n", __func__); return lux_val; } gain_trim_val = (((chip->tsl2x7x_settings.als_cal_target) * chip->tsl2x7x_settings.als_gain_trim) / lux_val); if ((gain_trim_val < 250) || (gain_trim_val > 4000)) return -ERANGE; chip->tsl2x7x_settings.als_gain_trim = gain_trim_val; dev_info(&chip->client->dev, "%s als_calibrate completed\n", chip->client->name); return (int) gain_trim_val; } static int tsl2x7x_chip_on(struct iio_dev *indio_dev) { int i; int ret = 0; u8 *dev_reg; u8 utmp; int als_count; int als_time; struct tsl2X7X_chip *chip = iio_priv(indio_dev); u8 reg_val = 0; if (chip->pdata && chip->pdata->power_on) chip->pdata->power_on(indio_dev); /* Non calculated parameters */ chip->tsl2x7x_config[TSL2X7X_PRX_TIME] = chip->tsl2x7x_settings.prx_time; chip->tsl2x7x_config[TSL2X7X_WAIT_TIME] = chip->tsl2x7x_settings.wait_time; chip->tsl2x7x_config[TSL2X7X_PRX_CONFIG] = chip->tsl2x7x_settings.prox_config; chip->tsl2x7x_config[TSL2X7X_ALS_MINTHRESHLO] = (chip->tsl2x7x_settings.als_thresh_low) & 0xFF; chip->tsl2x7x_config[TSL2X7X_ALS_MINTHRESHHI] = (chip->tsl2x7x_settings.als_thresh_low >> 8) & 0xFF; chip->tsl2x7x_config[TSL2X7X_ALS_MAXTHRESHLO] = (chip->tsl2x7x_settings.als_thresh_high) & 0xFF; chip->tsl2x7x_config[TSL2X7X_ALS_MAXTHRESHHI] = (chip->tsl2x7x_settings.als_thresh_high >> 8) & 0xFF; chip->tsl2x7x_config[TSL2X7X_PERSISTENCE] = chip->tsl2x7x_settings.persistence; chip->tsl2x7x_config[TSL2X7X_PRX_COUNT] = chip->tsl2x7x_settings.prox_pulse_count; chip->tsl2x7x_config[TSL2X7X_PRX_MINTHRESHLO] = chip->tsl2x7x_settings.prox_thres_low; chip->tsl2x7x_config[TSL2X7X_PRX_MAXTHRESHLO] = chip->tsl2x7x_settings.prox_thres_high; /* and make sure we're not already on */ if (chip->tsl2x7x_chip_status == TSL2X7X_CHIP_WORKING) { /* if forcing a register update - turn off, then on */ dev_info(&chip->client->dev, "device is already enabled\n"); return -EINVAL; } /* determine als integration register */ als_count = (chip->tsl2x7x_settings.als_time * 100 + 135) / 270; if (als_count == 0) als_count = 1; /* ensure at least one cycle */ /* convert back to time (encompasses overrides) */ als_time = (als_count * 27 + 5) / 10; chip->tsl2x7x_config[TSL2X7X_ALS_TIME] = 256 - als_count; /* Set the gain based on tsl2x7x_settings struct */ chip->tsl2x7x_config[TSL2X7X_GAIN] = (chip->tsl2x7x_settings.als_gain | (TSL2X7X_mA100 | TSL2X7X_DIODE1) | ((chip->tsl2x7x_settings.prox_gain) << 2)); /* set chip struct re scaling and saturation */ chip->als_saturation = als_count * 922; /* 90% of full scale */ chip->als_time_scale = (als_time + 25) / 50; /* TSL2X7X Specific power-on / adc enable sequence * Power on the device 1st. */ utmp = TSL2X7X_CNTL_PWR_ON; ret = i2c_smbus_write_byte_data(chip->client, TSL2X7X_CMD_REG | TSL2X7X_CNTRL, utmp); if (ret < 0) { dev_err(&chip->client->dev, "%s: failed on CNTRL reg.\n", __func__); return ret; } /* Use the following shadow copy for our delay before enabling ADC. * Write all the registers. */ for (i = 0, dev_reg = chip->tsl2x7x_config; i < TSL2X7X_MAX_CONFIG_REG; i++) { ret = i2c_smbus_write_byte_data(chip->client, TSL2X7X_CMD_REG + i, *dev_reg++); if (ret < 0) { dev_err(&chip->client->dev, "%s: failed on write to reg %d.\n", __func__, i); return ret; } } mdelay(3); /* Power-on settling time */ /* NOW enable the ADC * initialize the desired mode of operation */ utmp = TSL2X7X_CNTL_PWR_ON | TSL2X7X_CNTL_ADC_ENBL | TSL2X7X_CNTL_PROX_DET_ENBL; ret = i2c_smbus_write_byte_data(chip->client, TSL2X7X_CMD_REG | TSL2X7X_CNTRL, utmp); if (ret < 0) { dev_err(&chip->client->dev, "%s: failed on 2nd CTRL reg.\n", __func__); return ret; } chip->tsl2x7x_chip_status = TSL2X7X_CHIP_WORKING; if (chip->tsl2x7x_settings.interrupts_en != 0) { dev_info(&chip->client->dev, "Setting Up Interrupt(s)\n"); reg_val = TSL2X7X_CNTL_PWR_ON | TSL2X7X_CNTL_ADC_ENBL; if ((chip->tsl2x7x_settings.interrupts_en == 0x20) || (chip->tsl2x7x_settings.interrupts_en == 0x30)) reg_val |= TSL2X7X_CNTL_PROX_DET_ENBL; reg_val |= chip->tsl2x7x_settings.interrupts_en; ret = i2c_smbus_write_byte_data(chip->client, (TSL2X7X_CMD_REG | TSL2X7X_CNTRL), reg_val); if (ret < 0) dev_err(&chip->client->dev, "%s: failed in tsl2x7x_IOCTL_INT_SET.\n", __func__); /* Clear out any initial interrupts */ ret = i2c_smbus_write_byte(chip->client, TSL2X7X_CMD_REG | TSL2X7X_CMD_SPL_FN | TSL2X7X_CMD_PROXALS_INT_CLR); if (ret < 0) { dev_err(&chip->client->dev, "%s: Failed to clear Int status\n", __func__); return ret; } } return ret; } static int tsl2x7x_chip_off(struct iio_dev *indio_dev) { int ret; struct tsl2X7X_chip *chip = iio_priv(indio_dev); /* turn device off */ chip->tsl2x7x_chip_status = TSL2X7X_CHIP_SUSPENDED; ret = i2c_smbus_write_byte_data(chip->client, TSL2X7X_CMD_REG | TSL2X7X_CNTRL, 0x00); if (chip->pdata && chip->pdata->power_off) chip->pdata->power_off(chip->client); return ret; } /** * tsl2x7x_invoke_change * @indio_dev: pointer to IIO device * * Obtain and lock both ALS and PROX resources, * determine and save device state (On/Off), * cycle device to implement updated parameter, * put device back into proper state, and unlock * resource. */ static int tsl2x7x_invoke_change(struct iio_dev *indio_dev) { struct tsl2X7X_chip *chip = iio_priv(indio_dev); int device_status = chip->tsl2x7x_chip_status; mutex_lock(&chip->als_mutex); mutex_lock(&chip->prox_mutex); if (device_status == TSL2X7X_CHIP_WORKING) tsl2x7x_chip_off(indio_dev); tsl2x7x_chip_on(indio_dev); if (device_status != TSL2X7X_CHIP_WORKING) tsl2x7x_chip_off(indio_dev); mutex_unlock(&chip->prox_mutex); mutex_unlock(&chip->als_mutex); return 0; } static void tsl2x7x_prox_calculate(int *data, int length, struct tsl2x7x_prox_stat *statP) { int i; int sample_sum; int tmp; if (length == 0) length = 1; sample_sum = 0; statP->min = INT_MAX; statP->max = INT_MIN; for (i = 0; i < length; i++) { sample_sum += data[i]; statP->min = min(statP->min, data[i]); statP->max = max(statP->max, data[i]); } statP->mean = sample_sum / length; sample_sum = 0; for (i = 0; i < length; i++) { tmp = data[i] - statP->mean; sample_sum += tmp * tmp; } statP->stddev = int_sqrt((long)sample_sum)/length; } /** * tsl2x7x_prox_cal() - Calculates std. and sets thresholds. * @indio_dev: pointer to IIO device * * Calculates a standard deviation based on the samples, * and sets the threshold accordingly. */ static void tsl2x7x_prox_cal(struct iio_dev *indio_dev) { int prox_history[MAX_SAMPLES_CAL + 1]; int i; struct tsl2x7x_prox_stat prox_stat_data[2]; struct tsl2x7x_prox_stat *calP; struct tsl2X7X_chip *chip = iio_priv(indio_dev); u8 tmp_irq_settings; u8 current_state = chip->tsl2x7x_chip_status; if (chip->tsl2x7x_settings.prox_max_samples_cal > MAX_SAMPLES_CAL) { dev_err(&chip->client->dev, "%s: max prox samples cal is too big: %d\n", __func__, chip->tsl2x7x_settings.prox_max_samples_cal); chip->tsl2x7x_settings.prox_max_samples_cal = MAX_SAMPLES_CAL; } /* have to stop to change settings */ tsl2x7x_chip_off(indio_dev); /* Enable proximity detection save just in case prox not wanted yet*/ tmp_irq_settings = chip->tsl2x7x_settings.interrupts_en; chip->tsl2x7x_settings.interrupts_en |= TSL2X7X_CNTL_PROX_INT_ENBL; /*turn on device if not already on*/ tsl2x7x_chip_on(indio_dev); /*gather the samples*/ for (i = 0; i < chip->tsl2x7x_settings.prox_max_samples_cal; i++) { mdelay(15); tsl2x7x_get_prox(indio_dev); prox_history[i] = chip->prox_data; dev_info(&chip->client->dev, "2 i=%d prox data= %d\n", i, chip->prox_data); } tsl2x7x_chip_off(indio_dev); calP = &prox_stat_data[PROX_STAT_CAL]; tsl2x7x_prox_calculate(prox_history, chip->tsl2x7x_settings.prox_max_samples_cal, calP); chip->tsl2x7x_settings.prox_thres_high = (calP->max << 1) - calP->mean; dev_info(&chip->client->dev, " cal min=%d mean=%d max=%d\n", calP->min, calP->mean, calP->max); dev_info(&chip->client->dev, "%s proximity threshold set to %d\n", chip->client->name, chip->tsl2x7x_settings.prox_thres_high); /* back to the way they were */ chip->tsl2x7x_settings.interrupts_en = tmp_irq_settings; if (current_state == TSL2X7X_CHIP_WORKING) tsl2x7x_chip_on(indio_dev); } static ssize_t tsl2x7x_power_state_show(struct device *dev, struct device_attribute *attr, char *buf) { struct tsl2X7X_chip *chip = iio_priv(dev_to_iio_dev(dev)); return snprintf(buf, PAGE_SIZE, "%d\n", chip->tsl2x7x_chip_status); } static ssize_t tsl2x7x_power_state_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t len) { struct iio_dev *indio_dev = dev_to_iio_dev(dev); bool value; if (strtobool(buf, &value)) return -EINVAL; if (value) tsl2x7x_chip_on(indio_dev); else tsl2x7x_chip_off(indio_dev); return len; } static ssize_t tsl2x7x_gain_available_show(struct device *dev, struct device_attribute *attr, char *buf) { struct tsl2X7X_chip *chip = iio_priv(dev_to_iio_dev(dev)); switch (chip->id) { case tsl2571: case tsl2671: case tmd2671: case tsl2771: case tmd2771: return snprintf(buf, PAGE_SIZE, "%s\n", "1 8 16 128"); break; } return snprintf(buf, PAGE_SIZE, "%s\n", "1 8 16 120"); } static ssize_t tsl2x7x_prox_gain_available_show(struct device *dev, struct device_attribute *attr, char *buf) { return snprintf(buf, PAGE_SIZE, "%s\n", "1 2 4 8"); } static ssize_t tsl2x7x_als_time_show(struct device *dev, struct device_attribute *attr, char *buf) { struct tsl2X7X_chip *chip = iio_priv(dev_to_iio_dev(dev)); int y, z; y = (TSL2X7X_MAX_TIMER_CNT - (u8)chip->tsl2x7x_settings.als_time) + 1; z = y * TSL2X7X_MIN_ITIME; y /= 1000; z %= 1000; return snprintf(buf, PAGE_SIZE, "%d.%03d\n", y, z); } static ssize_t tsl2x7x_als_time_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t len) { struct iio_dev *indio_dev = dev_to_iio_dev(dev); struct tsl2X7X_chip *chip = iio_priv(indio_dev); struct tsl2x7x_parse_result result; int ret; ret = iio_str_to_fixpoint(buf, 100, &result.integer, &result.fract); if (ret) return ret; result.fract /= 3; chip->tsl2x7x_settings.als_time = (TSL2X7X_MAX_TIMER_CNT - (u8)result.fract); dev_info(&chip->client->dev, "%s: als time = %d", __func__, chip->tsl2x7x_settings.als_time); tsl2x7x_invoke_change(indio_dev); return IIO_VAL_INT_PLUS_MICRO; } static IIO_CONST_ATTR(in_illuminance0_integration_time_available, ".00272 - .696"); static ssize_t tsl2x7x_als_cal_target_show(struct device *dev, struct device_attribute *attr, char *buf) { struct tsl2X7X_chip *chip = iio_priv(dev_to_iio_dev(dev)); return snprintf(buf, PAGE_SIZE, "%d\n", chip->tsl2x7x_settings.als_cal_target); } static ssize_t tsl2x7x_als_cal_target_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t len) { struct iio_dev *indio_dev = dev_to_iio_dev(dev); struct tsl2X7X_chip *chip = iio_priv(indio_dev); unsigned long value; if (kstrtoul(buf, 0, &value)) return -EINVAL; if (value) chip->tsl2x7x_settings.als_cal_target = value; tsl2x7x_invoke_change(indio_dev); return len; } /* persistence settings */ static ssize_t tsl2x7x_als_persistence_show(struct device *dev, struct device_attribute *attr, char *buf) { struct tsl2X7X_chip *chip = iio_priv(dev_to_iio_dev(dev)); int y, z, filter_delay; /* Determine integration time */ y = (TSL2X7X_MAX_TIMER_CNT - (u8)chip->tsl2x7x_settings.als_time) + 1; z = y * TSL2X7X_MIN_ITIME; filter_delay = z * (chip->tsl2x7x_settings.persistence & 0x0F); y = (filter_delay / 1000); z = (filter_delay % 1000); return snprintf(buf, PAGE_SIZE, "%d.%03d\n", y, z); } static ssize_t tsl2x7x_als_persistence_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t len) { struct iio_dev *indio_dev = dev_to_iio_dev(dev); struct tsl2X7X_chip *chip = iio_priv(indio_dev); struct tsl2x7x_parse_result result; int y, z, filter_delay; int ret; ret = iio_str_to_fixpoint(buf, 100, &result.integer, &result.fract); if (ret) return ret; y = (TSL2X7X_MAX_TIMER_CNT - (u8)chip->tsl2x7x_settings.als_time) + 1; z = y * TSL2X7X_MIN_ITIME; filter_delay = DIV_ROUND_UP(((result.integer * 1000) + result.fract), z); chip->tsl2x7x_settings.persistence &= 0xF0; chip->tsl2x7x_settings.persistence |= (filter_delay & 0x0F); dev_info(&chip->client->dev, "%s: als persistence = %d", __func__, filter_delay); tsl2x7x_invoke_change(indio_dev); return IIO_VAL_INT_PLUS_MICRO; } static ssize_t tsl2x7x_prox_persistence_show(struct device *dev, struct device_attribute *attr, char *buf) { struct tsl2X7X_chip *chip = iio_priv(dev_to_iio_dev(dev)); int y, z, filter_delay; /* Determine integration time */ y = (TSL2X7X_MAX_TIMER_CNT - (u8)chip->tsl2x7x_settings.prx_time) + 1; z = y * TSL2X7X_MIN_ITIME; filter_delay = z * ((chip->tsl2x7x_settings.persistence & 0xF0) >> 4); y = (filter_delay / 1000); z = (filter_delay % 1000); return snprintf(buf, PAGE_SIZE, "%d.%03d\n", y, z); } static ssize_t tsl2x7x_prox_persistence_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t len) { struct iio_dev *indio_dev = dev_to_iio_dev(dev); struct tsl2X7X_chip *chip = iio_priv(indio_dev); struct tsl2x7x_parse_result result; int y, z, filter_delay; int ret; ret = iio_str_to_fixpoint(buf, 100, &result.integer, &result.fract); if (ret) return ret; y = (TSL2X7X_MAX_TIMER_CNT - (u8)chip->tsl2x7x_settings.prx_time) + 1; z = y * TSL2X7X_MIN_ITIME; filter_delay = DIV_ROUND_UP(((result.integer * 1000) + result.fract), z); chip->tsl2x7x_settings.persistence &= 0x0F; chip->tsl2x7x_settings.persistence |= ((filter_delay << 4) & 0xF0); dev_info(&chip->client->dev, "%s: prox persistence = %d", __func__, filter_delay); tsl2x7x_invoke_change(indio_dev); return IIO_VAL_INT_PLUS_MICRO; } static ssize_t tsl2x7x_do_calibrate(struct device *dev, struct device_attribute *attr, const char *buf, size_t len) { struct iio_dev *indio_dev = dev_to_iio_dev(dev); bool value; if (strtobool(buf, &value)) return -EINVAL; if (value) tsl2x7x_als_calibrate(indio_dev); tsl2x7x_invoke_change(indio_dev); return len; } static ssize_t tsl2x7x_luxtable_show(struct device *dev, struct device_attribute *attr, char *buf) { struct tsl2X7X_chip *chip = iio_priv(dev_to_iio_dev(dev)); int i = 0; int offset = 0; while (i < (TSL2X7X_MAX_LUX_TABLE_SIZE * 3)) { offset += snprintf(buf + offset, PAGE_SIZE, "%d,%d,%d,", chip->tsl2x7x_device_lux[i].ratio, chip->tsl2x7x_device_lux[i].ch0, chip->tsl2x7x_device_lux[i].ch1); if (chip->tsl2x7x_device_lux[i].ratio == 0) { /* We just printed the first "0" entry. * Now get rid of the extra "," and break. */ offset--; break; } i++; } offset += snprintf(buf + offset, PAGE_SIZE, "\n"); return offset; } static ssize_t tsl2x7x_luxtable_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t len) { struct iio_dev *indio_dev = dev_to_iio_dev(dev); struct tsl2X7X_chip *chip = iio_priv(indio_dev); int value[ARRAY_SIZE(chip->tsl2x7x_device_lux)*3 + 1]; int n; get_options(buf, ARRAY_SIZE(value), value); /* We now have an array of ints starting at value[1], and * enumerated by value[0]. * We expect each group of three ints is one table entry, * and the last table entry is all 0. */ n = value[0]; if ((n % 3) || n < 6 || n > ((ARRAY_SIZE(chip->tsl2x7x_device_lux) - 1) * 3)) { dev_info(dev, "LUX TABLE INPUT ERROR 1 Value[0]=%d\n", n); return -EINVAL; } if ((value[(n - 2)] | value[(n - 1)] | value[n]) != 0) { dev_info(dev, "LUX TABLE INPUT ERROR 2 Value[0]=%d\n", n); return -EINVAL; } if (chip->tsl2x7x_chip_status == TSL2X7X_CHIP_WORKING) tsl2x7x_chip_off(indio_dev); /* Zero out the table */ memset(chip->tsl2x7x_device_lux, 0, sizeof(chip->tsl2x7x_device_lux)); memcpy(chip->tsl2x7x_device_lux, &value[1], (value[0] * 4)); tsl2x7x_invoke_change(indio_dev); return len; } static ssize_t tsl2x7x_do_prox_calibrate(struct device *dev, struct device_attribute *attr, const char *buf, size_t len) { struct iio_dev *indio_dev = dev_to_iio_dev(dev); bool value; if (strtobool(buf, &value)) return -EINVAL; if (value) tsl2x7x_prox_cal(indio_dev); tsl2x7x_invoke_change(indio_dev); return len; } static int tsl2x7x_read_interrupt_config(struct iio_dev *indio_dev, u64 event_code) { struct tsl2X7X_chip *chip = iio_priv(indio_dev); int ret; if (IIO_EVENT_CODE_EXTRACT_CHAN_TYPE(event_code) == IIO_INTENSITY) ret = !!(chip->tsl2x7x_settings.interrupts_en & 0x10); else ret = !!(chip->tsl2x7x_settings.interrupts_en & 0x20); return ret; } static int tsl2x7x_write_interrupt_config(struct iio_dev *indio_dev, u64 event_code, int val) { struct tsl2X7X_chip *chip = iio_priv(indio_dev); if (IIO_EVENT_CODE_EXTRACT_CHAN_TYPE(event_code) == IIO_INTENSITY) { if (val) chip->tsl2x7x_settings.interrupts_en |= 0x10; else chip->tsl2x7x_settings.interrupts_en &= 0x20; } else { if (val) chip->tsl2x7x_settings.interrupts_en |= 0x20; else chip->tsl2x7x_settings.interrupts_en &= 0x10; } tsl2x7x_invoke_change(indio_dev); return 0; } static int tsl2x7x_write_thresh(struct iio_dev *indio_dev, u64 event_code, int val) { struct tsl2X7X_chip *chip = iio_priv(indio_dev); if (IIO_EVENT_CODE_EXTRACT_CHAN_TYPE(event_code) == IIO_INTENSITY) { switch (IIO_EVENT_CODE_EXTRACT_DIR(event_code)) { case IIO_EV_DIR_RISING: chip->tsl2x7x_settings.als_thresh_high = val; break; case IIO_EV_DIR_FALLING: chip->tsl2x7x_settings.als_thresh_low = val; break; default: return -EINVAL; } } else { switch (IIO_EVENT_CODE_EXTRACT_DIR(event_code)) { case IIO_EV_DIR_RISING: chip->tsl2x7x_settings.prox_thres_high = val; break; case IIO_EV_DIR_FALLING: chip->tsl2x7x_settings.prox_thres_low = val; break; default: return -EINVAL; } } tsl2x7x_invoke_change(indio_dev); return 0; } static int tsl2x7x_read_thresh(struct iio_dev *indio_dev, u64 event_code, int *val) { struct tsl2X7X_chip *chip = iio_priv(indio_dev); if (IIO_EVENT_CODE_EXTRACT_CHAN_TYPE(event_code) == IIO_INTENSITY) { switch (IIO_EVENT_CODE_EXTRACT_DIR(event_code)) { case IIO_EV_DIR_RISING: *val = chip->tsl2x7x_settings.als_thresh_high; break; case IIO_EV_DIR_FALLING: *val = chip->tsl2x7x_settings.als_thresh_low; break; default: return -EINVAL; } } else { switch (IIO_EVENT_CODE_EXTRACT_DIR(event_code)) { case IIO_EV_DIR_RISING: *val = chip->tsl2x7x_settings.prox_thres_high; break; case IIO_EV_DIR_FALLING: *val = chip->tsl2x7x_settings.prox_thres_low; break; default: return -EINVAL; } } return 0; } static int tsl2x7x_read_raw(struct iio_dev *indio_dev, struct iio_chan_spec const *chan, int *val, int *val2, long mask) { int ret = -EINVAL; struct tsl2X7X_chip *chip = iio_priv(indio_dev); switch (mask) { case IIO_CHAN_INFO_PROCESSED: switch (chan->type) { case IIO_LIGHT: tsl2x7x_get_lux(indio_dev); *val = chip->als_cur_info.lux; ret = IIO_VAL_INT; break; default: return -EINVAL; break; } break; case IIO_CHAN_INFO_RAW: switch (chan->type) { case IIO_INTENSITY: tsl2x7x_get_lux(indio_dev); if (chan->channel == 0) *val = chip->als_cur_info.als_ch0; else *val = chip->als_cur_info.als_ch1; ret = IIO_VAL_INT; break; case IIO_PROXIMITY: tsl2x7x_get_prox(indio_dev); *val = chip->prox_data; ret = IIO_VAL_INT; break; default: return -EINVAL; break; } break; case IIO_CHAN_INFO_CALIBSCALE: if (chan->type == IIO_LIGHT) *val = tsl2X7X_als_gainadj[chip->tsl2x7x_settings.als_gain]; else *val = tsl2X7X_prx_gainadj[chip->tsl2x7x_settings.prox_gain]; ret = IIO_VAL_INT; break; case IIO_CHAN_INFO_CALIBBIAS: *val = chip->tsl2x7x_settings.als_gain_trim; ret = IIO_VAL_INT; break; default: ret = -EINVAL; } return ret; } static int tsl2x7x_write_raw(struct iio_dev *indio_dev, struct iio_chan_spec const *chan, int val, int val2, long mask) { struct tsl2X7X_chip *chip = iio_priv(indio_dev); switch (mask) { case IIO_CHAN_INFO_CALIBSCALE: if (chan->type == IIO_INTENSITY) { switch (val) { case 1: chip->tsl2x7x_settings.als_gain = 0; break; case 8: chip->tsl2x7x_settings.als_gain = 1; break; case 16: chip->tsl2x7x_settings.als_gain = 2; break; case 120: switch (chip->id) { case tsl2572: case tsl2672: case tmd2672: case tsl2772: case tmd2772: return -EINVAL; break; } chip->tsl2x7x_settings.als_gain = 3; break; case 128: switch (chip->id) { case tsl2571: case tsl2671: case tmd2671: case tsl2771: case tmd2771: return -EINVAL; break; } chip->tsl2x7x_settings.als_gain = 3; break; default: return -EINVAL; } } else { switch (val) { case 1: chip->tsl2x7x_settings.prox_gain = 0; break; case 2: chip->tsl2x7x_settings.prox_gain = 1; break; case 4: chip->tsl2x7x_settings.prox_gain = 2; break; case 8: chip->tsl2x7x_settings.prox_gain = 3; break; default: return -EINVAL; } } break; case IIO_CHAN_INFO_CALIBBIAS: chip->tsl2x7x_settings.als_gain_trim = val; break; default: return -EINVAL; } tsl2x7x_invoke_change(indio_dev); return 0; } static DEVICE_ATTR(power_state, S_IRUGO | S_IWUSR, tsl2x7x_power_state_show, tsl2x7x_power_state_store); static DEVICE_ATTR(in_proximity0_calibscale_available, S_IRUGO, tsl2x7x_prox_gain_available_show, NULL); static DEVICE_ATTR(in_illuminance0_calibscale_available, S_IRUGO, tsl2x7x_gain_available_show, NULL); static DEVICE_ATTR(in_illuminance0_integration_time, S_IRUGO | S_IWUSR, tsl2x7x_als_time_show, tsl2x7x_als_time_store); static DEVICE_ATTR(in_illuminance0_target_input, S_IRUGO | S_IWUSR, tsl2x7x_als_cal_target_show, tsl2x7x_als_cal_target_store); static DEVICE_ATTR(in_illuminance0_calibrate, S_IWUSR, NULL, tsl2x7x_do_calibrate); static DEVICE_ATTR(in_proximity0_calibrate, S_IWUSR, NULL, tsl2x7x_do_prox_calibrate); static DEVICE_ATTR(in_illuminance0_lux_table, S_IRUGO | S_IWUSR, tsl2x7x_luxtable_show, tsl2x7x_luxtable_store); static DEVICE_ATTR(in_intensity0_thresh_period, S_IRUGO | S_IWUSR, tsl2x7x_als_persistence_show, tsl2x7x_als_persistence_store); static DEVICE_ATTR(in_proximity0_thresh_period, S_IRUGO | S_IWUSR, tsl2x7x_prox_persistence_show, tsl2x7x_prox_persistence_store); /* Use the default register values to identify the Taos device */ static int tsl2x7x_device_id(unsigned char *id, int target) { switch (target) { case tsl2571: case tsl2671: case tsl2771: return ((*id & 0xf0) == TRITON_ID); break; case tmd2671: case tmd2771: return ((*id & 0xf0) == HALIBUT_ID); break; case tsl2572: case tsl2672: case tmd2672: case tsl2772: case tmd2772: return ((*id & 0xf0) == SWORDFISH_ID); break; } return -EINVAL; } static irqreturn_t tsl2x7x_event_handler(int irq, void *private) { struct iio_dev *indio_dev = private; struct tsl2X7X_chip *chip = iio_priv(indio_dev); s64 timestamp = iio_get_time_ns(); int ret; u8 value; value = i2c_smbus_read_byte_data(chip->client, TSL2X7X_CMD_REG | TSL2X7X_STATUS); /* What type of interrupt do we need to process */ if (value & TSL2X7X_STA_PRX_INTR) { tsl2x7x_get_prox(indio_dev); /* freshen data for ABI */ iio_push_event(indio_dev, IIO_UNMOD_EVENT_CODE(IIO_PROXIMITY, 0, IIO_EV_TYPE_THRESH, IIO_EV_DIR_EITHER), timestamp); } if (value & TSL2X7X_STA_ALS_INTR) { tsl2x7x_get_lux(indio_dev); /* freshen data for ABI */ iio_push_event(indio_dev, IIO_UNMOD_EVENT_CODE(IIO_LIGHT, 0, IIO_EV_TYPE_THRESH, IIO_EV_DIR_EITHER), timestamp); } /* Clear interrupt now that we have handled it. */ ret = i2c_smbus_write_byte(chip->client, TSL2X7X_CMD_REG | TSL2X7X_CMD_SPL_FN | TSL2X7X_CMD_PROXALS_INT_CLR); if (ret < 0) dev_err(&chip->client->dev, "%s: Failed to clear irq from event handler. err = %d\n", __func__, ret); return IRQ_HANDLED; } static struct attribute *tsl2x7x_ALS_device_attrs[] = { &dev_attr_power_state.attr, &dev_attr_in_illuminance0_calibscale_available.attr, &dev_attr_in_illuminance0_integration_time.attr, &iio_const_attr_in_illuminance0_integration_time_available\ .dev_attr.attr, &dev_attr_in_illuminance0_target_input.attr, &dev_attr_in_illuminance0_calibrate.attr, &dev_attr_in_illuminance0_lux_table.attr, NULL }; static struct attribute *tsl2x7x_PRX_device_attrs[] = { &dev_attr_power_state.attr, &dev_attr_in_proximity0_calibrate.attr, NULL }; static struct attribute *tsl2x7x_ALSPRX_device_attrs[] = { &dev_attr_power_state.attr, &dev_attr_in_illuminance0_calibscale_available.attr, &dev_attr_in_illuminance0_integration_time.attr, &iio_const_attr_in_illuminance0_integration_time_available\ .dev_attr.attr, &dev_attr_in_illuminance0_target_input.attr, &dev_attr_in_illuminance0_calibrate.attr, &dev_attr_in_illuminance0_lux_table.attr, &dev_attr_in_proximity0_calibrate.attr, NULL }; static struct attribute *tsl2x7x_PRX2_device_attrs[] = { &dev_attr_power_state.attr, &dev_attr_in_proximity0_calibrate.attr, &dev_attr_in_proximity0_calibscale_available.attr, NULL }; static struct attribute *tsl2x7x_ALSPRX2_device_attrs[] = { &dev_attr_power_state.attr, &dev_attr_in_illuminance0_calibscale_available.attr, &dev_attr_in_illuminance0_integration_time.attr, &iio_const_attr_in_illuminance0_integration_time_available\ .dev_attr.attr, &dev_attr_in_illuminance0_target_input.attr, &dev_attr_in_illuminance0_calibrate.attr, &dev_attr_in_illuminance0_lux_table.attr, &dev_attr_in_proximity0_calibrate.attr, &dev_attr_in_proximity0_calibscale_available.attr, NULL }; static struct attribute *tsl2X7X_ALS_event_attrs[] = { &dev_attr_in_intensity0_thresh_period.attr, NULL, }; static struct attribute *tsl2X7X_PRX_event_attrs[] = { &dev_attr_in_proximity0_thresh_period.attr, NULL, }; static struct attribute *tsl2X7X_ALSPRX_event_attrs[] = { &dev_attr_in_intensity0_thresh_period.attr, &dev_attr_in_proximity0_thresh_period.attr, NULL, }; static const struct attribute_group tsl2X7X_device_attr_group_tbl[] = { [ALS] = { .attrs = tsl2x7x_ALS_device_attrs, }, [PRX] = { .attrs = tsl2x7x_PRX_device_attrs, }, [ALSPRX] = { .attrs = tsl2x7x_ALSPRX_device_attrs, }, [PRX2] = { .attrs = tsl2x7x_PRX2_device_attrs, }, [ALSPRX2] = { .attrs = tsl2x7x_ALSPRX2_device_attrs, }, }; static struct attribute_group tsl2X7X_event_attr_group_tbl[] = { [ALS] = { .attrs = tsl2X7X_ALS_event_attrs, .name = "events", }, [PRX] = { .attrs = tsl2X7X_PRX_event_attrs, .name = "events", }, [ALSPRX] = { .attrs = tsl2X7X_ALSPRX_event_attrs, .name = "events", }, }; static const struct iio_info tsl2X7X_device_info[] = { [ALS] = { .attrs = &tsl2X7X_device_attr_group_tbl[ALS], .event_attrs = &tsl2X7X_event_attr_group_tbl[ALS], .driver_module = THIS_MODULE, .read_raw = &tsl2x7x_read_raw, .write_raw = &tsl2x7x_write_raw, .read_event_value = &tsl2x7x_read_thresh, .write_event_value = &tsl2x7x_write_thresh, .read_event_config = &tsl2x7x_read_interrupt_config, .write_event_config = &tsl2x7x_write_interrupt_config, }, [PRX] = { .attrs = &tsl2X7X_device_attr_group_tbl[PRX], .event_attrs = &tsl2X7X_event_attr_group_tbl[PRX], .driver_module = THIS_MODULE, .read_raw = &tsl2x7x_read_raw, .write_raw = &tsl2x7x_write_raw, .read_event_value = &tsl2x7x_read_thresh, .write_event_value = &tsl2x7x_write_thresh, .read_event_config = &tsl2x7x_read_interrupt_config, .write_event_config = &tsl2x7x_write_interrupt_config, }, [ALSPRX] = { .attrs = &tsl2X7X_device_attr_group_tbl[ALSPRX], .event_attrs = &tsl2X7X_event_attr_group_tbl[ALSPRX], .driver_module = THIS_MODULE, .read_raw = &tsl2x7x_read_raw, .write_raw = &tsl2x7x_write_raw, .read_event_value = &tsl2x7x_read_thresh, .write_event_value = &tsl2x7x_write_thresh, .read_event_config = &tsl2x7x_read_interrupt_config, .write_event_config = &tsl2x7x_write_interrupt_config, }, [PRX2] = { .attrs = &tsl2X7X_device_attr_group_tbl[PRX2], .event_attrs = &tsl2X7X_event_attr_group_tbl[PRX], .driver_module = THIS_MODULE, .read_raw = &tsl2x7x_read_raw, .write_raw = &tsl2x7x_write_raw, .read_event_value = &tsl2x7x_read_thresh, .write_event_value = &tsl2x7x_write_thresh, .read_event_config = &tsl2x7x_read_interrupt_config, .write_event_config = &tsl2x7x_write_interrupt_config, }, [ALSPRX2] = { .attrs = &tsl2X7X_device_attr_group_tbl[ALSPRX2], .event_attrs = &tsl2X7X_event_attr_group_tbl[ALSPRX], .driver_module = THIS_MODULE, .read_raw = &tsl2x7x_read_raw, .write_raw = &tsl2x7x_write_raw, .read_event_value = &tsl2x7x_read_thresh, .write_event_value = &tsl2x7x_write_thresh, .read_event_config = &tsl2x7x_read_interrupt_config, .write_event_config = &tsl2x7x_write_interrupt_config, }, }; static const struct tsl2x7x_chip_info tsl2x7x_chip_info_tbl[] = { [ALS] = { .channel = { { .type = IIO_LIGHT, .indexed = 1, .channel = 0, .info_mask_separate = BIT(IIO_CHAN_INFO_PROCESSED), }, { .type = IIO_INTENSITY, .indexed = 1, .channel = 0, .info_mask_separate = BIT(IIO_CHAN_INFO_RAW) | BIT(IIO_CHAN_INFO_CALIBSCALE) | BIT(IIO_CHAN_INFO_CALIBBIAS), .event_mask = TSL2X7X_EVENT_MASK }, { .type = IIO_INTENSITY, .indexed = 1, .channel = 1, }, }, .chan_table_elements = 3, .info = &tsl2X7X_device_info[ALS], }, [PRX] = { .channel = { { .type = IIO_PROXIMITY, .indexed = 1, .channel = 0, .info_mask_separate = BIT(IIO_CHAN_INFO_RAW), .event_mask = TSL2X7X_EVENT_MASK }, }, .chan_table_elements = 1, .info = &tsl2X7X_device_info[PRX], }, [ALSPRX] = { .channel = { { .type = IIO_LIGHT, .indexed = 1, .channel = 0, .info_mask_separate = BIT(IIO_CHAN_INFO_PROCESSED) }, { .type = IIO_INTENSITY, .indexed = 1, .channel = 0, .info_mask_separate = BIT(IIO_CHAN_INFO_RAW) | BIT(IIO_CHAN_INFO_CALIBSCALE) | BIT(IIO_CHAN_INFO_CALIBBIAS), .event_mask = TSL2X7X_EVENT_MASK }, { .type = IIO_INTENSITY, .indexed = 1, .channel = 1, .info_mask_separate = BIT(IIO_CHAN_INFO_RAW), }, { .type = IIO_PROXIMITY, .indexed = 1, .channel = 0, .info_mask_separate = BIT(IIO_CHAN_INFO_RAW), .event_mask = TSL2X7X_EVENT_MASK }, }, .chan_table_elements = 4, .info = &tsl2X7X_device_info[ALSPRX], }, [PRX2] = { .channel = { { .type = IIO_PROXIMITY, .indexed = 1, .channel = 0, .info_mask_separate = BIT(IIO_CHAN_INFO_RAW) | BIT(IIO_CHAN_INFO_CALIBSCALE), .event_mask = TSL2X7X_EVENT_MASK }, }, .chan_table_elements = 1, .info = &tsl2X7X_device_info[PRX2], }, [ALSPRX2] = { .channel = { { .type = IIO_LIGHT, .indexed = 1, .channel = 0, .info_mask_separate = BIT(IIO_CHAN_INFO_PROCESSED), }, { .type = IIO_INTENSITY, .indexed = 1, .channel = 0, .info_mask_separate = BIT(IIO_CHAN_INFO_RAW) | BIT(IIO_CHAN_INFO_CALIBSCALE) | BIT(IIO_CHAN_INFO_CALIBBIAS), .event_mask = TSL2X7X_EVENT_MASK }, { .type = IIO_INTENSITY, .indexed = 1, .channel = 1, .info_mask_separate = BIT(IIO_CHAN_INFO_RAW), }, { .type = IIO_PROXIMITY, .indexed = 1, .channel = 0, .info_mask_separate = BIT(IIO_CHAN_INFO_RAW) | BIT(IIO_CHAN_INFO_CALIBSCALE), .event_mask = TSL2X7X_EVENT_MASK }, }, .chan_table_elements = 4, .info = &tsl2X7X_device_info[ALSPRX2], }, }; static int tsl2x7x_probe(struct i2c_client *clientp, const struct i2c_device_id *id) { int ret; unsigned char device_id; struct iio_dev *indio_dev; struct tsl2X7X_chip *chip; indio_dev = iio_device_alloc(sizeof(*chip)); if (!indio_dev) return -ENOMEM; chip = iio_priv(indio_dev); chip->client = clientp; i2c_set_clientdata(clientp, indio_dev); ret = tsl2x7x_i2c_read(chip->client, TSL2X7X_CHIPID, &device_id); if (ret < 0) goto fail1; if ((!tsl2x7x_device_id(&device_id, id->driver_data)) || (tsl2x7x_device_id(&device_id, id->driver_data) == -EINVAL)) { dev_info(&chip->client->dev, "%s: i2c device found does not match expected id\n", __func__); goto fail1; } ret = i2c_smbus_write_byte(clientp, (TSL2X7X_CMD_REG | TSL2X7X_CNTRL)); if (ret < 0) { dev_err(&clientp->dev, "%s: write to cmd reg failed. err = %d\n", __func__, ret); goto fail1; } /* ALS and PROX functions can be invoked via user space poll * or H/W interrupt. If busy return last sample. */ mutex_init(&chip->als_mutex); mutex_init(&chip->prox_mutex); chip->tsl2x7x_chip_status = TSL2X7X_CHIP_UNKNOWN; chip->pdata = clientp->dev.platform_data; chip->id = id->driver_data; chip->chip_info = &tsl2x7x_chip_info_tbl[device_channel_config[id->driver_data]]; indio_dev->info = chip->chip_info->info; indio_dev->dev.parent = &clientp->dev; indio_dev->modes = INDIO_DIRECT_MODE; indio_dev->name = chip->client->name; indio_dev->channels = chip->chip_info->channel; indio_dev->num_channels = chip->chip_info->chan_table_elements; if (clientp->irq) { ret = request_threaded_irq(clientp->irq, NULL, &tsl2x7x_event_handler, IRQF_TRIGGER_RISING | IRQF_ONESHOT, "TSL2X7X_event", indio_dev); if (ret) { dev_err(&clientp->dev, "%s: irq request failed", __func__); goto fail2; } } /* Load up the defaults */ tsl2x7x_defaults(chip); /* Make sure the chip is on */ tsl2x7x_chip_on(indio_dev); ret = iio_device_register(indio_dev); if (ret) { dev_err(&clientp->dev, "%s: iio registration failed\n", __func__); goto fail1; } dev_info(&clientp->dev, "%s Light sensor found.\n", id->name); return 0; fail1: if (clientp->irq) free_irq(clientp->irq, indio_dev); fail2: iio_device_free(indio_dev); return ret; } static int tsl2x7x_suspend(struct device *dev) { struct iio_dev *indio_dev = dev_get_drvdata(dev); struct tsl2X7X_chip *chip = iio_priv(indio_dev); int ret = 0; if (chip->tsl2x7x_chip_status == TSL2X7X_CHIP_WORKING) { ret = tsl2x7x_chip_off(indio_dev); chip->tsl2x7x_chip_status = TSL2X7X_CHIP_SUSPENDED; } if (chip->pdata && chip->pdata->platform_power) { pm_message_t pmm = {PM_EVENT_SUSPEND}; chip->pdata->platform_power(dev, pmm); } return ret; } static int tsl2x7x_resume(struct device *dev) { struct iio_dev *indio_dev = dev_get_drvdata(dev); struct tsl2X7X_chip *chip = iio_priv(indio_dev); int ret = 0; if (chip->pdata && chip->pdata->platform_power) { pm_message_t pmm = {PM_EVENT_RESUME}; chip->pdata->platform_power(dev, pmm); } if (chip->tsl2x7x_chip_status == TSL2X7X_CHIP_SUSPENDED) ret = tsl2x7x_chip_on(indio_dev); return ret; } static int tsl2x7x_remove(struct i2c_client *client) { struct iio_dev *indio_dev = i2c_get_clientdata(client); tsl2x7x_chip_off(indio_dev); iio_device_unregister(indio_dev); if (client->irq) free_irq(client->irq, indio_dev); iio_device_free(indio_dev); return 0; } static struct i2c_device_id tsl2x7x_idtable[] = { { "tsl2571", tsl2571 }, { "tsl2671", tsl2671 }, { "tmd2671", tmd2671 }, { "tsl2771", tsl2771 }, { "tmd2771", tmd2771 }, { "tsl2572", tsl2572 }, { "tsl2672", tsl2672 }, { "tmd2672", tmd2672 }, { "tsl2772", tsl2772 }, { "tmd2772", tmd2772 }, {} }; MODULE_DEVICE_TABLE(i2c, tsl2x7x_idtable); static const struct dev_pm_ops tsl2x7x_pm_ops = { .suspend = tsl2x7x_suspend, .resume = tsl2x7x_resume, }; /* Driver definition */ static struct i2c_driver tsl2x7x_driver = { .driver = { .name = "tsl2x7x", .pm = &tsl2x7x_pm_ops, }, .id_table = tsl2x7x_idtable, .probe = tsl2x7x_probe, .remove = tsl2x7x_remove, }; module_i2c_driver(tsl2x7x_driver); MODULE_AUTHOR("J. August Brenner"); MODULE_DESCRIPTION("TAOS tsl2x7x ambient and proximity light sensor driver"); MODULE_LICENSE("GPL");