/* * cxd2099.c: Driver for the CXD2099AR Common Interface Controller * * Copyright (C) 2010-2011 Digital Devices GmbH * * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * version 2 only, as published by the Free Software Foundation. * * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA * 02110-1301, USA * Or, point your browser to http://www.gnu.org/copyleft/gpl.html */ #include #include #include #include #include #include #include #include #include #include #include "cxd2099.h" #define MAX_BUFFER_SIZE 248 struct cxd { struct dvb_ca_en50221 en; struct i2c_adapter *i2c; struct cxd2099_cfg cfg; u8 regs[0x23]; u8 lastaddress; u8 clk_reg_f; u8 clk_reg_b; int mode; int ready; int dr; int slot_stat; u8 amem[1024]; int amem_read; int cammode; struct mutex lock; }; static int i2c_write_reg(struct i2c_adapter *adapter, u8 adr, u8 reg, u8 data) { u8 m[2] = {reg, data}; struct i2c_msg msg = {.addr = adr, .flags = 0, .buf = m, .len = 2}; if (i2c_transfer(adapter, &msg, 1) != 1) { printk(KERN_ERR "Failed to write to I2C register %02x@%02x!\n", reg, adr); return -1; } return 0; } static int i2c_write(struct i2c_adapter *adapter, u8 adr, u8 *data, u8 len) { struct i2c_msg msg = {.addr = adr, .flags = 0, .buf = data, .len = len}; if (i2c_transfer(adapter, &msg, 1) != 1) { printk(KERN_ERR "Failed to write to I2C!\n"); return -1; } return 0; } static int i2c_read_reg(struct i2c_adapter *adapter, u8 adr, u8 reg, u8 *val) { struct i2c_msg msgs[2] = {{.addr = adr, .flags = 0, .buf = ®, .len = 1}, {.addr = adr, .flags = I2C_M_RD, .buf = val, .len = 1} }; if (i2c_transfer(adapter, msgs, 2) != 2) { printk(KERN_ERR "error in i2c_read_reg\n"); return -1; } return 0; } static int i2c_read(struct i2c_adapter *adapter, u8 adr, u8 reg, u8 *data, u8 n) { struct i2c_msg msgs[2] = {{.addr = adr, .flags = 0, .buf = ®, .len = 1}, {.addr = adr, .flags = I2C_M_RD, .buf = data, .len = n} }; if (i2c_transfer(adapter, msgs, 2) != 2) { printk(KERN_ERR "error in i2c_read\n"); return -1; } return 0; } static int read_block(struct cxd *ci, u8 adr, u8 *data, u8 n) { int status; status = i2c_write_reg(ci->i2c, ci->cfg.adr, 0, adr); if (!status) { ci->lastaddress = adr; status = i2c_read(ci->i2c, ci->cfg.adr, 1, data, n); } return status; } static int read_reg(struct cxd *ci, u8 reg, u8 *val) { return read_block(ci, reg, val, 1); } static int read_pccard(struct cxd *ci, u16 address, u8 *data, u8 n) { int status; u8 addr[3] = {2, address & 0xff, address >> 8}; status = i2c_write(ci->i2c, ci->cfg.adr, addr, 3); if (!status) status = i2c_read(ci->i2c, ci->cfg.adr, 3, data, n); return status; } static int write_pccard(struct cxd *ci, u16 address, u8 *data, u8 n) { int status; u8 addr[3] = {2, address & 0xff, address >> 8}; status = i2c_write(ci->i2c, ci->cfg.adr, addr, 3); if (!status) { u8 buf[256] = {3}; memcpy(buf+1, data, n); status = i2c_write(ci->i2c, ci->cfg.adr, buf, n+1); } return status; } static int read_io(struct cxd *ci, u16 address, u8 *val) { int status; u8 addr[3] = {2, address & 0xff, address >> 8}; status = i2c_write(ci->i2c, ci->cfg.adr, addr, 3); if (!status) status = i2c_read(ci->i2c, ci->cfg.adr, 3, val, 1); return status; } static int write_io(struct cxd *ci, u16 address, u8 val) { int status; u8 addr[3] = {2, address & 0xff, address >> 8}; u8 buf[2] = {3, val}; status = i2c_write(ci->i2c, ci->cfg.adr, addr, 3); if (!status) status = i2c_write(ci->i2c, ci->cfg.adr, buf, 2); return status; } #if 0 static int read_io_data(struct cxd *ci, u8 *data, u8 n) { int status; u8 addr[3] = { 2, 0, 0 }; status = i2c_write(ci->i2c, ci->cfg.adr, addr, 3); if (!status) status = i2c_read(ci->i2c, ci->cfg.adr, 3, data, n); return 0; } static int write_io_data(struct cxd *ci, u8 *data, u8 n) { int status; u8 addr[3] = {2, 0, 0}; status = i2c_write(ci->i2c, ci->cfg.adr, addr, 3); if (!status) { u8 buf[256] = {3}; memcpy(buf+1, data, n); status = i2c_write(ci->i2c, ci->cfg.adr, buf, n + 1); } return 0; } #endif static int write_regm(struct cxd *ci, u8 reg, u8 val, u8 mask) { int status; status = i2c_write_reg(ci->i2c, ci->cfg.adr, 0, reg); if (!status && reg >= 6 && reg <= 8 && mask != 0xff) status = i2c_read_reg(ci->i2c, ci->cfg.adr, 1, &ci->regs[reg]); ci->regs[reg] = (ci->regs[reg] & (~mask)) | val; if (!status) { ci->lastaddress = reg; status = i2c_write_reg(ci->i2c, ci->cfg.adr, 1, ci->regs[reg]); } if (reg == 0x20) ci->regs[reg] &= 0x7f; return status; } static int write_reg(struct cxd *ci, u8 reg, u8 val) { return write_regm(ci, reg, val, 0xff); } #ifdef BUFFER_MODE static int write_block(struct cxd *ci, u8 adr, u8 *data, int n) { int status; u8 buf[256] = {1}; status = i2c_write_reg(ci->i2c, ci->cfg.adr, 0, adr); if (!status) { ci->lastaddress = adr; memcpy(buf + 1, data, n); status = i2c_write(ci->i2c, ci->cfg.adr, buf, n + 1); } return status; } #endif static void set_mode(struct cxd *ci, int mode) { if (mode == ci->mode) return; switch (mode) { case 0x00: /* IO mem */ write_regm(ci, 0x06, 0x00, 0x07); break; case 0x01: /* ATT mem */ write_regm(ci, 0x06, 0x02, 0x07); break; default: break; } ci->mode = mode; } static void cam_mode(struct cxd *ci, int mode) { if (mode == ci->cammode) return; switch (mode) { case 0x00: write_regm(ci, 0x20, 0x80, 0x80); break; case 0x01: #ifdef BUFFER_MODE if (!ci->en.read_data) return; printk(KERN_INFO "enable cam buffer mode\n"); /* write_reg(ci, 0x0d, 0x00); */ /* write_reg(ci, 0x0e, 0x01); */ write_regm(ci, 0x08, 0x40, 0x40); /* read_reg(ci, 0x12, &dummy); */ write_regm(ci, 0x08, 0x80, 0x80); #endif break; default: break; } ci->cammode = mode; } static int init(struct cxd *ci) { int status; mutex_lock(&ci->lock); ci->mode = -1; do { status = write_reg(ci, 0x00, 0x00); if (status < 0) break; status = write_reg(ci, 0x01, 0x00); if (status < 0) break; status = write_reg(ci, 0x02, 0x10); if (status < 0) break; status = write_reg(ci, 0x03, 0x00); if (status < 0) break; status = write_reg(ci, 0x05, 0xFF); if (status < 0) break; status = write_reg(ci, 0x06, 0x1F); if (status < 0) break; status = write_reg(ci, 0x07, 0x1F); if (status < 0) break; status = write_reg(ci, 0x08, 0x28); if (status < 0) break; status = write_reg(ci, 0x14, 0x20); if (status < 0) break; #if 0 status = write_reg(ci, 0x09, 0x4D); /* Input Mode C, BYPass Serial, TIVAL = low, MSB */ if (status < 0) break; #endif status = write_reg(ci, 0x0A, 0xA7); /* TOSTRT = 8, Mode B (gated clock), falling Edge, Serial, POL=HIGH, MSB */ if (status < 0) break; status = write_reg(ci, 0x0B, 0x33); if (status < 0) break; status = write_reg(ci, 0x0C, 0x33); if (status < 0) break; status = write_regm(ci, 0x14, 0x00, 0x0F); if (status < 0) break; status = write_reg(ci, 0x15, ci->clk_reg_b); if (status < 0) break; status = write_regm(ci, 0x16, 0x00, 0x0F); if (status < 0) break; status = write_reg(ci, 0x17, ci->clk_reg_f); if (status < 0) break; if (ci->cfg.clock_mode) { if (ci->cfg.polarity) { status = write_reg(ci, 0x09, 0x6f); if (status < 0) break; } else { status = write_reg(ci, 0x09, 0x6d); if (status < 0) break; } status = write_reg(ci, 0x20, 0x68); if (status < 0) break; status = write_reg(ci, 0x21, 0x00); if (status < 0) break; status = write_reg(ci, 0x22, 0x02); if (status < 0) break; } else { if (ci->cfg.polarity) { status = write_reg(ci, 0x09, 0x4f); if (status < 0) break; } else { status = write_reg(ci, 0x09, 0x4d); if (status < 0) break; } status = write_reg(ci, 0x20, 0x28); if (status < 0) break; status = write_reg(ci, 0x21, 0x00); if (status < 0) break; status = write_reg(ci, 0x22, 0x07); if (status < 0) break; } status = write_regm(ci, 0x20, 0x80, 0x80); if (status < 0) break; status = write_regm(ci, 0x03, 0x02, 0x02); if (status < 0) break; status = write_reg(ci, 0x01, 0x04); if (status < 0) break; status = write_reg(ci, 0x00, 0x31); if (status < 0) break; /* Put TS in bypass */ status = write_regm(ci, 0x09, 0x08, 0x08); if (status < 0) break; ci->cammode = -1; cam_mode(ci, 0); } while (0); mutex_unlock(&ci->lock); return 0; } static int read_attribute_mem(struct dvb_ca_en50221 *ca, int slot, int address) { struct cxd *ci = ca->data; #if 0 if (ci->amem_read) { if (address <= 0 || address > 1024) return -EIO; return ci->amem[address]; } mutex_lock(&ci->lock); write_regm(ci, 0x06, 0x00, 0x05); read_pccard(ci, 0, &ci->amem[0], 128); read_pccard(ci, 128, &ci->amem[0], 128); read_pccard(ci, 256, &ci->amem[0], 128); read_pccard(ci, 384, &ci->amem[0], 128); write_regm(ci, 0x06, 0x05, 0x05); mutex_unlock(&ci->lock); return ci->amem[address]; #else u8 val; mutex_lock(&ci->lock); set_mode(ci, 1); read_pccard(ci, address, &val, 1); mutex_unlock(&ci->lock); /* printk(KERN_INFO "%02x:%02x\n", address,val); */ return val; #endif } static int write_attribute_mem(struct dvb_ca_en50221 *ca, int slot, int address, u8 value) { struct cxd *ci = ca->data; mutex_lock(&ci->lock); set_mode(ci, 1); write_pccard(ci, address, &value, 1); mutex_unlock(&ci->lock); return 0; } static int read_cam_control(struct dvb_ca_en50221 *ca, int slot, u8 address) { struct cxd *ci = ca->data; u8 val; mutex_lock(&ci->lock); set_mode(ci, 0); read_io(ci, address, &val); mutex_unlock(&ci->lock); return val; } static int write_cam_control(struct dvb_ca_en50221 *ca, int slot, u8 address, u8 value) { struct cxd *ci = ca->data; mutex_lock(&ci->lock); set_mode(ci, 0); write_io(ci, address, value); mutex_unlock(&ci->lock); return 0; } static int slot_reset(struct dvb_ca_en50221 *ca, int slot) { struct cxd *ci = ca->data; mutex_lock(&ci->lock); #if 0 write_reg(ci, 0x00, 0x21); write_reg(ci, 0x06, 0x1F); write_reg(ci, 0x00, 0x31); #else #if 0 write_reg(ci, 0x06, 0x1F); write_reg(ci, 0x06, 0x2F); #else cam_mode(ci, 0); write_reg(ci, 0x00, 0x21); write_reg(ci, 0x06, 0x1F); write_reg(ci, 0x00, 0x31); write_regm(ci, 0x20, 0x80, 0x80); write_reg(ci, 0x03, 0x02); ci->ready = 0; #endif #endif ci->mode = -1; { int i; #if 0 u8 val; #endif for (i = 0; i < 100; i++) { msleep(10); #if 0 read_reg(ci, 0x06, &val); printk(KERN_INFO "%d:%02x\n", i, val); if (!(val&0x10)) break; #else if (ci->ready) break; #endif } } mutex_unlock(&ci->lock); /* msleep(500); */ return 0; } static int slot_shutdown(struct dvb_ca_en50221 *ca, int slot) { struct cxd *ci = ca->data; printk(KERN_INFO "slot_shutdown\n"); mutex_lock(&ci->lock); write_regm(ci, 0x09, 0x08, 0x08); write_regm(ci, 0x20, 0x80, 0x80); /* Reset CAM Mode */ write_regm(ci, 0x06, 0x07, 0x07); /* Clear IO Mode */ ci->mode = -1; mutex_unlock(&ci->lock); return 0; } static int slot_ts_enable(struct dvb_ca_en50221 *ca, int slot) { struct cxd *ci = ca->data; mutex_lock(&ci->lock); write_regm(ci, 0x09, 0x00, 0x08); set_mode(ci, 0); #ifdef BUFFER_MODE cam_mode(ci, 1); #endif mutex_unlock(&ci->lock); return 0; } static int campoll(struct cxd *ci) { u8 istat; read_reg(ci, 0x04, &istat); if (!istat) return 0; write_reg(ci, 0x05, istat); if (istat&0x40) { ci->dr = 1; printk(KERN_INFO "DR\n"); } if (istat&0x20) printk(KERN_INFO "WC\n"); if (istat&2) { u8 slotstat; read_reg(ci, 0x01, &slotstat); if (!(2&slotstat)) { if (!ci->slot_stat) { ci->slot_stat |= DVB_CA_EN50221_POLL_CAM_PRESENT; write_regm(ci, 0x03, 0x08, 0x08); } } else { if (ci->slot_stat) { ci->slot_stat = 0; write_regm(ci, 0x03, 0x00, 0x08); printk(KERN_INFO "NO CAM\n"); ci->ready = 0; } } if (istat&8 && ci->slot_stat == DVB_CA_EN50221_POLL_CAM_PRESENT) { ci->ready = 1; ci->slot_stat |= DVB_CA_EN50221_POLL_CAM_READY; } } return 0; } static int poll_slot_status(struct dvb_ca_en50221 *ca, int slot, int open) { struct cxd *ci = ca->data; u8 slotstat; mutex_lock(&ci->lock); campoll(ci); read_reg(ci, 0x01, &slotstat); mutex_unlock(&ci->lock); return ci->slot_stat; } #ifdef BUFFER_MODE static int read_data(struct dvb_ca_en50221 *ca, int slot, u8 *ebuf, int ecount) { struct cxd *ci = ca->data; u8 msb, lsb; u16 len; mutex_lock(&ci->lock); campoll(ci); mutex_unlock(&ci->lock); printk(KERN_INFO "read_data\n"); if (!ci->dr) return 0; mutex_lock(&ci->lock); read_reg(ci, 0x0f, &msb); read_reg(ci, 0x10, &lsb); len = (msb<<8)|lsb; read_block(ci, 0x12, ebuf, len); ci->dr = 0; mutex_unlock(&ci->lock); return len; } static int write_data(struct dvb_ca_en50221 *ca, int slot, u8 *ebuf, int ecount) { struct cxd *ci = ca->data; mutex_lock(&ci->lock); printk(kern_INFO "write_data %d\n", ecount); write_reg(ci, 0x0d, ecount>>8); write_reg(ci, 0x0e, ecount&0xff); write_block(ci, 0x11, ebuf, ecount); mutex_unlock(&ci->lock); return ecount; } #endif static struct dvb_ca_en50221 en_templ = { .read_attribute_mem = read_attribute_mem, .write_attribute_mem = write_attribute_mem, .read_cam_control = read_cam_control, .write_cam_control = write_cam_control, .slot_reset = slot_reset, .slot_shutdown = slot_shutdown, .slot_ts_enable = slot_ts_enable, .poll_slot_status = poll_slot_status, #ifdef BUFFER_MODE .read_data = read_data, .write_data = write_data, #endif }; struct dvb_ca_en50221 *cxd2099_attach(struct cxd2099_cfg *cfg, void *priv, struct i2c_adapter *i2c) { struct cxd *ci = 0; u8 val; if (i2c_read_reg(i2c, cfg->adr, 0, &val) < 0) { printk(KERN_INFO "No CXD2099 detected at %02x\n", cfg->adr); return 0; } ci = kmalloc(sizeof(struct cxd), GFP_KERNEL); if (!ci) return 0; memset(ci, 0, sizeof(*ci)); mutex_init(&ci->lock); memcpy(&ci->cfg, cfg, sizeof(struct cxd2099_cfg)); ci->i2c = i2c; ci->lastaddress = 0xff; ci->clk_reg_b = 0x4a; ci->clk_reg_f = 0x1b; memcpy(&ci->en, &en_templ, sizeof(en_templ)); ci->en.data = ci; init(ci); printk(KERN_INFO "Attached CXD2099AR at %02x\n", ci->cfg.adr); return &ci->en; } EXPORT_SYMBOL(cxd2099_attach); MODULE_DESCRIPTION("cxd2099"); MODULE_AUTHOR("Ralph Metzler"); MODULE_LICENSE("GPL");