/* * NVEC: NVIDIA compliant embedded controller interface * * Copyright (C) 2011 The AC100 Kernel Team * * Authors: Pierre-Hugues Husson * Ilya Petrov * Marc Dietrich * Julian Andres Klode * * This file is subject to the terms and conditions of the GNU General Public * License. See the file "COPYING" in the main directory of this archive * for more details. * */ /* #define DEBUG */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "nvec.h" #define I2C_CNFG 0x00 #define I2C_CNFG_PACKET_MODE_EN (1<<10) #define I2C_CNFG_NEW_MASTER_SFM (1<<11) #define I2C_CNFG_DEBOUNCE_CNT_SHIFT 12 #define I2C_SL_CNFG 0x20 #define I2C_SL_NEWL (1<<2) #define I2C_SL_NACK (1<<1) #define I2C_SL_RESP (1<<0) #define I2C_SL_IRQ (1<<3) #define END_TRANS (1<<4) #define RCVD (1<<2) #define RNW (1<<1) #define I2C_SL_RCVD 0x24 #define I2C_SL_STATUS 0x28 #define I2C_SL_ADDR1 0x2c #define I2C_SL_ADDR2 0x30 #define I2C_SL_DELAY_COUNT 0x3c /** * enum nvec_msg_category - Message categories for nvec_msg_alloc() * @NVEC_MSG_RX: The message is an incoming message (from EC) * @NVEC_MSG_TX: The message is an outgoing message (to EC) */ enum nvec_msg_category { NVEC_MSG_RX, NVEC_MSG_TX, }; static const unsigned char EC_DISABLE_EVENT_REPORTING[3] = "\x04\x00\x00"; static const unsigned char EC_ENABLE_EVENT_REPORTING[3] = "\x04\x00\x01"; static const unsigned char EC_GET_FIRMWARE_VERSION[2] = "\x07\x15"; static struct nvec_chip *nvec_power_handle; static struct mfd_cell nvec_devices[] = { { .name = "nvec-kbd", .id = 1, }, { .name = "nvec-mouse", .id = 1, }, { .name = "nvec-power", .id = 1, }, { .name = "nvec-power", .id = 2, }, { .name = "nvec-leds", .id = 1, }, }; /** * nvec_register_notifier - Register a notifier with nvec * @nvec: A &struct nvec_chip * @nb: The notifier block to register * * Registers a notifier with @nvec. The notifier will be added to an atomic * notifier chain that is called for all received messages except those that * correspond to a request initiated by nvec_write_sync(). */ int nvec_register_notifier(struct nvec_chip *nvec, struct notifier_block *nb, unsigned int events) { return atomic_notifier_chain_register(&nvec->notifier_list, nb); } EXPORT_SYMBOL_GPL(nvec_register_notifier); /** * nvec_status_notifier - The final notifier * * Prints a message about control events not handled in the notifier * chain. */ static int nvec_status_notifier(struct notifier_block *nb, unsigned long event_type, void *data) { unsigned char *msg = (unsigned char *)data; if (event_type != NVEC_CNTL) return NOTIFY_DONE; printk(KERN_WARNING "unhandled msg type %ld\n", event_type); print_hex_dump(KERN_WARNING, "payload: ", DUMP_PREFIX_NONE, 16, 1, msg, msg[1] + 2, true); return NOTIFY_OK; } /** * nvec_msg_alloc: * @nvec: A &struct nvec_chip * @category: Pool category, see &enum nvec_msg_category * * Allocate a single &struct nvec_msg object from the message pool of * @nvec. The result shall be passed to nvec_msg_free() if no longer * used. * * Outgoing messages are placed in the upper 75% of the pool, keeping the * lower 25% available for RX buffers only. The reason is to prevent a * situation where all buffers are full and a message is thus endlessly * retried because the response could never be processed. */ static struct nvec_msg *nvec_msg_alloc(struct nvec_chip *nvec, enum nvec_msg_category category) { int i = (category == NVEC_MSG_TX) ? (NVEC_POOL_SIZE / 4) : 0; for (; i < NVEC_POOL_SIZE; i++) { if (atomic_xchg(&nvec->msg_pool[i].used, 1) == 0) { dev_vdbg(nvec->dev, "INFO: Allocate %i\n", i); return &nvec->msg_pool[i]; } } dev_err(nvec->dev, "could not allocate %s buffer\n", (category == NVEC_MSG_TX) ? "TX" : "RX"); return NULL; } /** * nvec_msg_free: * @nvec: A &struct nvec_chip * @msg: A message (must be allocated by nvec_msg_alloc() and belong to @nvec) * * Free the given message */ inline void nvec_msg_free(struct nvec_chip *nvec, struct nvec_msg *msg) { if (msg != &nvec->tx_scratch) dev_vdbg(nvec->dev, "INFO: Free %ti\n", msg - nvec->msg_pool); atomic_set(&msg->used, 0); } EXPORT_SYMBOL_GPL(nvec_msg_free); /** * nvec_msg_is_event - Return %true if @msg is an event * @msg: A message */ static bool nvec_msg_is_event(struct nvec_msg *msg) { return msg->data[0] >> 7; } /** * nvec_msg_size - Get the size of a message * @msg: The message to get the size for * * This only works for received messages, not for outgoing messages. */ static size_t nvec_msg_size(struct nvec_msg *msg) { bool is_event = nvec_msg_is_event(msg); int event_length = (msg->data[0] & 0x60) >> 5; /* for variable size, payload size in byte 1 + count (1) + cmd (1) */ if (!is_event || event_length == NVEC_VAR_SIZE) return (msg->pos || msg->size) ? (msg->data[1] + 2) : 0; else if (event_length == NVEC_2BYTES) return 2; else if (event_length == NVEC_3BYTES) return 3; else return 0; } /** * nvec_gpio_set_value - Set the GPIO value * @nvec: A &struct nvec_chip * @value: The value to write (0 or 1) * * Like gpio_set_value(), but generating debugging information */ static void nvec_gpio_set_value(struct nvec_chip *nvec, int value) { dev_dbg(nvec->dev, "GPIO changed from %u to %u\n", gpio_get_value(nvec->gpio), value); gpio_set_value(nvec->gpio, value); } /** * nvec_write_async - Asynchronously write a message to NVEC * @nvec: An nvec_chip instance * @data: The message data, starting with the request type * @size: The size of @data * * Queue a single message to be transferred to the embedded controller * and return immediately. * * Returns: 0 on success, a negative error code on failure. If a failure * occured, the nvec driver may print an error. */ int nvec_write_async(struct nvec_chip *nvec, const unsigned char *data, short size) { struct nvec_msg *msg; unsigned long flags; msg = nvec_msg_alloc(nvec, NVEC_MSG_TX); if (msg == NULL) return -ENOMEM; msg->data[0] = size; memcpy(msg->data + 1, data, size); msg->size = size + 1; spin_lock_irqsave(&nvec->tx_lock, flags); list_add_tail(&msg->node, &nvec->tx_data); spin_unlock_irqrestore(&nvec->tx_lock, flags); queue_work(nvec->wq, &nvec->tx_work); return 0; } EXPORT_SYMBOL(nvec_write_async); /** * nvec_write_sync - Write a message to nvec and read the response * @nvec: An &struct nvec_chip * @data: The data to write * @size: The size of @data * * This is similar to nvec_write_async(), but waits for the * request to be answered before returning. This function * uses a mutex and can thus not be called from e.g. * interrupt handlers. * * Returns: A pointer to the response message on success, * %NULL on failure. Free with nvec_msg_free() once no longer * used. */ struct nvec_msg *nvec_write_sync(struct nvec_chip *nvec, const unsigned char *data, short size) { struct nvec_msg *msg; mutex_lock(&nvec->sync_write_mutex); nvec->sync_write_pending = (data[1] << 8) + data[0]; if (nvec_write_async(nvec, data, size) < 0) return NULL; dev_dbg(nvec->dev, "nvec_sync_write: 0x%04x\n", nvec->sync_write_pending); if (!(wait_for_completion_timeout(&nvec->sync_write, msecs_to_jiffies(2000)))) { dev_warn(nvec->dev, "timeout waiting for sync write to complete\n"); mutex_unlock(&nvec->sync_write_mutex); return NULL; } dev_dbg(nvec->dev, "nvec_sync_write: pong!\n"); msg = nvec->last_sync_msg; mutex_unlock(&nvec->sync_write_mutex); return msg; } EXPORT_SYMBOL(nvec_write_sync); /** * nvec_request_master - Process outgoing messages * @work: A &struct work_struct (the tx_worker member of &struct nvec_chip) * * Processes all outgoing requests by sending the request and awaiting the * response, then continuing with the next request. Once a request has a * matching response, it will be freed and removed from the list. */ static void nvec_request_master(struct work_struct *work) { struct nvec_chip *nvec = container_of(work, struct nvec_chip, tx_work); unsigned long flags; long err; struct nvec_msg *msg; spin_lock_irqsave(&nvec->tx_lock, flags); while (!list_empty(&nvec->tx_data)) { msg = list_first_entry(&nvec->tx_data, struct nvec_msg, node); spin_unlock_irqrestore(&nvec->tx_lock, flags); nvec_gpio_set_value(nvec, 0); err = wait_for_completion_interruptible_timeout( &nvec->ec_transfer, msecs_to_jiffies(5000)); if (err == 0) { dev_warn(nvec->dev, "timeout waiting for ec transfer\n"); nvec_gpio_set_value(nvec, 1); msg->pos = 0; } spin_lock_irqsave(&nvec->tx_lock, flags); if (err > 0) { list_del_init(&msg->node); nvec_msg_free(nvec, msg); } } spin_unlock_irqrestore(&nvec->tx_lock, flags); } /** * parse_msg - Print some information and call the notifiers on an RX message * @nvec: A &struct nvec_chip * @msg: A message received by @nvec * * Paarse some pieces of the message and then call the chain of notifiers * registered via nvec_register_notifier. */ static int parse_msg(struct nvec_chip *nvec, struct nvec_msg *msg) { if ((msg->data[0] & 1 << 7) == 0 && msg->data[3]) { dev_err(nvec->dev, "ec responded %02x %02x %02x %02x\n", msg->data[0], msg->data[1], msg->data[2], msg->data[3]); return -EINVAL; } if ((msg->data[0] >> 7) == 1 && (msg->data[0] & 0x0f) == 5) print_hex_dump(KERN_WARNING, "ec system event ", DUMP_PREFIX_NONE, 16, 1, msg->data, msg->data[1] + 2, true); atomic_notifier_call_chain(&nvec->notifier_list, msg->data[0] & 0x8f, msg->data); return 0; } /** * nvec_dispatch - Process messages received from the EC * @work: A &struct work_struct (the tx_worker member of &struct nvec_chip) * * Process messages previously received from the EC and put into the RX * queue of the &struct nvec_chip instance associated with @work. */ static void nvec_dispatch(struct work_struct *work) { struct nvec_chip *nvec = container_of(work, struct nvec_chip, rx_work); unsigned long flags; struct nvec_msg *msg; spin_lock_irqsave(&nvec->rx_lock, flags); while (!list_empty(&nvec->rx_data)) { msg = list_first_entry(&nvec->rx_data, struct nvec_msg, node); list_del_init(&msg->node); spin_unlock_irqrestore(&nvec->rx_lock, flags); if (nvec->sync_write_pending == (msg->data[2] << 8) + msg->data[0]) { dev_dbg(nvec->dev, "sync write completed!\n"); nvec->sync_write_pending = 0; nvec->last_sync_msg = msg; complete(&nvec->sync_write); } else { parse_msg(nvec, msg); nvec_msg_free(nvec, msg); } spin_lock_irqsave(&nvec->rx_lock, flags); } spin_unlock_irqrestore(&nvec->rx_lock, flags); } /** * nvec_tx_completed - Complete the current transfer * @nvec: A &struct nvec_chip * * This is called when we have received an END_TRANS on a TX transfer. */ static void nvec_tx_completed(struct nvec_chip *nvec) { /* We got an END_TRANS, let's skip this, maybe there's an event */ if (nvec->tx->pos != nvec->tx->size) { dev_err(nvec->dev, "premature END_TRANS, resending\n"); nvec->tx->pos = 0; nvec_gpio_set_value(nvec, 0); } else { nvec->state = 0; } } /** * nvec_rx_completed - Complete the current transfer * @nvec: A &struct nvec_chip * * This is called when we have received an END_TRANS on a RX transfer. */ static void nvec_rx_completed(struct nvec_chip *nvec) { if (nvec->rx->pos != nvec_msg_size(nvec->rx)) { dev_err(nvec->dev, "RX incomplete: Expected %u bytes, got %u\n", (uint) nvec_msg_size(nvec->rx), (uint) nvec->rx->pos); nvec_msg_free(nvec, nvec->rx); nvec->state = 0; /* Battery quirk - Often incomplete, and likes to crash */ if (nvec->rx->data[0] == NVEC_BAT) complete(&nvec->ec_transfer); return; } spin_lock(&nvec->rx_lock); /* add the received data to the work list and move the ring buffer pointer to the next entry */ list_add_tail(&nvec->rx->node, &nvec->rx_data); spin_unlock(&nvec->rx_lock); nvec->state = 0; if (!nvec_msg_is_event(nvec->rx)) complete(&nvec->ec_transfer); queue_work(nvec->wq, &nvec->rx_work); } /** * nvec_invalid_flags - Send an error message about invalid flags and jump * @nvec: The nvec device * @status: The status flags * @reset: Whether we shall jump to state 0. */ static void nvec_invalid_flags(struct nvec_chip *nvec, unsigned int status, bool reset) { dev_err(nvec->dev, "unexpected status flags 0x%02x during state %i\n", status, nvec->state); if (reset) nvec->state = 0; } /** * nvec_tx_set - Set the message to transfer (nvec->tx) * @nvec: A &struct nvec_chip * * Gets the first entry from the tx_data list of @nvec and sets the * tx member to it. If the tx_data list is empty, this uses the * tx_scratch message to send a no operation message. */ static void nvec_tx_set(struct nvec_chip *nvec) { spin_lock(&nvec->tx_lock); if (list_empty(&nvec->tx_data)) { dev_err(nvec->dev, "empty tx - sending no-op\n"); memcpy(nvec->tx_scratch.data, "\x02\x07\x02", 3); nvec->tx_scratch.size = 3; nvec->tx_scratch.pos = 0; nvec->tx = &nvec->tx_scratch; list_add_tail(&nvec->tx->node, &nvec->tx_data); } else { nvec->tx = list_first_entry(&nvec->tx_data, struct nvec_msg, node); nvec->tx->pos = 0; } spin_unlock(&nvec->tx_lock); dev_dbg(nvec->dev, "Sending message of length %u, command 0x%x\n", (uint)nvec->tx->size, nvec->tx->data[1]); } /** * nvec_interrupt - Interrupt handler * @irq: The IRQ * @dev: The nvec device * * Interrupt handler that fills our RX buffers and empties our TX * buffers. This uses a finite state machine with ridiculous amounts * of error checking, in order to be fairly reliable. */ static irqreturn_t nvec_interrupt(int irq, void *dev) { unsigned long status; unsigned int received = 0; unsigned char to_send = 0xff; const unsigned long irq_mask = I2C_SL_IRQ | END_TRANS | RCVD | RNW; struct nvec_chip *nvec = dev; unsigned int state = nvec->state; status = readl(nvec->base + I2C_SL_STATUS); /* Filter out some errors */ if ((status & irq_mask) == 0 && (status & ~irq_mask) != 0) { dev_err(nvec->dev, "unexpected irq mask %lx\n", status); return IRQ_HANDLED; } if ((status & I2C_SL_IRQ) == 0) { dev_err(nvec->dev, "Spurious IRQ\n"); return IRQ_HANDLED; } /* The EC did not request a read, so it send us something, read it */ if ((status & RNW) == 0) { received = readl(nvec->base + I2C_SL_RCVD); if (status & RCVD) writel(0, nvec->base + I2C_SL_RCVD); } if (status == (I2C_SL_IRQ | RCVD)) nvec->state = 0; switch (nvec->state) { case 0: /* Verify that its a transfer start, the rest later */ if (status != (I2C_SL_IRQ | RCVD)) nvec_invalid_flags(nvec, status, false); break; case 1: /* command byte */ if (status != I2C_SL_IRQ) { nvec_invalid_flags(nvec, status, true); } else { nvec->rx = nvec_msg_alloc(nvec, NVEC_MSG_RX); /* Should not happen in a normal world */ if (unlikely(nvec->rx == NULL)) { nvec->state = 0; break; } nvec->rx->data[0] = received; nvec->rx->pos = 1; nvec->state = 2; } break; case 2: /* first byte after command */ if (status == (I2C_SL_IRQ | RNW | RCVD)) { udelay(33); if (nvec->rx->data[0] != 0x01) { dev_err(nvec->dev, "Read without prior read command\n"); nvec->state = 0; break; } nvec_msg_free(nvec, nvec->rx); nvec->state = 3; nvec_tx_set(nvec); BUG_ON(nvec->tx->size < 1); to_send = nvec->tx->data[0]; nvec->tx->pos = 1; } else if (status == (I2C_SL_IRQ)) { BUG_ON(nvec->rx == NULL); nvec->rx->data[1] = received; nvec->rx->pos = 2; nvec->state = 4; } else { nvec_invalid_flags(nvec, status, true); } break; case 3: /* EC does a block read, we transmit data */ if (status & END_TRANS) { nvec_tx_completed(nvec); } else if ((status & RNW) == 0 || (status & RCVD)) { nvec_invalid_flags(nvec, status, true); } else if (nvec->tx && nvec->tx->pos < nvec->tx->size) { to_send = nvec->tx->data[nvec->tx->pos++]; } else { dev_err(nvec->dev, "tx buffer underflow on %p (%u > %u)\n", nvec->tx, (uint) (nvec->tx ? nvec->tx->pos : 0), (uint) (nvec->tx ? nvec->tx->size : 0)); nvec->state = 0; } break; case 4: /* EC does some write, we read the data */ if ((status & (END_TRANS | RNW)) == END_TRANS) nvec_rx_completed(nvec); else if (status & (RNW | RCVD)) nvec_invalid_flags(nvec, status, true); else if (nvec->rx && nvec->rx->pos < NVEC_MSG_SIZE) nvec->rx->data[nvec->rx->pos++] = received; else dev_err(nvec->dev, "RX buffer overflow on %p: " "Trying to write byte %u of %u\n", nvec->rx, nvec->rx->pos, NVEC_MSG_SIZE); break; default: nvec->state = 0; } /* If we are told that a new transfer starts, verify it */ if ((status & (RCVD | RNW)) == RCVD) { if (received != nvec->i2c_addr) dev_err(nvec->dev, "received address 0x%02x, expected 0x%02x\n", received, nvec->i2c_addr); nvec->state = 1; } /* Send data if requested, but not on end of transmission */ if ((status & (RNW | END_TRANS)) == RNW) writel(to_send, nvec->base + I2C_SL_RCVD); /* If we have send the first byte */ if (status == (I2C_SL_IRQ | RNW | RCVD)) nvec_gpio_set_value(nvec, 1); dev_dbg(nvec->dev, "Handled: %s 0x%02x, %s 0x%02x in state %u [%s%s%s]\n", (status & RNW) == 0 ? "received" : "R=", received, (status & (RNW | END_TRANS)) ? "sent" : "S=", to_send, state, status & END_TRANS ? " END_TRANS" : "", status & RCVD ? " RCVD" : "", status & RNW ? " RNW" : ""); /* * TODO: A correct fix needs to be found for this. * * We experience less incomplete messages with this delay than without * it, but we don't know why. Help is appreciated. */ udelay(100); return IRQ_HANDLED; } static void tegra_init_i2c_slave(struct nvec_chip *nvec) { u32 val; clk_enable(nvec->i2c_clk); tegra_periph_reset_assert(nvec->i2c_clk); udelay(2); tegra_periph_reset_deassert(nvec->i2c_clk); val = I2C_CNFG_NEW_MASTER_SFM | I2C_CNFG_PACKET_MODE_EN | (0x2 << I2C_CNFG_DEBOUNCE_CNT_SHIFT); writel(val, nvec->base + I2C_CNFG); clk_set_rate(nvec->i2c_clk, 8 * 80000); writel(I2C_SL_NEWL, nvec->base + I2C_SL_CNFG); writel(0x1E, nvec->base + I2C_SL_DELAY_COUNT); writel(nvec->i2c_addr>>1, nvec->base + I2C_SL_ADDR1); writel(0, nvec->base + I2C_SL_ADDR2); enable_irq(nvec->irq); clk_disable(nvec->i2c_clk); } static void nvec_disable_i2c_slave(struct nvec_chip *nvec) { disable_irq(nvec->irq); writel(I2C_SL_NEWL | I2C_SL_NACK, nvec->base + I2C_SL_CNFG); clk_disable(nvec->i2c_clk); } static void nvec_power_off(void) { nvec_write_async(nvec_power_handle, EC_DISABLE_EVENT_REPORTING, 3); nvec_write_async(nvec_power_handle, "\x04\x01", 2); } static int __devinit tegra_nvec_probe(struct platform_device *pdev) { int err, ret; struct clk *i2c_clk; struct nvec_platform_data *pdata = pdev->dev.platform_data; struct nvec_chip *nvec; struct nvec_msg *msg; struct resource *res; struct resource *iomem; void __iomem *base; nvec = kzalloc(sizeof(struct nvec_chip), GFP_KERNEL); if (nvec == NULL) { dev_err(&pdev->dev, "failed to reserve memory\n"); return -ENOMEM; } platform_set_drvdata(pdev, nvec); nvec->dev = &pdev->dev; if (pdata) { nvec->gpio = pdata->gpio; nvec->i2c_addr = pdata->i2c_addr; } else if (nvec->dev->of_node) { nvec->gpio = of_get_named_gpio(nvec->dev->of_node, "request-gpios", 0); if (nvec->gpio < 0) { dev_err(&pdev->dev, "no gpio specified"); goto failed; } if (of_property_read_u32(nvec->dev->of_node, "slave-addr", &nvec->i2c_addr)) { dev_err(&pdev->dev, "no i2c address specified"); goto failed; } } else { dev_err(&pdev->dev, "no platform data\n"); goto failed; } res = platform_get_resource(pdev, IORESOURCE_MEM, 0); if (!res) { dev_err(&pdev->dev, "no mem resource?\n"); return -ENODEV; } iomem = request_mem_region(res->start, resource_size(res), pdev->name); if (!iomem) { dev_err(&pdev->dev, "I2C region already claimed\n"); return -EBUSY; } base = ioremap(iomem->start, resource_size(iomem)); if (!base) { dev_err(&pdev->dev, "Can't ioremap I2C region\n"); return -ENOMEM; } res = platform_get_resource(pdev, IORESOURCE_IRQ, 0); if (!res) { dev_err(&pdev->dev, "no irq resource?\n"); ret = -ENODEV; goto err_iounmap; } i2c_clk = clk_get_sys("tegra-i2c.2", NULL); if (IS_ERR(i2c_clk)) { dev_err(nvec->dev, "failed to get controller clock\n"); goto err_iounmap; } nvec->base = base; nvec->irq = res->start; nvec->i2c_clk = i2c_clk; nvec->rx = &nvec->msg_pool[0]; /* Set the gpio to low when we've got something to say */ err = gpio_request(nvec->gpio, "nvec gpio"); if (err < 0) dev_err(nvec->dev, "couldn't request gpio\n"); ATOMIC_INIT_NOTIFIER_HEAD(&nvec->notifier_list); init_completion(&nvec->sync_write); init_completion(&nvec->ec_transfer); mutex_init(&nvec->sync_write_mutex); spin_lock_init(&nvec->tx_lock); spin_lock_init(&nvec->rx_lock); INIT_LIST_HEAD(&nvec->rx_data); INIT_LIST_HEAD(&nvec->tx_data); INIT_WORK(&nvec->rx_work, nvec_dispatch); INIT_WORK(&nvec->tx_work, nvec_request_master); nvec->wq = alloc_workqueue("nvec", WQ_NON_REENTRANT, 2); err = request_irq(nvec->irq, nvec_interrupt, 0, "nvec", nvec); if (err) { dev_err(nvec->dev, "couldn't request irq\n"); goto failed; } disable_irq(nvec->irq); tegra_init_i2c_slave(nvec); clk_enable(i2c_clk); gpio_direction_output(nvec->gpio, 1); gpio_set_value(nvec->gpio, 1); /* enable event reporting */ nvec_write_async(nvec, EC_ENABLE_EVENT_REPORTING, sizeof(EC_ENABLE_EVENT_REPORTING)); nvec->nvec_status_notifier.notifier_call = nvec_status_notifier; nvec_register_notifier(nvec, &nvec->nvec_status_notifier, 0); nvec_power_handle = nvec; pm_power_off = nvec_power_off; /* Get Firmware Version */ msg = nvec_write_sync(nvec, EC_GET_FIRMWARE_VERSION, sizeof(EC_GET_FIRMWARE_VERSION)); if (msg) { dev_warn(nvec->dev, "ec firmware version %02x.%02x.%02x / %02x\n", msg->data[4], msg->data[5], msg->data[6], msg->data[7]); nvec_msg_free(nvec, msg); } ret = mfd_add_devices(nvec->dev, -1, nvec_devices, ARRAY_SIZE(nvec_devices), base, 0); if (ret) dev_err(nvec->dev, "error adding subdevices\n"); /* unmute speakers? */ nvec_write_async(nvec, "\x0d\x10\x59\x95", 4); /* enable lid switch event */ nvec_write_async(nvec, "\x01\x01\x01\x00\x00\x02\x00", 7); /* enable power button event */ nvec_write_async(nvec, "\x01\x01\x01\x00\x00\x80\x00", 7); return 0; err_iounmap: iounmap(base); failed: kfree(nvec); return -ENOMEM; } static int __devexit tegra_nvec_remove(struct platform_device *pdev) { struct nvec_chip *nvec = platform_get_drvdata(pdev); nvec_write_async(nvec, EC_DISABLE_EVENT_REPORTING, 3); mfd_remove_devices(nvec->dev); free_irq(nvec->irq, &nvec_interrupt); iounmap(nvec->base); gpio_free(nvec->gpio); destroy_workqueue(nvec->wq); kfree(nvec); return 0; } #ifdef CONFIG_PM static int tegra_nvec_suspend(struct platform_device *pdev, pm_message_t state) { struct nvec_chip *nvec = platform_get_drvdata(pdev); struct nvec_msg *msg; dev_dbg(nvec->dev, "suspending\n"); /* keep these sync or you'll break suspend */ msg = nvec_write_sync(nvec, EC_DISABLE_EVENT_REPORTING, 3); nvec_msg_free(nvec, msg); msg = nvec_write_sync(nvec, "\x04\x02", 2); nvec_msg_free(nvec, msg); nvec_disable_i2c_slave(nvec); return 0; } static int tegra_nvec_resume(struct platform_device *pdev) { struct nvec_chip *nvec = platform_get_drvdata(pdev); dev_dbg(nvec->dev, "resuming\n"); tegra_init_i2c_slave(nvec); nvec_write_async(nvec, EC_ENABLE_EVENT_REPORTING, 3); return 0; } #else #define tegra_nvec_suspend NULL #define tegra_nvec_resume NULL #endif /* Match table for of_platform binding */ static const struct of_device_id nvidia_nvec_of_match[] __devinitconst = { { .compatible = "nvidia,nvec", }, {}, }; MODULE_DEVICE_TABLE(of, nvidia_nvec_of_match); static struct platform_driver nvec_device_driver = { .probe = tegra_nvec_probe, .remove = __devexit_p(tegra_nvec_remove), .suspend = tegra_nvec_suspend, .resume = tegra_nvec_resume, .driver = { .name = "nvec", .owner = THIS_MODULE, .of_match_table = nvidia_nvec_of_match, } }; static int __init tegra_nvec_init(void) { return platform_driver_register(&nvec_device_driver); } module_init(tegra_nvec_init); MODULE_ALIAS("platform:nvec"); MODULE_DESCRIPTION("NVIDIA compliant embedded controller interface"); MODULE_AUTHOR("Marc Dietrich "); MODULE_LICENSE("GPL");