/********************************************************************* * Author: Cavium Networks * * Contact: support@caviumnetworks.com * This file is part of the OCTEON SDK * * Copyright (c) 2003-2010 Cavium Networks * * This file is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License, Version 2, as * published by the Free Software Foundation. * * This file is distributed in the hope that it will be useful, but * AS-IS and WITHOUT ANY WARRANTY; without even the implied warranty * of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE, TITLE, or * NONINFRINGEMENT. See the GNU General Public License for more * details. * * You should have received a copy of the GNU General Public License * along with this file; if not, write to the Free Software * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA * or visit http://www.gnu.org/licenses/. * * This file may also be available under a different license from Cavium. * Contact Cavium Networks for more information *********************************************************************/ #include #include #include #include #include #include #include #include #include #ifdef CONFIG_XFRM #include #include #endif /* CONFIG_XFRM */ #include #include #include "ethernet-defines.h" #include "octeon-ethernet.h" #include "ethernet-tx.h" #include "ethernet-util.h" #include "cvmx-wqe.h" #include "cvmx-fau.h" #include "cvmx-pip.h" #include "cvmx-pko.h" #include "cvmx-helper.h" #include "cvmx-gmxx-defs.h" #define CVM_OCT_SKB_CB(skb) ((u64 *)((skb)->cb)) /* * You can define GET_SKBUFF_QOS() to override how the skbuff output * function determines which output queue is used. The default * implementation always uses the base queue for the port. If, for * example, you wanted to use the skb->priority fieid, define * GET_SKBUFF_QOS as: #define GET_SKBUFF_QOS(skb) ((skb)->priority) */ #ifndef GET_SKBUFF_QOS #define GET_SKBUFF_QOS(skb) 0 #endif static void cvm_oct_tx_do_cleanup(unsigned long arg); static DECLARE_TASKLET(cvm_oct_tx_cleanup_tasklet, cvm_oct_tx_do_cleanup, 0); /* Maximum number of SKBs to try to free per xmit packet. */ #define MAX_SKB_TO_FREE (MAX_OUT_QUEUE_DEPTH * 2) static inline int32_t cvm_oct_adjust_skb_to_free(int32_t skb_to_free, int fau) { int32_t undo; undo = skb_to_free > 0 ? MAX_SKB_TO_FREE : skb_to_free + MAX_SKB_TO_FREE; if (undo > 0) cvmx_fau_atomic_add32(fau, -undo); skb_to_free = -skb_to_free > MAX_SKB_TO_FREE ? MAX_SKB_TO_FREE : -skb_to_free; return skb_to_free; } static void cvm_oct_kick_tx_poll_watchdog(void) { union cvmx_ciu_timx ciu_timx; ciu_timx.u64 = 0; ciu_timx.s.one_shot = 1; ciu_timx.s.len = cvm_oct_tx_poll_interval; cvmx_write_csr(CVMX_CIU_TIMX(1), ciu_timx.u64); } void cvm_oct_free_tx_skbs(struct net_device *dev) { int32_t skb_to_free; int qos, queues_per_port; int total_freed = 0; int total_remaining = 0; unsigned long flags; struct octeon_ethernet *priv = netdev_priv(dev); queues_per_port = cvmx_pko_get_num_queues(priv->port); /* Drain any pending packets in the free list */ for (qos = 0; qos < queues_per_port; qos++) { if (skb_queue_len(&priv->tx_free_list[qos]) == 0) continue; skb_to_free = cvmx_fau_fetch_and_add32(priv->fau+qos*4, MAX_SKB_TO_FREE); skb_to_free = cvm_oct_adjust_skb_to_free(skb_to_free, priv->fau+qos*4); total_freed += skb_to_free; if (skb_to_free > 0) { struct sk_buff *to_free_list = NULL; spin_lock_irqsave(&priv->tx_free_list[qos].lock, flags); while (skb_to_free > 0) { struct sk_buff *t = __skb_dequeue(&priv->tx_free_list[qos]); t->next = to_free_list; to_free_list = t; skb_to_free--; } spin_unlock_irqrestore(&priv->tx_free_list[qos].lock, flags); /* Do the actual freeing outside of the lock. */ while (to_free_list) { struct sk_buff *t = to_free_list; to_free_list = to_free_list->next; dev_kfree_skb_any(t); } } total_remaining += skb_queue_len(&priv->tx_free_list[qos]); } if (total_freed >= 0 && netif_queue_stopped(dev)) netif_wake_queue(dev); if (total_remaining) cvm_oct_kick_tx_poll_watchdog(); } /** * cvm_oct_xmit - transmit a packet * @skb: Packet to send * @dev: Device info structure * * Returns Always returns NETDEV_TX_OK */ int cvm_oct_xmit(struct sk_buff *skb, struct net_device *dev) { cvmx_pko_command_word0_t pko_command; union cvmx_buf_ptr hw_buffer; uint64_t old_scratch; uint64_t old_scratch2; int qos; int i; enum {QUEUE_CORE, QUEUE_HW, QUEUE_DROP} queue_type; struct octeon_ethernet *priv = netdev_priv(dev); struct sk_buff *to_free_list; int32_t skb_to_free; int32_t buffers_to_free; u32 total_to_clean; unsigned long flags; #if REUSE_SKBUFFS_WITHOUT_FREE unsigned char *fpa_head; #endif /* * Prefetch the private data structure. It is larger that one * cache line. */ prefetch(priv); /* * The check on CVMX_PKO_QUEUES_PER_PORT_* is designed to * completely remove "qos" in the event neither interface * supports multiple queues per port. */ if ((CVMX_PKO_QUEUES_PER_PORT_INTERFACE0 > 1) || (CVMX_PKO_QUEUES_PER_PORT_INTERFACE1 > 1)) { qos = GET_SKBUFF_QOS(skb); if (qos <= 0) qos = 0; else if (qos >= cvmx_pko_get_num_queues(priv->port)) qos = 0; } else qos = 0; if (USE_ASYNC_IOBDMA) { /* Save scratch in case userspace is using it */ CVMX_SYNCIOBDMA; old_scratch = cvmx_scratch_read64(CVMX_SCR_SCRATCH); old_scratch2 = cvmx_scratch_read64(CVMX_SCR_SCRATCH + 8); /* * Fetch and increment the number of packets to be * freed. */ cvmx_fau_async_fetch_and_add32(CVMX_SCR_SCRATCH + 8, FAU_NUM_PACKET_BUFFERS_TO_FREE, 0); cvmx_fau_async_fetch_and_add32(CVMX_SCR_SCRATCH, priv->fau + qos * 4, MAX_SKB_TO_FREE); } /* * We have space for 6 segment pointers, If there will be more * than that, we must linearize. */ if (unlikely(skb_shinfo(skb)->nr_frags > 5)) { if (unlikely(__skb_linearize(skb))) { queue_type = QUEUE_DROP; if (USE_ASYNC_IOBDMA) { /* Get the number of skbuffs in use by the hardware */ CVMX_SYNCIOBDMA; skb_to_free = cvmx_scratch_read64(CVMX_SCR_SCRATCH); } else { /* Get the number of skbuffs in use by the hardware */ skb_to_free = cvmx_fau_fetch_and_add32(priv->fau + qos * 4, MAX_SKB_TO_FREE); } skb_to_free = cvm_oct_adjust_skb_to_free(skb_to_free, priv->fau + qos * 4); spin_lock_irqsave(&priv->tx_free_list[qos].lock, flags); goto skip_xmit; } } /* * The CN3XXX series of parts has an errata (GMX-401) which * causes the GMX block to hang if a collision occurs towards * the end of a <68 byte packet. As a workaround for this, we * pad packets to be 68 bytes whenever we are in half duplex * mode. We don't handle the case of having a small packet but * no room to add the padding. The kernel should always give * us at least a cache line */ if ((skb->len < 64) && OCTEON_IS_MODEL(OCTEON_CN3XXX)) { union cvmx_gmxx_prtx_cfg gmx_prt_cfg; int interface = INTERFACE(priv->port); int index = INDEX(priv->port); if (interface < 2) { /* We only need to pad packet in half duplex mode */ gmx_prt_cfg.u64 = cvmx_read_csr(CVMX_GMXX_PRTX_CFG(index, interface)); if (gmx_prt_cfg.s.duplex == 0) { int add_bytes = 64 - skb->len; if ((skb_tail_pointer(skb) + add_bytes) <= skb_end_pointer(skb)) memset(__skb_put(skb, add_bytes), 0, add_bytes); } } } /* Build the PKO command */ pko_command.u64 = 0; pko_command.s.n2 = 1; /* Don't pollute L2 with the outgoing packet */ pko_command.s.segs = 1; pko_command.s.total_bytes = skb->len; pko_command.s.size0 = CVMX_FAU_OP_SIZE_32; pko_command.s.subone0 = 1; pko_command.s.dontfree = 1; /* Build the PKO buffer pointer */ hw_buffer.u64 = 0; if (skb_shinfo(skb)->nr_frags == 0) { hw_buffer.s.addr = XKPHYS_TO_PHYS((u64)skb->data); hw_buffer.s.pool = 0; hw_buffer.s.size = skb->len; } else { hw_buffer.s.addr = XKPHYS_TO_PHYS((u64)skb->data); hw_buffer.s.pool = 0; hw_buffer.s.size = skb_headlen(skb); CVM_OCT_SKB_CB(skb)[0] = hw_buffer.u64; for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { struct skb_frag_struct *fs = skb_shinfo(skb)->frags + i; hw_buffer.s.addr = XKPHYS_TO_PHYS((u64)(page_address(fs->page.p) + fs->page_offset)); hw_buffer.s.size = fs->size; CVM_OCT_SKB_CB(skb)[i + 1] = hw_buffer.u64; } hw_buffer.s.addr = XKPHYS_TO_PHYS((u64)CVM_OCT_SKB_CB(skb)); hw_buffer.s.size = skb_shinfo(skb)->nr_frags + 1; pko_command.s.segs = skb_shinfo(skb)->nr_frags + 1; pko_command.s.gather = 1; goto dont_put_skbuff_in_hw; } /* * See if we can put this skb in the FPA pool. Any strange * behavior from the Linux networking stack will most likely * be caused by a bug in the following code. If some field is * in use by the network stack and get carried over when a * buffer is reused, bad thing may happen. If in doubt and * you dont need the absolute best performance, disable the * define REUSE_SKBUFFS_WITHOUT_FREE. The reuse of buffers has * shown a 25% increase in performance under some loads. */ #if REUSE_SKBUFFS_WITHOUT_FREE fpa_head = skb->head + 256 - ((unsigned long)skb->head & 0x7f); if (unlikely(skb->data < fpa_head)) { /* * printk("TX buffer beginning can't meet FPA * alignment constraints\n"); */ goto dont_put_skbuff_in_hw; } if (unlikely ((skb_end_pointer(skb) - fpa_head) < CVMX_FPA_PACKET_POOL_SIZE)) { /* printk("TX buffer isn't large enough for the FPA\n"); */ goto dont_put_skbuff_in_hw; } if (unlikely(skb_shared(skb))) { /* printk("TX buffer sharing data with someone else\n"); */ goto dont_put_skbuff_in_hw; } if (unlikely(skb_cloned(skb))) { /* printk("TX buffer has been cloned\n"); */ goto dont_put_skbuff_in_hw; } if (unlikely(skb_header_cloned(skb))) { /* printk("TX buffer header has been cloned\n"); */ goto dont_put_skbuff_in_hw; } if (unlikely(skb->destructor)) { /* printk("TX buffer has a destructor\n"); */ goto dont_put_skbuff_in_hw; } if (unlikely(skb_shinfo(skb)->nr_frags)) { /* printk("TX buffer has fragments\n"); */ goto dont_put_skbuff_in_hw; } if (unlikely (skb->truesize != sizeof(*skb) + skb_end_pointer(skb) - skb->head)) { /* printk("TX buffer truesize has been changed\n"); */ goto dont_put_skbuff_in_hw; } /* * We can use this buffer in the FPA. We don't need the FAU * update anymore */ pko_command.s.dontfree = 0; hw_buffer.s.back = ((unsigned long)skb->data >> 7) - ((unsigned long)fpa_head >> 7); *(struct sk_buff **)(fpa_head - sizeof(void *)) = skb; /* * The skbuff will be reused without ever being freed. We must * cleanup a bunch of core things. */ dst_release(skb_dst(skb)); skb_dst_set(skb, NULL); #ifdef CONFIG_XFRM secpath_put(skb->sp); skb->sp = NULL; #endif nf_reset(skb); #ifdef CONFIG_NET_SCHED skb->tc_index = 0; #ifdef CONFIG_NET_CLS_ACT skb->tc_verd = 0; #endif /* CONFIG_NET_CLS_ACT */ #endif /* CONFIG_NET_SCHED */ #endif /* REUSE_SKBUFFS_WITHOUT_FREE */ dont_put_skbuff_in_hw: /* Check if we can use the hardware checksumming */ if (USE_HW_TCPUDP_CHECKSUM && (skb->protocol == htons(ETH_P_IP)) && (ip_hdr(skb)->version == 4) && (ip_hdr(skb)->ihl == 5) && ((ip_hdr(skb)->frag_off == 0) || (ip_hdr(skb)->frag_off == 1 << 14)) && ((ip_hdr(skb)->protocol == IPPROTO_TCP) || (ip_hdr(skb)->protocol == IPPROTO_UDP))) { /* Use hardware checksum calc */ pko_command.s.ipoffp1 = sizeof(struct ethhdr) + 1; } if (USE_ASYNC_IOBDMA) { /* Get the number of skbuffs in use by the hardware */ CVMX_SYNCIOBDMA; skb_to_free = cvmx_scratch_read64(CVMX_SCR_SCRATCH); buffers_to_free = cvmx_scratch_read64(CVMX_SCR_SCRATCH + 8); } else { /* Get the number of skbuffs in use by the hardware */ skb_to_free = cvmx_fau_fetch_and_add32(priv->fau + qos * 4, MAX_SKB_TO_FREE); buffers_to_free = cvmx_fau_fetch_and_add32(FAU_NUM_PACKET_BUFFERS_TO_FREE, 0); } skb_to_free = cvm_oct_adjust_skb_to_free(skb_to_free, priv->fau+qos*4); /* * If we're sending faster than the receive can free them then * don't do the HW free. */ if ((buffers_to_free < -100) && !pko_command.s.dontfree) pko_command.s.dontfree = 1; if (pko_command.s.dontfree) { queue_type = QUEUE_CORE; pko_command.s.reg0 = priv->fau+qos*4; } else { queue_type = QUEUE_HW; } if (USE_ASYNC_IOBDMA) cvmx_fau_async_fetch_and_add32(CVMX_SCR_SCRATCH, FAU_TOTAL_TX_TO_CLEAN, 1); spin_lock_irqsave(&priv->tx_free_list[qos].lock, flags); /* Drop this packet if we have too many already queued to the HW */ if (unlikely(skb_queue_len(&priv->tx_free_list[qos]) >= MAX_OUT_QUEUE_DEPTH)) { if (dev->tx_queue_len != 0) { /* Drop the lock when notifying the core. */ spin_unlock_irqrestore(&priv->tx_free_list[qos].lock, flags); netif_stop_queue(dev); spin_lock_irqsave(&priv->tx_free_list[qos].lock, flags); } else { /* If not using normal queueing. */ queue_type = QUEUE_DROP; goto skip_xmit; } } cvmx_pko_send_packet_prepare(priv->port, priv->queue + qos, CVMX_PKO_LOCK_NONE); /* Send the packet to the output queue */ if (unlikely(cvmx_pko_send_packet_finish(priv->port, priv->queue + qos, pko_command, hw_buffer, CVMX_PKO_LOCK_NONE))) { printk_ratelimited("%s: Failed to send the packet\n", dev->name); queue_type = QUEUE_DROP; } skip_xmit: to_free_list = NULL; switch (queue_type) { case QUEUE_DROP: skb->next = to_free_list; to_free_list = skb; priv->stats.tx_dropped++; break; case QUEUE_HW: cvmx_fau_atomic_add32(FAU_NUM_PACKET_BUFFERS_TO_FREE, -1); break; case QUEUE_CORE: __skb_queue_tail(&priv->tx_free_list[qos], skb); break; default: BUG(); } while (skb_to_free > 0) { struct sk_buff *t = __skb_dequeue(&priv->tx_free_list[qos]); t->next = to_free_list; to_free_list = t; skb_to_free--; } spin_unlock_irqrestore(&priv->tx_free_list[qos].lock, flags); /* Do the actual freeing outside of the lock. */ while (to_free_list) { struct sk_buff *t = to_free_list; to_free_list = to_free_list->next; dev_kfree_skb_any(t); } if (USE_ASYNC_IOBDMA) { CVMX_SYNCIOBDMA; total_to_clean = cvmx_scratch_read64(CVMX_SCR_SCRATCH); /* Restore the scratch area */ cvmx_scratch_write64(CVMX_SCR_SCRATCH, old_scratch); cvmx_scratch_write64(CVMX_SCR_SCRATCH + 8, old_scratch2); } else { total_to_clean = cvmx_fau_fetch_and_add32(FAU_TOTAL_TX_TO_CLEAN, 1); } if (total_to_clean & 0x3ff) { /* * Schedule the cleanup tasklet every 1024 packets for * the pathological case of high traffic on one port * delaying clean up of packets on a different port * that is blocked waiting for the cleanup. */ tasklet_schedule(&cvm_oct_tx_cleanup_tasklet); } cvm_oct_kick_tx_poll_watchdog(); return NETDEV_TX_OK; } /** * cvm_oct_xmit_pow - transmit a packet to the POW * @skb: Packet to send * @dev: Device info structure * Returns Always returns zero */ int cvm_oct_xmit_pow(struct sk_buff *skb, struct net_device *dev) { struct octeon_ethernet *priv = netdev_priv(dev); void *packet_buffer; void *copy_location; /* Get a work queue entry */ cvmx_wqe_t *work = cvmx_fpa_alloc(CVMX_FPA_WQE_POOL); if (unlikely(work == NULL)) { printk_ratelimited("%s: Failed to allocate a work " "queue entry\n", dev->name); priv->stats.tx_dropped++; dev_kfree_skb(skb); return 0; } /* Get a packet buffer */ packet_buffer = cvmx_fpa_alloc(CVMX_FPA_PACKET_POOL); if (unlikely(packet_buffer == NULL)) { printk_ratelimited("%s: Failed to allocate a packet buffer\n", dev->name); cvmx_fpa_free(work, CVMX_FPA_WQE_POOL, DONT_WRITEBACK(1)); priv->stats.tx_dropped++; dev_kfree_skb(skb); return 0; } /* * Calculate where we need to copy the data to. We need to * leave 8 bytes for a next pointer (unused). We also need to * include any configure skip. Then we need to align the IP * packet src and dest into the same 64bit word. The below * calculation may add a little extra, but that doesn't * hurt. */ copy_location = packet_buffer + sizeof(uint64_t); copy_location += ((CVMX_HELPER_FIRST_MBUFF_SKIP + 7) & 0xfff8) + 6; /* * We have to copy the packet since whoever processes this * packet will free it to a hardware pool. We can't use the * trick of counting outstanding packets like in * cvm_oct_xmit. */ memcpy(copy_location, skb->data, skb->len); /* * Fill in some of the work queue fields. We may need to add * more if the software at the other end needs them. */ work->hw_chksum = skb->csum; work->len = skb->len; work->ipprt = priv->port; work->qos = priv->port & 0x7; work->grp = pow_send_group; work->tag_type = CVMX_HELPER_INPUT_TAG_TYPE; work->tag = pow_send_group; /* FIXME */ /* Default to zero. Sets of zero later are commented out */ work->word2.u64 = 0; work->word2.s.bufs = 1; work->packet_ptr.u64 = 0; work->packet_ptr.s.addr = cvmx_ptr_to_phys(copy_location); work->packet_ptr.s.pool = CVMX_FPA_PACKET_POOL; work->packet_ptr.s.size = CVMX_FPA_PACKET_POOL_SIZE; work->packet_ptr.s.back = (copy_location - packet_buffer) >> 7; if (skb->protocol == htons(ETH_P_IP)) { work->word2.s.ip_offset = 14; #if 0 work->word2.s.vlan_valid = 0; /* FIXME */ work->word2.s.vlan_cfi = 0; /* FIXME */ work->word2.s.vlan_id = 0; /* FIXME */ work->word2.s.dec_ipcomp = 0; /* FIXME */ #endif work->word2.s.tcp_or_udp = (ip_hdr(skb)->protocol == IPPROTO_TCP) || (ip_hdr(skb)->protocol == IPPROTO_UDP); #if 0 /* FIXME */ work->word2.s.dec_ipsec = 0; /* We only support IPv4 right now */ work->word2.s.is_v6 = 0; /* Hardware would set to zero */ work->word2.s.software = 0; /* No error, packet is internal */ work->word2.s.L4_error = 0; #endif work->word2.s.is_frag = !((ip_hdr(skb)->frag_off == 0) || (ip_hdr(skb)->frag_off == 1 << 14)); #if 0 /* Assume Linux is sending a good packet */ work->word2.s.IP_exc = 0; #endif work->word2.s.is_bcast = (skb->pkt_type == PACKET_BROADCAST); work->word2.s.is_mcast = (skb->pkt_type == PACKET_MULTICAST); #if 0 /* This is an IP packet */ work->word2.s.not_IP = 0; /* No error, packet is internal */ work->word2.s.rcv_error = 0; /* No error, packet is internal */ work->word2.s.err_code = 0; #endif /* * When copying the data, include 4 bytes of the * ethernet header to align the same way hardware * does. */ memcpy(work->packet_data, skb->data + 10, sizeof(work->packet_data)); } else { #if 0 work->word2.snoip.vlan_valid = 0; /* FIXME */ work->word2.snoip.vlan_cfi = 0; /* FIXME */ work->word2.snoip.vlan_id = 0; /* FIXME */ work->word2.snoip.software = 0; /* Hardware would set to zero */ #endif work->word2.snoip.is_rarp = skb->protocol == htons(ETH_P_RARP); work->word2.snoip.is_arp = skb->protocol == htons(ETH_P_ARP); work->word2.snoip.is_bcast = (skb->pkt_type == PACKET_BROADCAST); work->word2.snoip.is_mcast = (skb->pkt_type == PACKET_MULTICAST); work->word2.snoip.not_IP = 1; /* IP was done up above */ #if 0 /* No error, packet is internal */ work->word2.snoip.rcv_error = 0; /* No error, packet is internal */ work->word2.snoip.err_code = 0; #endif memcpy(work->packet_data, skb->data, sizeof(work->packet_data)); } /* Submit the packet to the POW */ cvmx_pow_work_submit(work, work->tag, work->tag_type, work->qos, work->grp); priv->stats.tx_packets++; priv->stats.tx_bytes += skb->len; dev_kfree_skb(skb); return 0; } /** * cvm_oct_tx_shutdown_dev - free all skb that are currently queued for TX. * @dev: Device being shutdown * */ void cvm_oct_tx_shutdown_dev(struct net_device *dev) { struct octeon_ethernet *priv = netdev_priv(dev); unsigned long flags; int qos; for (qos = 0; qos < 16; qos++) { spin_lock_irqsave(&priv->tx_free_list[qos].lock, flags); while (skb_queue_len(&priv->tx_free_list[qos])) dev_kfree_skb_any(__skb_dequeue (&priv->tx_free_list[qos])); spin_unlock_irqrestore(&priv->tx_free_list[qos].lock, flags); } } static void cvm_oct_tx_do_cleanup(unsigned long arg) { int port; for (port = 0; port < TOTAL_NUMBER_OF_PORTS; port++) { if (cvm_oct_device[port]) { struct net_device *dev = cvm_oct_device[port]; cvm_oct_free_tx_skbs(dev); } } } static irqreturn_t cvm_oct_tx_cleanup_watchdog(int cpl, void *dev_id) { /* Disable the interrupt. */ cvmx_write_csr(CVMX_CIU_TIMX(1), 0); /* Do the work in the tasklet. */ tasklet_schedule(&cvm_oct_tx_cleanup_tasklet); return IRQ_HANDLED; } void cvm_oct_tx_initialize(void) { int i; /* Disable the interrupt. */ cvmx_write_csr(CVMX_CIU_TIMX(1), 0); /* Register an IRQ hander for to receive CIU_TIMX(1) interrupts */ i = request_irq(OCTEON_IRQ_TIMER1, cvm_oct_tx_cleanup_watchdog, 0, "Ethernet", cvm_oct_device); if (i) panic("Could not acquire Ethernet IRQ %d\n", OCTEON_IRQ_TIMER1); } void cvm_oct_tx_shutdown(void) { /* Free the interrupt handler */ free_irq(OCTEON_IRQ_TIMER1, cvm_oct_device); }