/****************************************************************************** * Copyright(c) 2008 - 2010 Realtek Corporation. All rights reserved. * * This program is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for * more details. * * You should have received a copy of the GNU General Public License along with * this program; if not, write to the Free Software Foundation, Inc., * 51 Franklin Street, Fifth Floor, Boston, MA 02110, USA * * The full GNU General Public License is included in this distribution in the * file called LICENSE. * * Contact Information: * wlanfae ******************************************************************************/ #include "rtl_core.h" #include "r8192E_hw.h" #include "r8192E_phyreg.h" #include "r8190P_rtl8256.h" #include "r8192E_phy.h" #include "rtl_dm.h" #include "r8192E_hwimg.h" static u32 RF_CHANNEL_TABLE_ZEBRA[] = { 0, 0x085c, 0x08dc, 0x095c, 0x09dc, 0x0a5c, 0x0adc, 0x0b5c, 0x0bdc, 0x0c5c, 0x0cdc, 0x0d5c, 0x0ddc, 0x0e5c, 0x0f72, }; /*************************Define local function prototype**********************/ static u32 phy_FwRFSerialRead(struct net_device *dev, enum rf90_radio_path eRFPath, u32 Offset); static void phy_FwRFSerialWrite(struct net_device *dev, enum rf90_radio_path eRFPath, u32 Offset, u32 Data); static u32 rtl8192_CalculateBitShift(u32 dwBitMask) { u32 i; for (i = 0; i <= 31; i++) { if (((dwBitMask >> i) & 0x1) == 1) break; } return i; } u8 rtl8192_phy_CheckIsLegalRFPath(struct net_device *dev, u32 eRFPath) { u8 ret = 1; struct r8192_priv *priv = rtllib_priv(dev); if (priv->rf_type == RF_2T4R) ret = 0; else if (priv->rf_type == RF_1T2R) { if (eRFPath == RF90_PATH_A || eRFPath == RF90_PATH_B) ret = 1; else if (eRFPath == RF90_PATH_C || eRFPath == RF90_PATH_D) ret = 0; } return ret; } void rtl8192_setBBreg(struct net_device *dev, u32 dwRegAddr, u32 dwBitMask, u32 dwData) { u32 OriginalValue, BitShift, NewValue; if (dwBitMask != bMaskDWord) { OriginalValue = read_nic_dword(dev, dwRegAddr); BitShift = rtl8192_CalculateBitShift(dwBitMask); NewValue = (((OriginalValue) & (~dwBitMask)) | (dwData << BitShift)); write_nic_dword(dev, dwRegAddr, NewValue); } else write_nic_dword(dev, dwRegAddr, dwData); return; } u32 rtl8192_QueryBBReg(struct net_device *dev, u32 dwRegAddr, u32 dwBitMask) { u32 Ret = 0, OriginalValue, BitShift; OriginalValue = read_nic_dword(dev, dwRegAddr); BitShift = rtl8192_CalculateBitShift(dwBitMask); Ret = (OriginalValue & dwBitMask) >> BitShift; return Ret; } static u32 rtl8192_phy_RFSerialRead(struct net_device *dev, enum rf90_radio_path eRFPath, u32 Offset) { struct r8192_priv *priv = rtllib_priv(dev); u32 ret = 0; u32 NewOffset = 0; struct bb_reg_definition *pPhyReg = &priv->PHYRegDef[eRFPath]; Offset &= 0x3f; if (priv->rf_chip == RF_8256) { rtl8192_setBBreg(dev, rFPGA0_AnalogParameter4, 0xf00, 0x0); if (Offset >= 31) { priv->RfReg0Value[eRFPath] |= 0x140; rtl8192_setBBreg(dev, pPhyReg->rf3wireOffset, bMaskDWord, (priv->RfReg0Value[eRFPath]<<16)); NewOffset = Offset - 30; } else if (Offset >= 16) { priv->RfReg0Value[eRFPath] |= 0x100; priv->RfReg0Value[eRFPath] &= (~0x40); rtl8192_setBBreg(dev, pPhyReg->rf3wireOffset, bMaskDWord, (priv->RfReg0Value[eRFPath]<<16)); NewOffset = Offset - 15; } else NewOffset = Offset; } else { RT_TRACE((COMP_PHY|COMP_ERR), "check RF type here, need" " to be 8256\n"); NewOffset = Offset; } rtl8192_setBBreg(dev, pPhyReg->rfHSSIPara2, bLSSIReadAddress, NewOffset); rtl8192_setBBreg(dev, pPhyReg->rfHSSIPara2, bLSSIReadEdge, 0x0); rtl8192_setBBreg(dev, pPhyReg->rfHSSIPara2, bLSSIReadEdge, 0x1); mdelay(1); ret = rtl8192_QueryBBReg(dev, pPhyReg->rfLSSIReadBack, bLSSIReadBackData); if (priv->rf_chip == RF_8256) { priv->RfReg0Value[eRFPath] &= 0xebf; rtl8192_setBBreg(dev, pPhyReg->rf3wireOffset, bMaskDWord, (priv->RfReg0Value[eRFPath] << 16)); rtl8192_setBBreg(dev, rFPGA0_AnalogParameter4, 0x300, 0x3); } return ret; } static void rtl8192_phy_RFSerialWrite(struct net_device *dev, enum rf90_radio_path eRFPath, u32 Offset, u32 Data) { struct r8192_priv *priv = rtllib_priv(dev); u32 DataAndAddr = 0, NewOffset = 0; struct bb_reg_definition *pPhyReg = &priv->PHYRegDef[eRFPath]; Offset &= 0x3f; if (priv->rf_chip == RF_8256) { rtl8192_setBBreg(dev, rFPGA0_AnalogParameter4, 0xf00, 0x0); if (Offset >= 31) { priv->RfReg0Value[eRFPath] |= 0x140; rtl8192_setBBreg(dev, pPhyReg->rf3wireOffset, bMaskDWord, (priv->RfReg0Value[eRFPath] << 16)); NewOffset = Offset - 30; } else if (Offset >= 16) { priv->RfReg0Value[eRFPath] |= 0x100; priv->RfReg0Value[eRFPath] &= (~0x40); rtl8192_setBBreg(dev, pPhyReg->rf3wireOffset, bMaskDWord, (priv->RfReg0Value[eRFPath] << 16)); NewOffset = Offset - 15; } else NewOffset = Offset; } else { RT_TRACE((COMP_PHY|COMP_ERR), "check RF type here, need to be" " 8256\n"); NewOffset = Offset; } DataAndAddr = (Data<<16) | (NewOffset&0x3f); rtl8192_setBBreg(dev, pPhyReg->rf3wireOffset, bMaskDWord, DataAndAddr); if (Offset == 0x0) priv->RfReg0Value[eRFPath] = Data; if (priv->rf_chip == RF_8256) { if (Offset != 0) { priv->RfReg0Value[eRFPath] &= 0xebf; rtl8192_setBBreg( dev, pPhyReg->rf3wireOffset, bMaskDWord, (priv->RfReg0Value[eRFPath] << 16)); } rtl8192_setBBreg(dev, rFPGA0_AnalogParameter4, 0x300, 0x3); } return; } void rtl8192_phy_SetRFReg(struct net_device *dev, enum rf90_radio_path eRFPath, u32 RegAddr, u32 BitMask, u32 Data) { struct r8192_priv *priv = rtllib_priv(dev); u32 Original_Value, BitShift, New_Value; if (!rtl8192_phy_CheckIsLegalRFPath(dev, eRFPath)) return; if (priv->rtllib->eRFPowerState != eRfOn && !priv->being_init_adapter) return; RT_TRACE(COMP_PHY, "FW RF CTRL is not ready now\n"); if (priv->Rf_Mode == RF_OP_By_FW) { if (BitMask != bMask12Bits) { Original_Value = phy_FwRFSerialRead(dev, eRFPath, RegAddr); BitShift = rtl8192_CalculateBitShift(BitMask); New_Value = (((Original_Value) & (~BitMask)) | (Data << BitShift)); phy_FwRFSerialWrite(dev, eRFPath, RegAddr, New_Value); } else phy_FwRFSerialWrite(dev, eRFPath, RegAddr, Data); udelay(200); } else { if (BitMask != bMask12Bits) { Original_Value = rtl8192_phy_RFSerialRead(dev, eRFPath, RegAddr); BitShift = rtl8192_CalculateBitShift(BitMask); New_Value = (((Original_Value) & (~BitMask)) | (Data << BitShift)); rtl8192_phy_RFSerialWrite(dev, eRFPath, RegAddr, New_Value); } else rtl8192_phy_RFSerialWrite(dev, eRFPath, RegAddr, Data); } return; } u32 rtl8192_phy_QueryRFReg(struct net_device *dev, enum rf90_radio_path eRFPath, u32 RegAddr, u32 BitMask) { u32 Original_Value, Readback_Value, BitShift; struct r8192_priv *priv = rtllib_priv(dev); if (!rtl8192_phy_CheckIsLegalRFPath(dev, eRFPath)) return 0; if (priv->rtllib->eRFPowerState != eRfOn && !priv->being_init_adapter) return 0; down(&priv->rf_sem); if (priv->Rf_Mode == RF_OP_By_FW) { Original_Value = phy_FwRFSerialRead(dev, eRFPath, RegAddr); udelay(200); } else { Original_Value = rtl8192_phy_RFSerialRead(dev, eRFPath, RegAddr); } BitShift = rtl8192_CalculateBitShift(BitMask); Readback_Value = (Original_Value & BitMask) >> BitShift; up(&priv->rf_sem); return Readback_Value; } static u32 phy_FwRFSerialRead(struct net_device *dev, enum rf90_radio_path eRFPath, u32 Offset) { u32 retValue = 0; u32 Data = 0; u8 time = 0; Data |= ((Offset & 0xFF) << 12); Data |= ((eRFPath & 0x3) << 20); Data |= 0x80000000; while (read_nic_dword(dev, QPNR)&0x80000000) { if (time++ < 100) udelay(10); else break; } write_nic_dword(dev, QPNR, Data); while (read_nic_dword(dev, QPNR) & 0x80000000) { if (time++ < 100) udelay(10); else return 0; } retValue = read_nic_dword(dev, RF_DATA); return retValue; } /* phy_FwRFSerialRead */ static void phy_FwRFSerialWrite(struct net_device *dev, enum rf90_radio_path eRFPath, u32 Offset, u32 Data) { u8 time = 0; Data |= ((Offset & 0xFF) << 12); Data |= ((eRFPath & 0x3) << 20); Data |= 0x400000; Data |= 0x80000000; while (read_nic_dword(dev, QPNR) & 0x80000000) { if (time++ < 100) udelay(10); else break; } write_nic_dword(dev, QPNR, Data); } /* phy_FwRFSerialWrite */ void rtl8192_phy_configmac(struct net_device *dev) { u32 dwArrayLen = 0, i = 0; u32 *pdwArray = NULL; struct r8192_priv *priv = rtllib_priv(dev); if (priv->bTXPowerDataReadFromEEPORM) { RT_TRACE(COMP_PHY, "Rtl819XMACPHY_Array_PG\n"); dwArrayLen = MACPHY_Array_PGLength; pdwArray = Rtl819XMACPHY_Array_PG; } else { RT_TRACE(COMP_PHY, "Read rtl819XMACPHY_Array\n"); dwArrayLen = MACPHY_ArrayLength; pdwArray = Rtl819XMACPHY_Array; } for (i = 0; i < dwArrayLen; i += 3) { RT_TRACE(COMP_DBG, "The Rtl8190MACPHY_Array[0] is %x Rtl8190MAC" "PHY_Array[1] is %x Rtl8190MACPHY_Array[2] is %x\n", pdwArray[i], pdwArray[i+1], pdwArray[i+2]); if (pdwArray[i] == 0x318) pdwArray[i+2] = 0x00000800; rtl8192_setBBreg(dev, pdwArray[i], pdwArray[i+1], pdwArray[i+2]); } return; } void rtl8192_phyConfigBB(struct net_device *dev, u8 ConfigType) { int i; u32 *Rtl819XPHY_REGArray_Table = NULL; u32 *Rtl819XAGCTAB_Array_Table = NULL; u16 AGCTAB_ArrayLen, PHY_REGArrayLen = 0; struct r8192_priv *priv = rtllib_priv(dev); AGCTAB_ArrayLen = AGCTAB_ArrayLength; Rtl819XAGCTAB_Array_Table = Rtl819XAGCTAB_Array; if (priv->rf_type == RF_2T4R) { PHY_REGArrayLen = PHY_REGArrayLength; Rtl819XPHY_REGArray_Table = Rtl819XPHY_REGArray; } else if (priv->rf_type == RF_1T2R) { PHY_REGArrayLen = PHY_REG_1T2RArrayLength; Rtl819XPHY_REGArray_Table = Rtl819XPHY_REG_1T2RArray; } if (ConfigType == BaseBand_Config_PHY_REG) { for (i = 0; i < PHY_REGArrayLen; i += 2) { rtl8192_setBBreg(dev, Rtl819XPHY_REGArray_Table[i], bMaskDWord, Rtl819XPHY_REGArray_Table[i+1]); RT_TRACE(COMP_DBG, "i: %x, The Rtl819xUsbPHY_REGArray" "[0] is %x Rtl819xUsbPHY_REGArray[1] is %x\n", i, Rtl819XPHY_REGArray_Table[i], Rtl819XPHY_REGArray_Table[i+1]); } } else if (ConfigType == BaseBand_Config_AGC_TAB) { for (i = 0; i < AGCTAB_ArrayLen; i += 2) { rtl8192_setBBreg(dev, Rtl819XAGCTAB_Array_Table[i], bMaskDWord, Rtl819XAGCTAB_Array_Table[i+1]); RT_TRACE(COMP_DBG, "i:%x, The rtl819XAGCTAB_Array[0] " "is %x rtl819XAGCTAB_Array[1] is %x\n", i, Rtl819XAGCTAB_Array_Table[i], Rtl819XAGCTAB_Array_Table[i+1]); } } return; } static void rtl8192_InitBBRFRegDef(struct net_device *dev) { struct r8192_priv *priv = rtllib_priv(dev); priv->PHYRegDef[RF90_PATH_A].rfintfs = rFPGA0_XAB_RFInterfaceSW; priv->PHYRegDef[RF90_PATH_B].rfintfs = rFPGA0_XAB_RFInterfaceSW; priv->PHYRegDef[RF90_PATH_C].rfintfs = rFPGA0_XCD_RFInterfaceSW; priv->PHYRegDef[RF90_PATH_D].rfintfs = rFPGA0_XCD_RFInterfaceSW; priv->PHYRegDef[RF90_PATH_A].rfintfi = rFPGA0_XAB_RFInterfaceRB; priv->PHYRegDef[RF90_PATH_B].rfintfi = rFPGA0_XAB_RFInterfaceRB; priv->PHYRegDef[RF90_PATH_C].rfintfi = rFPGA0_XCD_RFInterfaceRB; priv->PHYRegDef[RF90_PATH_D].rfintfi = rFPGA0_XCD_RFInterfaceRB; priv->PHYRegDef[RF90_PATH_A].rfintfo = rFPGA0_XA_RFInterfaceOE; priv->PHYRegDef[RF90_PATH_B].rfintfo = rFPGA0_XB_RFInterfaceOE; priv->PHYRegDef[RF90_PATH_C].rfintfo = rFPGA0_XC_RFInterfaceOE; priv->PHYRegDef[RF90_PATH_D].rfintfo = rFPGA0_XD_RFInterfaceOE; priv->PHYRegDef[RF90_PATH_A].rfintfe = rFPGA0_XA_RFInterfaceOE; priv->PHYRegDef[RF90_PATH_B].rfintfe = rFPGA0_XB_RFInterfaceOE; priv->PHYRegDef[RF90_PATH_C].rfintfe = rFPGA0_XC_RFInterfaceOE; priv->PHYRegDef[RF90_PATH_D].rfintfe = rFPGA0_XD_RFInterfaceOE; priv->PHYRegDef[RF90_PATH_A].rf3wireOffset = rFPGA0_XA_LSSIParameter; priv->PHYRegDef[RF90_PATH_B].rf3wireOffset = rFPGA0_XB_LSSIParameter; priv->PHYRegDef[RF90_PATH_C].rf3wireOffset = rFPGA0_XC_LSSIParameter; priv->PHYRegDef[RF90_PATH_D].rf3wireOffset = rFPGA0_XD_LSSIParameter; priv->PHYRegDef[RF90_PATH_A].rfLSSI_Select = rFPGA0_XAB_RFParameter; priv->PHYRegDef[RF90_PATH_B].rfLSSI_Select = rFPGA0_XAB_RFParameter; priv->PHYRegDef[RF90_PATH_C].rfLSSI_Select = rFPGA0_XCD_RFParameter; priv->PHYRegDef[RF90_PATH_D].rfLSSI_Select = rFPGA0_XCD_RFParameter; priv->PHYRegDef[RF90_PATH_A].rfTxGainStage = rFPGA0_TxGainStage; priv->PHYRegDef[RF90_PATH_B].rfTxGainStage = rFPGA0_TxGainStage; priv->PHYRegDef[RF90_PATH_C].rfTxGainStage = rFPGA0_TxGainStage; priv->PHYRegDef[RF90_PATH_D].rfTxGainStage = rFPGA0_TxGainStage; priv->PHYRegDef[RF90_PATH_A].rfHSSIPara1 = rFPGA0_XA_HSSIParameter1; priv->PHYRegDef[RF90_PATH_B].rfHSSIPara1 = rFPGA0_XB_HSSIParameter1; priv->PHYRegDef[RF90_PATH_C].rfHSSIPara1 = rFPGA0_XC_HSSIParameter1; priv->PHYRegDef[RF90_PATH_D].rfHSSIPara1 = rFPGA0_XD_HSSIParameter1; priv->PHYRegDef[RF90_PATH_A].rfHSSIPara2 = rFPGA0_XA_HSSIParameter2; priv->PHYRegDef[RF90_PATH_B].rfHSSIPara2 = rFPGA0_XB_HSSIParameter2; priv->PHYRegDef[RF90_PATH_C].rfHSSIPara2 = rFPGA0_XC_HSSIParameter2; priv->PHYRegDef[RF90_PATH_D].rfHSSIPara2 = rFPGA0_XD_HSSIParameter2; priv->PHYRegDef[RF90_PATH_A].rfSwitchControl = rFPGA0_XAB_SwitchControl; priv->PHYRegDef[RF90_PATH_B].rfSwitchControl = rFPGA0_XAB_SwitchControl; priv->PHYRegDef[RF90_PATH_C].rfSwitchControl = rFPGA0_XCD_SwitchControl; priv->PHYRegDef[RF90_PATH_D].rfSwitchControl = rFPGA0_XCD_SwitchControl; priv->PHYRegDef[RF90_PATH_A].rfAGCControl1 = rOFDM0_XAAGCCore1; priv->PHYRegDef[RF90_PATH_B].rfAGCControl1 = rOFDM0_XBAGCCore1; priv->PHYRegDef[RF90_PATH_C].rfAGCControl1 = rOFDM0_XCAGCCore1; priv->PHYRegDef[RF90_PATH_D].rfAGCControl1 = rOFDM0_XDAGCCore1; priv->PHYRegDef[RF90_PATH_A].rfAGCControl2 = rOFDM0_XAAGCCore2; priv->PHYRegDef[RF90_PATH_B].rfAGCControl2 = rOFDM0_XBAGCCore2; priv->PHYRegDef[RF90_PATH_C].rfAGCControl2 = rOFDM0_XCAGCCore2; priv->PHYRegDef[RF90_PATH_D].rfAGCControl2 = rOFDM0_XDAGCCore2; priv->PHYRegDef[RF90_PATH_A].rfRxIQImbalance = rOFDM0_XARxIQImbalance; priv->PHYRegDef[RF90_PATH_B].rfRxIQImbalance = rOFDM0_XBRxIQImbalance; priv->PHYRegDef[RF90_PATH_C].rfRxIQImbalance = rOFDM0_XCRxIQImbalance; priv->PHYRegDef[RF90_PATH_D].rfRxIQImbalance = rOFDM0_XDRxIQImbalance; priv->PHYRegDef[RF90_PATH_A].rfRxAFE = rOFDM0_XARxAFE; priv->PHYRegDef[RF90_PATH_B].rfRxAFE = rOFDM0_XBRxAFE; priv->PHYRegDef[RF90_PATH_C].rfRxAFE = rOFDM0_XCRxAFE; priv->PHYRegDef[RF90_PATH_D].rfRxAFE = rOFDM0_XDRxAFE; priv->PHYRegDef[RF90_PATH_A].rfTxIQImbalance = rOFDM0_XATxIQImbalance; priv->PHYRegDef[RF90_PATH_B].rfTxIQImbalance = rOFDM0_XBTxIQImbalance; priv->PHYRegDef[RF90_PATH_C].rfTxIQImbalance = rOFDM0_XCTxIQImbalance; priv->PHYRegDef[RF90_PATH_D].rfTxIQImbalance = rOFDM0_XDTxIQImbalance; priv->PHYRegDef[RF90_PATH_A].rfTxAFE = rOFDM0_XATxAFE; priv->PHYRegDef[RF90_PATH_B].rfTxAFE = rOFDM0_XBTxAFE; priv->PHYRegDef[RF90_PATH_C].rfTxAFE = rOFDM0_XCTxAFE; priv->PHYRegDef[RF90_PATH_D].rfTxAFE = rOFDM0_XDTxAFE; priv->PHYRegDef[RF90_PATH_A].rfLSSIReadBack = rFPGA0_XA_LSSIReadBack; priv->PHYRegDef[RF90_PATH_B].rfLSSIReadBack = rFPGA0_XB_LSSIReadBack; priv->PHYRegDef[RF90_PATH_C].rfLSSIReadBack = rFPGA0_XC_LSSIReadBack; priv->PHYRegDef[RF90_PATH_D].rfLSSIReadBack = rFPGA0_XD_LSSIReadBack; } bool rtl8192_phy_checkBBAndRF(struct net_device *dev, enum hw90_block CheckBlock, enum rf90_radio_path eRFPath) { bool ret = true; u32 i, CheckTimes = 4, dwRegRead = 0; u32 WriteAddr[4]; u32 WriteData[] = {0xfffff027, 0xaa55a02f, 0x00000027, 0x55aa502f}; WriteAddr[HW90_BLOCK_MAC] = 0x100; WriteAddr[HW90_BLOCK_PHY0] = 0x900; WriteAddr[HW90_BLOCK_PHY1] = 0x800; WriteAddr[HW90_BLOCK_RF] = 0x3; RT_TRACE(COMP_PHY, "=======>%s(), CheckBlock:%d\n", __func__, CheckBlock); for (i = 0; i < CheckTimes; i++) { switch (CheckBlock) { case HW90_BLOCK_MAC: RT_TRACE(COMP_ERR, "PHY_CheckBBRFOK(): Never Write " "0x100 here!"); break; case HW90_BLOCK_PHY0: case HW90_BLOCK_PHY1: write_nic_dword(dev, WriteAddr[CheckBlock], WriteData[i]); dwRegRead = read_nic_dword(dev, WriteAddr[CheckBlock]); break; case HW90_BLOCK_RF: WriteData[i] &= 0xfff; rtl8192_phy_SetRFReg(dev, eRFPath, WriteAddr[HW90_BLOCK_RF], bMask12Bits, WriteData[i]); mdelay(10); dwRegRead = rtl8192_phy_QueryRFReg(dev, eRFPath, WriteAddr[HW90_BLOCK_RF], bMaskDWord); mdelay(10); break; default: ret = false; break; } if (dwRegRead != WriteData[i]) { RT_TRACE(COMP_ERR, "====>error=====dwRegRead: %x, " "WriteData: %x\n", dwRegRead, WriteData[i]); ret = false; break; } } return ret; } static bool rtl8192_BB_Config_ParaFile(struct net_device *dev) { struct r8192_priv *priv = rtllib_priv(dev); bool rtStatus = true; u8 bRegValue = 0, eCheckItem = 0; u32 dwRegValue = 0; bRegValue = read_nic_byte(dev, BB_GLOBAL_RESET); write_nic_byte(dev, BB_GLOBAL_RESET, (bRegValue|BB_GLOBAL_RESET_BIT)); dwRegValue = read_nic_dword(dev, CPU_GEN); write_nic_dword(dev, CPU_GEN, (dwRegValue&(~CPU_GEN_BB_RST))); for (eCheckItem = (enum hw90_block)HW90_BLOCK_PHY0; eCheckItem <= HW90_BLOCK_PHY1; eCheckItem++) { rtStatus = rtl8192_phy_checkBBAndRF(dev, (enum hw90_block)eCheckItem, (enum rf90_radio_path)0); if (rtStatus != true) { RT_TRACE((COMP_ERR | COMP_PHY), "PHY_RF8256_Config():" "Check PHY%d Fail!!\n", eCheckItem-1); return rtStatus; } } rtl8192_setBBreg(dev, rFPGA0_RFMOD, bCCKEn|bOFDMEn, 0x0); rtl8192_phyConfigBB(dev, BaseBand_Config_PHY_REG); dwRegValue = read_nic_dword(dev, CPU_GEN); write_nic_dword(dev, CPU_GEN, (dwRegValue|CPU_GEN_BB_RST)); rtl8192_phyConfigBB(dev, BaseBand_Config_AGC_TAB); if (priv->IC_Cut > VERSION_8190_BD) { if (priv->rf_type == RF_2T4R) dwRegValue = (priv->AntennaTxPwDiff[2]<<8 | priv->AntennaTxPwDiff[1]<<4 | priv->AntennaTxPwDiff[0]); else dwRegValue = 0x0; rtl8192_setBBreg(dev, rFPGA0_TxGainStage, (bXBTxAGC|bXCTxAGC|bXDTxAGC), dwRegValue); dwRegValue = priv->CrystalCap; rtl8192_setBBreg(dev, rFPGA0_AnalogParameter1, bXtalCap92x, dwRegValue); } return rtStatus; } bool rtl8192_BBConfig(struct net_device *dev) { bool rtStatus = true; rtl8192_InitBBRFRegDef(dev); rtStatus = rtl8192_BB_Config_ParaFile(dev); return rtStatus; } void rtl8192_phy_getTxPower(struct net_device *dev) { struct r8192_priv *priv = rtllib_priv(dev); priv->MCSTxPowerLevelOriginalOffset[0] = read_nic_dword(dev, rTxAGC_Rate18_06); priv->MCSTxPowerLevelOriginalOffset[1] = read_nic_dword(dev, rTxAGC_Rate54_24); priv->MCSTxPowerLevelOriginalOffset[2] = read_nic_dword(dev, rTxAGC_Mcs03_Mcs00); priv->MCSTxPowerLevelOriginalOffset[3] = read_nic_dword(dev, rTxAGC_Mcs07_Mcs04); priv->MCSTxPowerLevelOriginalOffset[4] = read_nic_dword(dev, rTxAGC_Mcs11_Mcs08); priv->MCSTxPowerLevelOriginalOffset[5] = read_nic_dword(dev, rTxAGC_Mcs15_Mcs12); priv->DefaultInitialGain[0] = read_nic_byte(dev, rOFDM0_XAAGCCore1); priv->DefaultInitialGain[1] = read_nic_byte(dev, rOFDM0_XBAGCCore1); priv->DefaultInitialGain[2] = read_nic_byte(dev, rOFDM0_XCAGCCore1); priv->DefaultInitialGain[3] = read_nic_byte(dev, rOFDM0_XDAGCCore1); RT_TRACE(COMP_INIT, "Default initial gain (c50=0x%x, c58=0x%x, " "c60=0x%x, c68=0x%x)\n", priv->DefaultInitialGain[0], priv->DefaultInitialGain[1], priv->DefaultInitialGain[2], priv->DefaultInitialGain[3]); priv->framesync = read_nic_byte(dev, rOFDM0_RxDetector3); priv->framesyncC34 = read_nic_dword(dev, rOFDM0_RxDetector2); RT_TRACE(COMP_INIT, "Default framesync (0x%x) = 0x%x\n", rOFDM0_RxDetector3, priv->framesync); priv->SifsTime = read_nic_word(dev, SIFS); return; } void rtl8192_phy_setTxPower(struct net_device *dev, u8 channel) { struct r8192_priv *priv = rtllib_priv(dev); u8 powerlevel = 0, powerlevelOFDM24G = 0; char ant_pwr_diff; u32 u4RegValue; if (priv->epromtype == EEPROM_93C46) { powerlevel = priv->TxPowerLevelCCK[channel-1]; powerlevelOFDM24G = priv->TxPowerLevelOFDM24G[channel-1]; } else if (priv->epromtype == EEPROM_93C56) { if (priv->rf_type == RF_1T2R) { powerlevel = priv->TxPowerLevelCCK_C[channel-1]; powerlevelOFDM24G = priv->TxPowerLevelOFDM24G_C[channel-1]; } else if (priv->rf_type == RF_2T4R) { powerlevel = priv->TxPowerLevelCCK_A[channel-1]; powerlevelOFDM24G = priv->TxPowerLevelOFDM24G_A[channel-1]; ant_pwr_diff = priv->TxPowerLevelOFDM24G_C[channel-1] - priv->TxPowerLevelOFDM24G_A[channel-1]; priv->RF_C_TxPwDiff = ant_pwr_diff; ant_pwr_diff &= 0xf; priv->AntennaTxPwDiff[2] = 0; priv->AntennaTxPwDiff[1] = (u8)(ant_pwr_diff); priv->AntennaTxPwDiff[0] = 0; u4RegValue = (priv->AntennaTxPwDiff[2]<<8 | priv->AntennaTxPwDiff[1]<<4 | priv->AntennaTxPwDiff[0]); rtl8192_setBBreg(dev, rFPGA0_TxGainStage, (bXBTxAGC|bXCTxAGC|bXDTxAGC), u4RegValue); } } switch (priv->rf_chip) { case RF_8225: break; case RF_8256: PHY_SetRF8256CCKTxPower(dev, powerlevel); PHY_SetRF8256OFDMTxPower(dev, powerlevelOFDM24G); break; case RF_8258: break; default: RT_TRACE(COMP_ERR, "unknown rf chip in funtion %s()\n", __func__); break; } return; } bool rtl8192_phy_RFConfig(struct net_device *dev) { struct r8192_priv *priv = rtllib_priv(dev); bool rtStatus = true; switch (priv->rf_chip) { case RF_8225: break; case RF_8256: rtStatus = PHY_RF8256_Config(dev); break; case RF_8258: break; case RF_PSEUDO_11N: break; default: RT_TRACE(COMP_ERR, "error chip id\n"); break; } return rtStatus; } void rtl8192_phy_updateInitGain(struct net_device *dev) { return; } u8 rtl8192_phy_ConfigRFWithHeaderFile(struct net_device *dev, enum rf90_radio_path eRFPath) { int i; u8 ret = 0; switch (eRFPath) { case RF90_PATH_A: for (i = 0; i < RadioA_ArrayLength; i += 2) { if (Rtl819XRadioA_Array[i] == 0xfe) { msleep(100); continue; } rtl8192_phy_SetRFReg(dev, eRFPath, Rtl819XRadioA_Array[i], bMask12Bits, Rtl819XRadioA_Array[i+1]); } break; case RF90_PATH_B: for (i = 0; i < RadioB_ArrayLength; i += 2) { if (Rtl819XRadioB_Array[i] == 0xfe) { msleep(100); continue; } rtl8192_phy_SetRFReg(dev, eRFPath, Rtl819XRadioB_Array[i], bMask12Bits, Rtl819XRadioB_Array[i+1]); } break; case RF90_PATH_C: for (i = 0; i < RadioC_ArrayLength; i += 2) { if (Rtl819XRadioC_Array[i] == 0xfe) { msleep(100); continue; } rtl8192_phy_SetRFReg(dev, eRFPath, Rtl819XRadioC_Array[i], bMask12Bits, Rtl819XRadioC_Array[i+1]); } break; case RF90_PATH_D: for (i = 0; i < RadioD_ArrayLength; i += 2) { if (Rtl819XRadioD_Array[i] == 0xfe) { msleep(100); continue; } rtl8192_phy_SetRFReg(dev, eRFPath, Rtl819XRadioD_Array[i], bMask12Bits, Rtl819XRadioD_Array[i+1]); } break; default: break; } return ret; } static void rtl8192_SetTxPowerLevel(struct net_device *dev, u8 channel) { struct r8192_priv *priv = rtllib_priv(dev); u8 powerlevel = priv->TxPowerLevelCCK[channel-1]; u8 powerlevelOFDM24G = priv->TxPowerLevelOFDM24G[channel-1]; switch (priv->rf_chip) { case RF_8225: break; case RF_8256: PHY_SetRF8256CCKTxPower(dev, powerlevel); PHY_SetRF8256OFDMTxPower(dev, powerlevelOFDM24G); break; case RF_8258: break; default: RT_TRACE(COMP_ERR, "unknown rf chip ID in rtl8192_SetTxPower" "Level()\n"); break; } return; } static u8 rtl8192_phy_SetSwChnlCmdArray(struct sw_chnl_cmd *CmdTable, u32 CmdTableIdx, u32 CmdTableSz, enum sw_chnl_cmd_id CmdID, u32 Para1, u32 Para2, u32 msDelay) { struct sw_chnl_cmd *pCmd; if (CmdTable == NULL) { RT_TRACE(COMP_ERR, "phy_SetSwChnlCmdArray(): CmdTable cannot " "be NULL.\n"); return false; } if (CmdTableIdx >= CmdTableSz) { RT_TRACE(COMP_ERR, "phy_SetSwChnlCmdArray(): Access invalid" " index, please check size of the table, CmdTableIdx:" "%d, CmdTableSz:%d\n", CmdTableIdx, CmdTableSz); return false; } pCmd = CmdTable + CmdTableIdx; pCmd->CmdID = CmdID; pCmd->Para1 = Para1; pCmd->Para2 = Para2; pCmd->msDelay = msDelay; return true; } static u8 rtl8192_phy_SwChnlStepByStep(struct net_device *dev, u8 channel, u8 *stage, u8 *step, u32 *delay) { struct r8192_priv *priv = rtllib_priv(dev); struct rtllib_device *ieee = priv->rtllib; u32 PreCommonCmdCnt; u32 PostCommonCmdCnt; u32 RfDependCmdCnt; struct sw_chnl_cmd *CurrentCmd = NULL; u8 eRFPath; RT_TRACE(COMP_TRACE, "====>%s()====stage:%d, step:%d, channel:%d\n", __func__, *stage, *step, channel); if (!rtllib_legal_channel(priv->rtllib, channel)) { RT_TRACE(COMP_ERR, "=============>set to illegal channel:%d\n", channel); return true; } { PreCommonCmdCnt = 0; rtl8192_phy_SetSwChnlCmdArray(ieee->PreCommonCmd, PreCommonCmdCnt++, MAX_PRECMD_CNT, CmdID_SetTxPowerLevel, 0, 0, 0); rtl8192_phy_SetSwChnlCmdArray(ieee->PreCommonCmd, PreCommonCmdCnt++, MAX_PRECMD_CNT, CmdID_End, 0, 0, 0); PostCommonCmdCnt = 0; rtl8192_phy_SetSwChnlCmdArray(ieee->PostCommonCmd, PostCommonCmdCnt++, MAX_POSTCMD_CNT, CmdID_End, 0, 0, 0); RfDependCmdCnt = 0; switch (priv->rf_chip) { case RF_8225: if (!(channel >= 1 && channel <= 14)) { RT_TRACE(COMP_ERR, "illegal channel for Zebra " "8225: %d\n", channel); return false; } rtl8192_phy_SetSwChnlCmdArray(ieee->RfDependCmd, RfDependCmdCnt++, MAX_RFDEPENDCMD_CNT, CmdID_RF_WriteReg, rZebra1_Channel, RF_CHANNEL_TABLE_ZEBRA[channel], 10); rtl8192_phy_SetSwChnlCmdArray(ieee->RfDependCmd, RfDependCmdCnt++, MAX_RFDEPENDCMD_CNT, CmdID_End, 0, 0, 0); break; case RF_8256: if (!(channel >= 1 && channel <= 14)) { RT_TRACE(COMP_ERR, "illegal channel for Zebra" " 8256: %d\n", channel); return false; } rtl8192_phy_SetSwChnlCmdArray(ieee->RfDependCmd, RfDependCmdCnt++, MAX_RFDEPENDCMD_CNT, CmdID_RF_WriteReg, rZebra1_Channel, channel, 10); rtl8192_phy_SetSwChnlCmdArray(ieee->RfDependCmd, RfDependCmdCnt++, MAX_RFDEPENDCMD_CNT, CmdID_End, 0, 0, 0); break; case RF_8258: break; default: RT_TRACE(COMP_ERR, "Unknown RFChipID: %d\n", priv->rf_chip); return false; break; } do { switch (*stage) { case 0: CurrentCmd = &ieee->PreCommonCmd[*step]; break; case 1: CurrentCmd = &ieee->RfDependCmd[*step]; break; case 2: CurrentCmd = &ieee->PostCommonCmd[*step]; break; } if (CurrentCmd && CurrentCmd->CmdID == CmdID_End) { if ((*stage) == 2) { return true; } else { (*stage)++; (*step) = 0; continue; } } if (!CurrentCmd) continue; switch (CurrentCmd->CmdID) { case CmdID_SetTxPowerLevel: if (priv->IC_Cut > (u8)VERSION_8190_BD) rtl8192_SetTxPowerLevel(dev, channel); break; case CmdID_WritePortUlong: write_nic_dword(dev, CurrentCmd->Para1, CurrentCmd->Para2); break; case CmdID_WritePortUshort: write_nic_word(dev, CurrentCmd->Para1, (u16)CurrentCmd->Para2); break; case CmdID_WritePortUchar: write_nic_byte(dev, CurrentCmd->Para1, (u8)CurrentCmd->Para2); break; case CmdID_RF_WriteReg: for (eRFPath = 0; eRFPath < priv->NumTotalRFPath; eRFPath++) rtl8192_phy_SetRFReg(dev, (enum rf90_radio_path)eRFPath, CurrentCmd->Para1, bMask12Bits, CurrentCmd->Para2<<7); break; default: break; } break; } while (true); } /*for (Number of RF paths)*/ (*delay) = CurrentCmd->msDelay; (*step)++; return false; } static void rtl8192_phy_FinishSwChnlNow(struct net_device *dev, u8 channel) { struct r8192_priv *priv = rtllib_priv(dev); u32 delay = 0; while (!rtl8192_phy_SwChnlStepByStep(dev, channel, &priv->SwChnlStage, &priv->SwChnlStep, &delay)) { if (delay > 0) msleep(delay); if (IS_NIC_DOWN(priv)) break; } } void rtl8192_SwChnl_WorkItem(struct net_device *dev) { struct r8192_priv *priv = rtllib_priv(dev); RT_TRACE(COMP_TRACE, "==> SwChnlCallback819xUsbWorkItem()\n"); RT_TRACE(COMP_TRACE, "=====>--%s(), set chan:%d, priv:%p\n", __func__, priv->chan, priv); rtl8192_phy_FinishSwChnlNow(dev , priv->chan); RT_TRACE(COMP_TRACE, "<== SwChnlCallback819xUsbWorkItem()\n"); } u8 rtl8192_phy_SwChnl(struct net_device *dev, u8 channel) { struct r8192_priv *priv = rtllib_priv(dev); RT_TRACE(COMP_PHY, "=====>%s()\n", __func__); if (IS_NIC_DOWN(priv)) { RT_TRACE(COMP_ERR, "%s(): ERR !! driver is not up\n", __func__); return false; } if (priv->SwChnlInProgress) return false; switch (priv->rtllib->mode) { case WIRELESS_MODE_A: case WIRELESS_MODE_N_5G: if (channel <= 14) { RT_TRACE(COMP_ERR, "WIRELESS_MODE_A but channel<=14"); return false; } break; case WIRELESS_MODE_B: if (channel > 14) { RT_TRACE(COMP_ERR, "WIRELESS_MODE_B but channel>14"); return false; } break; case WIRELESS_MODE_G: case WIRELESS_MODE_N_24G: if (channel > 14) { RT_TRACE(COMP_ERR, "WIRELESS_MODE_G but channel>14"); return false; } break; } priv->SwChnlInProgress = true; if (channel == 0) channel = 1; priv->chan = channel; priv->SwChnlStage = 0; priv->SwChnlStep = 0; if (!IS_NIC_DOWN(priv)) rtl8192_SwChnl_WorkItem(dev); priv->SwChnlInProgress = false; return true; } static void CCK_Tx_Power_Track_BW_Switch_TSSI(struct net_device *dev) { struct r8192_priv *priv = rtllib_priv(dev); switch (priv->CurrentChannelBW) { case HT_CHANNEL_WIDTH_20: priv->CCKPresentAttentuation = priv->CCKPresentAttentuation_20Mdefault + priv->CCKPresentAttentuation_difference; if (priv->CCKPresentAttentuation > (CCKTxBBGainTableLength-1)) priv->CCKPresentAttentuation = CCKTxBBGainTableLength-1; if (priv->CCKPresentAttentuation < 0) priv->CCKPresentAttentuation = 0; RT_TRACE(COMP_POWER_TRACKING, "20M, priv->CCKPresent" "Attentuation = %d\n", priv->CCKPresentAttentuation); if (priv->rtllib->current_network.channel == 14 && !priv->bcck_in_ch14) { priv->bcck_in_ch14 = true; dm_cck_txpower_adjust(dev, priv->bcck_in_ch14); } else if (priv->rtllib->current_network.channel != 14 && priv->bcck_in_ch14) { priv->bcck_in_ch14 = false; dm_cck_txpower_adjust(dev, priv->bcck_in_ch14); } else { dm_cck_txpower_adjust(dev, priv->bcck_in_ch14); } break; case HT_CHANNEL_WIDTH_20_40: priv->CCKPresentAttentuation = priv->CCKPresentAttentuation_40Mdefault + priv->CCKPresentAttentuation_difference; RT_TRACE(COMP_POWER_TRACKING, "40M, priv->CCKPresent" "Attentuation = %d\n", priv->CCKPresentAttentuation); if (priv->CCKPresentAttentuation > (CCKTxBBGainTableLength - 1)) priv->CCKPresentAttentuation = CCKTxBBGainTableLength-1; if (priv->CCKPresentAttentuation < 0) priv->CCKPresentAttentuation = 0; if (priv->rtllib->current_network.channel == 14 && !priv->bcck_in_ch14) { priv->bcck_in_ch14 = true; dm_cck_txpower_adjust(dev, priv->bcck_in_ch14); } else if (priv->rtllib->current_network.channel != 14 && priv->bcck_in_ch14) { priv->bcck_in_ch14 = false; dm_cck_txpower_adjust(dev, priv->bcck_in_ch14); } else { dm_cck_txpower_adjust(dev, priv->bcck_in_ch14); } break; } } static void CCK_Tx_Power_Track_BW_Switch_ThermalMeter(struct net_device *dev) { struct r8192_priv *priv = rtllib_priv(dev); if (priv->rtllib->current_network.channel == 14 && !priv->bcck_in_ch14) priv->bcck_in_ch14 = true; else if (priv->rtllib->current_network.channel != 14 && priv->bcck_in_ch14) priv->bcck_in_ch14 = false; switch (priv->CurrentChannelBW) { case HT_CHANNEL_WIDTH_20: if (priv->Record_CCK_20Mindex == 0) priv->Record_CCK_20Mindex = 6; priv->CCK_index = priv->Record_CCK_20Mindex; RT_TRACE(COMP_POWER_TRACKING, "20MHz, CCK_Tx_Power_Track_BW_" "Switch_ThermalMeter(),CCK_index = %d\n", priv->CCK_index); break; case HT_CHANNEL_WIDTH_20_40: priv->CCK_index = priv->Record_CCK_40Mindex; RT_TRACE(COMP_POWER_TRACKING, "40MHz, CCK_Tx_Power_Track_BW_" "Switch_ThermalMeter(), CCK_index = %d\n", priv->CCK_index); break; } dm_cck_txpower_adjust(dev, priv->bcck_in_ch14); } static void CCK_Tx_Power_Track_BW_Switch(struct net_device *dev) { struct r8192_priv *priv = rtllib_priv(dev); if (priv->IC_Cut >= IC_VersionCut_D) CCK_Tx_Power_Track_BW_Switch_TSSI(dev); else CCK_Tx_Power_Track_BW_Switch_ThermalMeter(dev); } void rtl8192_SetBWModeWorkItem(struct net_device *dev) { struct r8192_priv *priv = rtllib_priv(dev); u8 regBwOpMode; RT_TRACE(COMP_SWBW, "==>rtl8192_SetBWModeWorkItem() Switch to %s " "bandwidth\n", priv->CurrentChannelBW == HT_CHANNEL_WIDTH_20 ? "20MHz" : "40MHz") if (priv->rf_chip == RF_PSEUDO_11N) { priv->SetBWModeInProgress = false; return; } if (IS_NIC_DOWN(priv)) { RT_TRACE(COMP_ERR, "%s(): ERR!! driver is not up\n", __func__); return; } regBwOpMode = read_nic_byte(dev, BW_OPMODE); switch (priv->CurrentChannelBW) { case HT_CHANNEL_WIDTH_20: regBwOpMode |= BW_OPMODE_20MHZ; write_nic_byte(dev, BW_OPMODE, regBwOpMode); break; case HT_CHANNEL_WIDTH_20_40: regBwOpMode &= ~BW_OPMODE_20MHZ; write_nic_byte(dev, BW_OPMODE, regBwOpMode); break; default: RT_TRACE(COMP_ERR, "SetChannelBandwidth819xUsb(): unknown " "Bandwidth: %#X\n", priv->CurrentChannelBW); break; } switch (priv->CurrentChannelBW) { case HT_CHANNEL_WIDTH_20: rtl8192_setBBreg(dev, rFPGA0_RFMOD, bRFMOD, 0x0); rtl8192_setBBreg(dev, rFPGA1_RFMOD, bRFMOD, 0x0); if (!priv->btxpower_tracking) { write_nic_dword(dev, rCCK0_TxFilter1, 0x1a1b0000); write_nic_dword(dev, rCCK0_TxFilter2, 0x090e1317); write_nic_dword(dev, rCCK0_DebugPort, 0x00000204); } else { CCK_Tx_Power_Track_BW_Switch(dev); } rtl8192_setBBreg(dev, rFPGA0_AnalogParameter1, 0x00100000, 1); break; case HT_CHANNEL_WIDTH_20_40: rtl8192_setBBreg(dev, rFPGA0_RFMOD, bRFMOD, 0x1); rtl8192_setBBreg(dev, rFPGA1_RFMOD, bRFMOD, 0x1); if (!priv->btxpower_tracking) { write_nic_dword(dev, rCCK0_TxFilter1, 0x35360000); write_nic_dword(dev, rCCK0_TxFilter2, 0x121c252e); write_nic_dword(dev, rCCK0_DebugPort, 0x00000409); } else { CCK_Tx_Power_Track_BW_Switch(dev); } rtl8192_setBBreg(dev, rCCK0_System, bCCKSideBand, (priv->nCur40MhzPrimeSC>>1)); rtl8192_setBBreg(dev, rOFDM1_LSTF, 0xC00, priv->nCur40MhzPrimeSC); rtl8192_setBBreg(dev, rFPGA0_AnalogParameter1, 0x00100000, 0); break; default: RT_TRACE(COMP_ERR, "SetChannelBandwidth819xUsb(): unknown " "Bandwidth: %#X\n", priv->CurrentChannelBW); break; } switch (priv->rf_chip) { case RF_8225: break; case RF_8256: PHY_SetRF8256Bandwidth(dev, priv->CurrentChannelBW); break; case RF_8258: break; case RF_PSEUDO_11N: break; default: RT_TRACE(COMP_ERR, "Unknown RFChipID: %d\n", priv->rf_chip); break; } atomic_dec(&(priv->rtllib->atm_swbw)); priv->SetBWModeInProgress = false; RT_TRACE(COMP_SWBW, "<==SetBWMode819xUsb()"); } void rtl8192_SetBWMode(struct net_device *dev, enum ht_channel_width Bandwidth, enum ht_extchnl_offset Offset) { struct r8192_priv *priv = rtllib_priv(dev); if (priv->SetBWModeInProgress) return; atomic_inc(&(priv->rtllib->atm_swbw)); priv->SetBWModeInProgress = true; priv->CurrentChannelBW = Bandwidth; if (Offset == HT_EXTCHNL_OFFSET_LOWER) priv->nCur40MhzPrimeSC = HAL_PRIME_CHNL_OFFSET_UPPER; else if (Offset == HT_EXTCHNL_OFFSET_UPPER) priv->nCur40MhzPrimeSC = HAL_PRIME_CHNL_OFFSET_LOWER; else priv->nCur40MhzPrimeSC = HAL_PRIME_CHNL_OFFSET_DONT_CARE; rtl8192_SetBWModeWorkItem(dev); } void InitialGain819xPci(struct net_device *dev, u8 Operation) { #define SCAN_RX_INITIAL_GAIN 0x17 #define POWER_DETECTION_TH 0x08 struct r8192_priv *priv = rtllib_priv(dev); u32 BitMask; u8 initial_gain; if (!IS_NIC_DOWN(priv)) { switch (Operation) { case IG_Backup: RT_TRACE(COMP_SCAN, "IG_Backup, backup the initial" " gain.\n"); initial_gain = SCAN_RX_INITIAL_GAIN; BitMask = bMaskByte0; if (dm_digtable.dig_algorithm == DIG_ALGO_BY_FALSE_ALARM) rtl8192_setBBreg(dev, UFWP, bMaskByte1, 0x8); priv->initgain_backup.xaagccore1 = (u8)rtl8192_QueryBBReg(dev, rOFDM0_XAAGCCore1, BitMask); priv->initgain_backup.xbagccore1 = (u8)rtl8192_QueryBBReg(dev, rOFDM0_XBAGCCore1, BitMask); priv->initgain_backup.xcagccore1 = (u8)rtl8192_QueryBBReg(dev, rOFDM0_XCAGCCore1, BitMask); priv->initgain_backup.xdagccore1 = (u8)rtl8192_QueryBBReg(dev, rOFDM0_XDAGCCore1, BitMask); BitMask = bMaskByte2; priv->initgain_backup.cca = (u8)rtl8192_QueryBBReg(dev, rCCK0_CCA, BitMask); RT_TRACE(COMP_SCAN, "Scan InitialGainBackup 0xc50 is" " %x\n", priv->initgain_backup.xaagccore1); RT_TRACE(COMP_SCAN, "Scan InitialGainBackup 0xc58 is" " %x\n", priv->initgain_backup.xbagccore1); RT_TRACE(COMP_SCAN, "Scan InitialGainBackup 0xc60 is" " %x\n", priv->initgain_backup.xcagccore1); RT_TRACE(COMP_SCAN, "Scan InitialGainBackup 0xc68 is" " %x\n", priv->initgain_backup.xdagccore1); RT_TRACE(COMP_SCAN, "Scan InitialGainBackup 0xa0a is" " %x\n", priv->initgain_backup.cca); RT_TRACE(COMP_SCAN, "Write scan initial gain = 0x%x\n", initial_gain); write_nic_byte(dev, rOFDM0_XAAGCCore1, initial_gain); write_nic_byte(dev, rOFDM0_XBAGCCore1, initial_gain); write_nic_byte(dev, rOFDM0_XCAGCCore1, initial_gain); write_nic_byte(dev, rOFDM0_XDAGCCore1, initial_gain); RT_TRACE(COMP_SCAN, "Write scan 0xa0a = 0x%x\n", POWER_DETECTION_TH); write_nic_byte(dev, 0xa0a, POWER_DETECTION_TH); break; case IG_Restore: RT_TRACE(COMP_SCAN, "IG_Restore, restore the initial " "gain.\n"); BitMask = 0x7f; if (dm_digtable.dig_algorithm == DIG_ALGO_BY_FALSE_ALARM) rtl8192_setBBreg(dev, UFWP, bMaskByte1, 0x8); rtl8192_setBBreg(dev, rOFDM0_XAAGCCore1, BitMask, (u32)priv->initgain_backup.xaagccore1); rtl8192_setBBreg(dev, rOFDM0_XBAGCCore1, BitMask, (u32)priv->initgain_backup.xbagccore1); rtl8192_setBBreg(dev, rOFDM0_XCAGCCore1, BitMask, (u32)priv->initgain_backup.xcagccore1); rtl8192_setBBreg(dev, rOFDM0_XDAGCCore1, BitMask, (u32)priv->initgain_backup.xdagccore1); BitMask = bMaskByte2; rtl8192_setBBreg(dev, rCCK0_CCA, BitMask, (u32)priv->initgain_backup.cca); RT_TRACE(COMP_SCAN, "Scan BBInitialGainRestore 0xc50" " is %x\n", priv->initgain_backup.xaagccore1); RT_TRACE(COMP_SCAN, "Scan BBInitialGainRestore 0xc58" " is %x\n", priv->initgain_backup.xbagccore1); RT_TRACE(COMP_SCAN, "Scan BBInitialGainRestore 0xc60" " is %x\n", priv->initgain_backup.xcagccore1); RT_TRACE(COMP_SCAN, "Scan BBInitialGainRestore 0xc68" " is %x\n", priv->initgain_backup.xdagccore1); RT_TRACE(COMP_SCAN, "Scan BBInitialGainRestore 0xa0a" " is %x\n", priv->initgain_backup.cca); rtl8192_phy_setTxPower(dev, priv->rtllib->current_network.channel); if (dm_digtable.dig_algorithm == DIG_ALGO_BY_FALSE_ALARM) rtl8192_setBBreg(dev, UFWP, bMaskByte1, 0x1); break; default: RT_TRACE(COMP_SCAN, "Unknown IG Operation.\n"); break; } } } void PHY_SetRtl8192eRfOff(struct net_device *dev) { rtl8192_setBBreg(dev, rFPGA0_XA_RFInterfaceOE, BIT4, 0x0); rtl8192_setBBreg(dev, rFPGA0_AnalogParameter4, 0x300, 0x0); rtl8192_setBBreg(dev, rFPGA0_AnalogParameter1, 0x18, 0x0); rtl8192_setBBreg(dev, rOFDM0_TRxPathEnable, 0xf, 0x0); rtl8192_setBBreg(dev, rOFDM1_TRxPathEnable, 0xf, 0x0); rtl8192_setBBreg(dev, rFPGA0_AnalogParameter1, 0x60, 0x0); rtl8192_setBBreg(dev, rFPGA0_AnalogParameter1, 0x4, 0x0); write_nic_byte(dev, ANAPAR_FOR_8192PciE, 0x07); } static bool SetRFPowerState8190(struct net_device *dev, enum rt_rf_power_state eRFPowerState) { struct r8192_priv *priv = rtllib_priv(dev); struct rt_pwr_save_ctrl *pPSC = (struct rt_pwr_save_ctrl *) (&(priv->rtllib->PowerSaveControl)); bool bResult = true; u8 i = 0, QueueID = 0; struct rtl8192_tx_ring *ring = NULL; if (priv->SetRFPowerStateInProgress == true) return false; RT_TRACE(COMP_PS, "===========> SetRFPowerState8190()!\n"); priv->SetRFPowerStateInProgress = true; switch (priv->rf_chip) { case RF_8256: switch (eRFPowerState) { case eRfOn: RT_TRACE(COMP_PS, "SetRFPowerState8190() eRfOn!\n"); if ((priv->rtllib->eRFPowerState == eRfOff) && RT_IN_PS_LEVEL(pPSC, RT_RF_OFF_LEVL_HALT_NIC)) { bool rtstatus = true; u32 InitilizeCount = 3; do { InitilizeCount--; priv->RegRfOff = false; rtstatus = NicIFEnableNIC(dev); } while ((rtstatus != true) && (InitilizeCount > 0)); if (rtstatus != true) { RT_TRACE(COMP_ERR, "%s():Initialize Ada" "pter fail,return\n", __func__); priv->SetRFPowerStateInProgress = false; return false; } RT_CLEAR_PS_LEVEL(pPSC, RT_RF_OFF_LEVL_HALT_NIC); } else { write_nic_byte(dev, ANAPAR, 0x37); mdelay(1); rtl8192_setBBreg(dev, rFPGA0_AnalogParameter1, 0x4, 0x1); priv->bHwRfOffAction = 0; rtl8192_setBBreg(dev, rFPGA0_XA_RFInterfaceOE, BIT4, 0x1); rtl8192_setBBreg(dev, rFPGA0_AnalogParameter4, 0x300, 0x3); rtl8192_setBBreg(dev, rFPGA0_AnalogParameter1, 0x18, 0x3); rtl8192_setBBreg(dev, rOFDM0_TRxPathEnable, 0x3, 0x3); rtl8192_setBBreg(dev, rOFDM1_TRxPathEnable, 0x3, 0x3); rtl8192_setBBreg(dev, rFPGA0_AnalogParameter1, 0x60, 0x3); } break; case eRfSleep: if (priv->rtllib->eRFPowerState == eRfOff) break; for (QueueID = 0, i = 0; QueueID < MAX_TX_QUEUE; ) { ring = &priv->tx_ring[QueueID]; if (skb_queue_len(&ring->queue) == 0) { QueueID++; continue; } else { RT_TRACE((COMP_POWER|COMP_RF), "eRf Off" "/Sleep: %d times TcbBusyQueue" "[%d] !=0 before doze!\n", (i+1), QueueID); udelay(10); i++; } if (i >= MAX_DOZE_WAITING_TIMES_9x) { RT_TRACE(COMP_POWER, "\n\n\n TimeOut!! " "SetRFPowerState8190(): eRfOff" ": %d times TcbBusyQueue[%d] " "!= 0 !!!\n", MAX_DOZE_WAITING_TIMES_9x, QueueID); break; } } PHY_SetRtl8192eRfOff(dev); break; case eRfOff: RT_TRACE(COMP_PS, "SetRFPowerState8190() eRfOff/" "Sleep !\n"); for (QueueID = 0, i = 0; QueueID < MAX_TX_QUEUE; ) { ring = &priv->tx_ring[QueueID]; if (skb_queue_len(&ring->queue) == 0) { QueueID++; continue; } else { RT_TRACE(COMP_POWER, "eRf Off/Sleep: %d" " times TcbBusyQueue[%d] !=0 b" "efore doze!\n", (i+1), QueueID); udelay(10); i++; } if (i >= MAX_DOZE_WAITING_TIMES_9x) { RT_TRACE(COMP_POWER, "\n\n\n SetZebra: " "RFPowerState8185B(): eRfOff:" " %d times TcbBusyQueue[%d] " "!= 0 !!!\n", MAX_DOZE_WAITING_TIMES_9x, QueueID); break; } } if (pPSC->RegRfPsLevel & RT_RF_OFF_LEVL_HALT_NIC && !RT_IN_PS_LEVEL(pPSC, RT_RF_OFF_LEVL_HALT_NIC)) { NicIFDisableNIC(dev); RT_SET_PS_LEVEL(pPSC, RT_RF_OFF_LEVL_HALT_NIC); } else if (!(pPSC->RegRfPsLevel & RT_RF_OFF_LEVL_HALT_NIC)) { PHY_SetRtl8192eRfOff(dev); } break; default: bResult = false; RT_TRACE(COMP_ERR, "SetRFPowerState8190(): unknow state" " to set: 0x%X!!!\n", eRFPowerState); break; } break; default: RT_TRACE(COMP_ERR, "SetRFPowerState8190(): Unknown RF type\n"); break; } if (bResult) { priv->rtllib->eRFPowerState = eRFPowerState; switch (priv->rf_chip) { case RF_8256: break; default: RT_TRACE(COMP_ERR, "SetRFPowerState8190(): Unknown " "RF type\n"); break; } } priv->SetRFPowerStateInProgress = false; RT_TRACE(COMP_PS, "<=========== SetRFPowerState8190() bResult = %d!\n", bResult); return bResult; } bool SetRFPowerState(struct net_device *dev, enum rt_rf_power_state eRFPowerState) { struct r8192_priv *priv = rtllib_priv(dev); bool bResult = false; RT_TRACE(COMP_PS, "---------> SetRFPowerState(): eRFPowerState(%d)\n", eRFPowerState); if (eRFPowerState == priv->rtllib->eRFPowerState && priv->bHwRfOffAction == 0) { RT_TRACE(COMP_PS, "<--------- SetRFPowerState(): discard the " "request for eRFPowerState(%d) is the same.\n", eRFPowerState); return bResult; } bResult = SetRFPowerState8190(dev, eRFPowerState); RT_TRACE(COMP_PS, "<--------- SetRFPowerState(): bResult(%d)\n", bResult); return bResult; } void PHY_ScanOperationBackup8192(struct net_device *dev, u8 Operation) { struct r8192_priv *priv = rtllib_priv(dev); if (priv->up) { switch (Operation) { case SCAN_OPT_BACKUP: priv->rtllib->InitialGainHandler(dev, IG_Backup); break; case SCAN_OPT_RESTORE: priv->rtllib->InitialGainHandler(dev, IG_Restore); break; default: RT_TRACE(COMP_SCAN, "Unknown Scan Backup Operation.\n"); break; } } }