#ifndef __INC_ENDIANFREE_H #define __INC_ENDIANFREE_H /* * Call endian free function when * 1. Read/write packet content. * 2. Before write integer to IO. * 3. After read integer from IO. */ #define __MACHINE_LITTLE_ENDIAN 1234 /* LSB first: i386, vax */ #define __MACHINE_BIG_ENDIAN 4321 /* MSB first: 68000, ibm, net, ppc */ #define BYTE_ORDER __MACHINE_LITTLE_ENDIAN #if BYTE_ORDER == __MACHINE_LITTLE_ENDIAN // Convert data #define EF1Byte(_val) ((u8)(_val)) #define EF2Byte(_val) ((u16)(_val)) #define EF4Byte(_val) ((u32)(_val)) #else // Convert data #define EF1Byte(_val) ((u8)(_val)) #define EF2Byte(_val) (((((u16)(_val))&0x00ff)<<8)|((((u16)(_val))&0xff00)>>8)) #define EF4Byte(_val) (((((u32)(_val))&0x000000ff)<<24)|\ ((((u32)(_val))&0x0000ff00)<<8)|\ ((((u32)(_val))&0x00ff0000)>>8)|\ ((((u32)(_val))&0xff000000)>>24)) #endif // Read data from memory #define ReadEF1Byte(_ptr) EF1Byte(*((u8 *)(_ptr))) #define ReadEF2Byte(_ptr) EF2Byte(*((u16 *)(_ptr))) #define ReadEF4Byte(_ptr) EF4Byte(*((u32 *)(_ptr))) // Write data to memory #define WriteEF1Byte(_ptr, _val) (*((u8 *)(_ptr)))=EF1Byte(_val) #define WriteEF2Byte(_ptr, _val) (*((u16 *)(_ptr)))=EF2Byte(_val) #define WriteEF4Byte(_ptr, _val) (*((u32 *)(_ptr)))=EF4Byte(_val) // Convert Host system specific byte ording (litten or big endia) to Network byte ording (big endian). // 2006.05.07, by rcnjko. #if BYTE_ORDER == __MACHINE_LITTLE_ENDIAN #define H2N1BYTE(_val) ((u8)(_val)) #define H2N2BYTE(_val) (((((u16)(_val))&0x00ff)<<8)|\ ((((u16)(_val))&0xff00)>>8)) #define H2N4BYTE(_val) (((((u32)(_val))&0x000000ff)<<24)|\ ((((u32)(_val))&0x0000ff00)<<8) |\ ((((u32)(_val))&0x00ff0000)>>8) |\ ((((u32)(_val))&0xff000000)>>24)) #else #define H2N1BYTE(_val) ((u8)(_val)) #define H2N2BYTE(_val) ((u16)(_val)) #define H2N4BYTE(_val) ((u32)(_val)) #endif // Convert from Network byte ording (big endian) to Host system specific byte ording (litten or big endia). // 2006.05.07, by rcnjko. #if BYTE_ORDER == __MACHINE_LITTLE_ENDIAN #define N2H1BYTE(_val) ((u8)(_val)) #define N2H2BYTE(_val) (((((u16)(_val))&0x00ff)<<8)|\ ((((u16)(_val))&0xff00)>>8)) #define N2H4BYTE(_val) (((((u32)(_val))&0x000000ff)<<24)|\ ((((u32)(_val))&0x0000ff00)<<8) |\ ((((u32)(_val))&0x00ff0000)>>8) |\ ((((u32)(_val))&0xff000000)>>24)) #else #define N2H1BYTE(_val) ((u8)(_val)) #define N2H2BYTE(_val) ((u16)(_val)) #define N2H4BYTE(_val) ((u32)(_val)) #endif // // Example: // BIT_LEN_MASK_32(0) => 0x00000000 // BIT_LEN_MASK_32(1) => 0x00000001 // BIT_LEN_MASK_32(2) => 0x00000003 // BIT_LEN_MASK_32(32) => 0xFFFFFFFF // #define BIT_LEN_MASK_32(__BitLen) (0xFFFFFFFF >> (32 - (__BitLen))) // // Example: // BIT_OFFSET_LEN_MASK_32(0, 2) => 0x00000003 // BIT_OFFSET_LEN_MASK_32(16, 2) => 0x00030000 // #define BIT_OFFSET_LEN_MASK_32(__BitOffset, __BitLen) (BIT_LEN_MASK_32(__BitLen) << (__BitOffset)) // // Description: // Return 4-byte value in host byte ordering from // 4-byte pointer in litten-endian system. // #define LE_P4BYTE_TO_HOST_4BYTE(__pStart) (EF4Byte(*((u32 *)(__pStart)))) // // Description: // Translate subfield (continuous bits in little-endian) of 4-byte value in litten byte to // 4-byte value in host byte ordering. // #define LE_BITS_TO_4BYTE(__pStart, __BitOffset, __BitLen) \ ( \ ( LE_P4BYTE_TO_HOST_4BYTE(__pStart) >> (__BitOffset) ) \ & \ BIT_LEN_MASK_32(__BitLen) \ ) // // Description: // Mask subfield (continuous bits in little-endian) of 4-byte value in litten byte oredering // and return the result in 4-byte value in host byte ordering. // #define LE_BITS_CLEARED_TO_4BYTE(__pStart, __BitOffset, __BitLen) \ ( \ LE_P4BYTE_TO_HOST_4BYTE(__pStart) \ & \ ( ~BIT_OFFSET_LEN_MASK_32(__BitOffset, __BitLen) ) \ ) // // Description: // Set subfield of little-endian 4-byte value to specified value. // #define SET_BITS_TO_LE_4BYTE(__pStart, __BitOffset, __BitLen, __Value) \ *((u32 *)(__pStart)) = \ EF4Byte( \ LE_BITS_CLEARED_TO_4BYTE(__pStart, __BitOffset, __BitLen) \ | \ ( (((u32)__Value) & BIT_LEN_MASK_32(__BitLen)) << (__BitOffset) ) \ ); #define BIT_LEN_MASK_16(__BitLen) \ (0xFFFF >> (16 - (__BitLen))) #define BIT_OFFSET_LEN_MASK_16(__BitOffset, __BitLen) \ (BIT_LEN_MASK_16(__BitLen) << (__BitOffset)) #define LE_P2BYTE_TO_HOST_2BYTE(__pStart) \ (EF2Byte(*((u16 *)(__pStart)))) #define LE_BITS_TO_2BYTE(__pStart, __BitOffset, __BitLen) \ ( \ ( LE_P2BYTE_TO_HOST_2BYTE(__pStart) >> (__BitOffset) ) \ & \ BIT_LEN_MASK_16(__BitLen) \ ) #define LE_BITS_CLEARED_TO_2BYTE(__pStart, __BitOffset, __BitLen) \ ( \ LE_P2BYTE_TO_HOST_2BYTE(__pStart) \ & \ ( ~BIT_OFFSET_LEN_MASK_16(__BitOffset, __BitLen) ) \ ) #define SET_BITS_TO_LE_2BYTE(__pStart, __BitOffset, __BitLen, __Value) \ *((u16 *)(__pStart)) = \ EF2Byte( \ LE_BITS_CLEARED_TO_2BYTE(__pStart, __BitOffset, __BitLen) \ | \ ( (((u16)__Value) & BIT_LEN_MASK_16(__BitLen)) << (__BitOffset) ) \ ); #define BIT_LEN_MASK_8(__BitLen) \ (0xFF >> (8 - (__BitLen))) #define BIT_OFFSET_LEN_MASK_8(__BitOffset, __BitLen) \ (BIT_LEN_MASK_8(__BitLen) << (__BitOffset)) #define LE_P1BYTE_TO_HOST_1BYTE(__pStart) \ (EF1Byte(*((u8 *)(__pStart)))) #define LE_BITS_TO_1BYTE(__pStart, __BitOffset, __BitLen) \ ( \ ( LE_P1BYTE_TO_HOST_1BYTE(__pStart) >> (__BitOffset) ) \ & \ BIT_LEN_MASK_8(__BitLen) \ ) #define LE_BITS_CLEARED_TO_1BYTE(__pStart, __BitOffset, __BitLen) \ ( \ LE_P1BYTE_TO_HOST_1BYTE(__pStart) \ & \ ( ~BIT_OFFSET_LEN_MASK_8(__BitOffset, __BitLen) ) \ ) #define SET_BITS_TO_LE_1BYTE(__pStart, __BitOffset, __BitLen, __Value) \ *((u8 *)(__pStart)) = \ EF1Byte( \ LE_BITS_CLEARED_TO_1BYTE(__pStart, __BitOffset, __BitLen) \ | \ ( (((u8)__Value) & BIT_LEN_MASK_8(__BitLen)) << (__BitOffset) ) \ ); #endif // #ifndef __INC_ENDIANFREE_H