/* * Copyright (c) 1996, 2003 VIA Networking Technologies, Inc. * All rights reserved. * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License along * with this program; if not, write to the Free Software Foundation, Inc., * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. * * File: bssdb.c * * Purpose: Handles the Basic Service Set & Node Database functions * * Functions: * BSSpSearchBSSList - Search known BSS list for Desire SSID or BSSID * BSSvClearBSSList - Clear BSS List * BSSbInsertToBSSList - Insert a BSS set into known BSS list * BSSbUpdateToBSSList - Update BSS set in known BSS list * BSSbIsSTAInNodeDB - Search Node DB table to find the index of matched DstAddr * BSSvCreateOneNode - Allocate an Node for Node DB * BSSvUpdateAPNode - Update AP Node content in Index 0 of KnownNodeDB * BSSvSecondCallBack - One second timer callback function to update Node DB info & AP link status * BSSvUpdateNodeTxCounter - Update Tx attemps, Tx failure counter in Node DB for auto-fall back rate control * * Revision History: * * Author: Lyndon Chen * * Date: July 17, 2002 * */ #include "tmacro.h" #include "tether.h" #include "device.h" #include "80211hdr.h" #include "bssdb.h" #include "wmgr.h" #include "datarate.h" #include "desc.h" #include "wcmd.h" #include "wpa.h" #include "baseband.h" #include "rf.h" #include "card.h" #include "mac.h" #include "wpa2.h" #include "control.h" #include "rndis.h" #include "iowpa.h" static int msglevel =MSG_LEVEL_INFO; //static int msglevel =MSG_LEVEL_DEBUG; const u16 awHWRetry0[5][5] = { {RATE_18M, RATE_18M, RATE_12M, RATE_12M, RATE_12M}, {RATE_24M, RATE_24M, RATE_18M, RATE_12M, RATE_12M}, {RATE_36M, RATE_36M, RATE_24M, RATE_18M, RATE_18M}, {RATE_48M, RATE_48M, RATE_36M, RATE_24M, RATE_24M}, {RATE_54M, RATE_54M, RATE_48M, RATE_36M, RATE_36M} }; const u16 awHWRetry1[5][5] = { {RATE_18M, RATE_18M, RATE_12M, RATE_6M, RATE_6M}, {RATE_24M, RATE_24M, RATE_18M, RATE_6M, RATE_6M}, {RATE_36M, RATE_36M, RATE_24M, RATE_12M, RATE_12M}, {RATE_48M, RATE_48M, RATE_24M, RATE_12M, RATE_12M}, {RATE_54M, RATE_54M, RATE_36M, RATE_18M, RATE_18M} }; static void s_vCheckSensitivity(struct vnt_private *pDevice); static void s_vCheckPreEDThreshold(struct vnt_private *pDevice); static void s_uCalculateLinkQual(struct vnt_private *pDevice); /*+ * * Routine Description: * Search known BSS list for Desire SSID or BSSID. * * Return Value: * PTR to KnownBSS or NULL * -*/ PKnownBSS BSSpSearchBSSList(struct vnt_private *pDevice, u8 *pbyDesireBSSID, u8 *pbyDesireSSID, CARD_PHY_TYPE ePhyType) { struct vnt_manager *pMgmt = &pDevice->vnt_mgmt; u8 *pbyBSSID = NULL; PWLAN_IE_SSID pSSID = NULL; PKnownBSS pCurrBSS = NULL; PKnownBSS pSelect = NULL; u8 ZeroBSSID[WLAN_BSSID_LEN] = {0x00, 0x00, 0x00, 0x00, 0x00, 0x00}; int ii = 0; int jj = 0; if (pbyDesireBSSID != NULL) { DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO "BSSpSearchBSSList BSSID[%pM]\n", pbyDesireBSSID); if ((!is_broadcast_ether_addr(pbyDesireBSSID)) && (memcmp(pbyDesireBSSID, ZeroBSSID, 6)!= 0)){ pbyBSSID = pbyDesireBSSID; } } if (pbyDesireSSID != NULL) { if (((PWLAN_IE_SSID)pbyDesireSSID)->len != 0) { pSSID = (PWLAN_IE_SSID) pbyDesireSSID; } } if ((pbyBSSID != NULL)&&(pDevice->bRoaming == false)) { // match BSSID first for (ii = 0; ii sBSSList[ii]); pCurrBSS->bSelected = false; if ((pCurrBSS->bActive) && (pCurrBSS->bSelected == false)) { if (!compare_ether_addr(pCurrBSS->abyBSSID, pbyBSSID)) { if (pSSID != NULL) { // compare ssid if ( !memcmp(pSSID->abySSID, ((PWLAN_IE_SSID)pCurrBSS->abySSID)->abySSID, pSSID->len)) { if ((pMgmt->eConfigMode == WMAC_CONFIG_AUTO) || ((pMgmt->eConfigMode == WMAC_CONFIG_IBSS_STA) && WLAN_GET_CAP_INFO_IBSS(pCurrBSS->wCapInfo)) || ((pMgmt->eConfigMode == WMAC_CONFIG_ESS_STA) && WLAN_GET_CAP_INFO_ESS(pCurrBSS->wCapInfo)) ) { pCurrBSS->bSelected = true; return(pCurrBSS); } } } else { if ((pMgmt->eConfigMode == WMAC_CONFIG_AUTO) || ((pMgmt->eConfigMode == WMAC_CONFIG_IBSS_STA) && WLAN_GET_CAP_INFO_IBSS(pCurrBSS->wCapInfo)) || ((pMgmt->eConfigMode == WMAC_CONFIG_ESS_STA) && WLAN_GET_CAP_INFO_ESS(pCurrBSS->wCapInfo)) ) { pCurrBSS->bSelected = true; return(pCurrBSS); } } } } } } else { // ignore BSSID for (ii = 0; ii sBSSList[ii]); //2007-0721-01by MikeLiu // if ((pCurrBSS->bActive) && // (pCurrBSS->bSelected == false)) { pCurrBSS->bSelected = false; if (pCurrBSS->bActive) { if (pSSID != NULL) { // matched SSID if (memcmp(pSSID->abySSID, ((PWLAN_IE_SSID)pCurrBSS->abySSID)->abySSID, pSSID->len) || (pSSID->len != ((PWLAN_IE_SSID)pCurrBSS->abySSID)->len)) { // SSID not match skip this BSS continue; } } if (((pMgmt->eConfigMode == WMAC_CONFIG_IBSS_STA) && WLAN_GET_CAP_INFO_ESS(pCurrBSS->wCapInfo)) || ((pMgmt->eConfigMode == WMAC_CONFIG_ESS_STA) && WLAN_GET_CAP_INFO_IBSS(pCurrBSS->wCapInfo)) ){ // Type not match skip this BSS DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO"BSS type mismatch.... Config[%d] BSS[0x%04x]\n", pMgmt->eConfigMode, pCurrBSS->wCapInfo); continue; } if (ePhyType != PHY_TYPE_AUTO) { if (((ePhyType == PHY_TYPE_11A) && (PHY_TYPE_11A != pCurrBSS->eNetworkTypeInUse)) || ((ePhyType != PHY_TYPE_11A) && (PHY_TYPE_11A == pCurrBSS->eNetworkTypeInUse))) { // PhyType not match skip this BSS DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO"Physical type mismatch.... ePhyType[%d] BSS[%d]\n", ePhyType, pCurrBSS->eNetworkTypeInUse); continue; } } pMgmt->pSameBSS[jj].uChannel = pCurrBSS->uChannel; DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO "BSSpSearchBSSList pSelect1[%pM]\n", pCurrBSS->abyBSSID); jj++; if (pSelect == NULL) { pSelect = pCurrBSS; } else { // compare RSSI, select the strongest signal if (pCurrBSS->uRSSI < pSelect->uRSSI) { pSelect = pCurrBSS; } } } } pDevice->bSameBSSMaxNum = jj; if (pSelect != NULL) { pSelect->bSelected = true; if (pDevice->bRoaming == false) { // Einsn Add @20070907 memcpy(pbyDesireSSID,pCurrBSS->abySSID,WLAN_IEHDR_LEN + WLAN_SSID_MAXLEN + 1) ; } return(pSelect); } } return(NULL); } /*+ * * Routine Description: * Clear BSS List * * Return Value: * None. * -*/ void BSSvClearBSSList(struct vnt_private *pDevice, int bKeepCurrBSSID) { struct vnt_manager *pMgmt = &pDevice->vnt_mgmt; int ii; for (ii = 0; ii < MAX_BSS_NUM; ii++) { if (bKeepCurrBSSID) { if (pMgmt->sBSSList[ii].bActive && !compare_ether_addr(pMgmt->sBSSList[ii].abyBSSID, pMgmt->abyCurrBSSID)) { //mike mark: there are two BSSID's in list. If that AP is in hidden ssid mode, one SSID is null, // but other's might not be obvious, so if it associate's with your STA, // you must keep the two of them!! // bKeepCurrBSSID = false; continue; } } pMgmt->sBSSList[ii].bActive = false; memset(&pMgmt->sBSSList[ii], 0, sizeof(KnownBSS)); } BSSvClearAnyBSSJoinRecord(pDevice); } /*+ * * Routine Description: * search BSS list by BSSID & SSID if matched * * Return Value: * true if found. * -*/ PKnownBSS BSSpAddrIsInBSSList(struct vnt_private *pDevice, u8 *abyBSSID, PWLAN_IE_SSID pSSID) { struct vnt_manager *pMgmt = &pDevice->vnt_mgmt; PKnownBSS pBSSList = NULL; int ii; for (ii = 0; ii < MAX_BSS_NUM; ii++) { pBSSList = &(pMgmt->sBSSList[ii]); if (pBSSList->bActive) { if (!compare_ether_addr(pBSSList->abyBSSID, abyBSSID)) { if (pSSID->len == ((PWLAN_IE_SSID)pBSSList->abySSID)->len){ if (memcmp(pSSID->abySSID, ((PWLAN_IE_SSID)pBSSList->abySSID)->abySSID, pSSID->len) == 0) return pBSSList; } } } } return NULL; }; /*+ * * Routine Description: * Insert a BSS set into known BSS list * * Return Value: * true if success. * -*/ int BSSbInsertToBSSList(struct vnt_private *pDevice, u8 *abyBSSIDAddr, u64 qwTimestamp, u16 wBeaconInterval, u16 wCapInfo, u8 byCurrChannel, PWLAN_IE_SSID pSSID, PWLAN_IE_SUPP_RATES pSuppRates, PWLAN_IE_SUPP_RATES pExtSuppRates, PERPObject psERP, PWLAN_IE_RSN pRSN, PWLAN_IE_RSN_EXT pRSNWPA, PWLAN_IE_COUNTRY pIE_Country, PWLAN_IE_QUIET pIE_Quiet, u32 uIELength, u8 *pbyIEs, void *pRxPacketContext) { struct vnt_manager *pMgmt = &pDevice->vnt_mgmt; struct vnt_rx_mgmt *pRxPacket = (struct vnt_rx_mgmt *)pRxPacketContext; PKnownBSS pBSSList = NULL; unsigned int ii; bool bParsingQuiet = false; pBSSList = (PKnownBSS)&(pMgmt->sBSSList[0]); for (ii = 0; ii < MAX_BSS_NUM; ii++) { pBSSList = (PKnownBSS)&(pMgmt->sBSSList[ii]); if (!pBSSList->bActive) break; } if (ii == MAX_BSS_NUM){ DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO "Get free KnowBSS node failed.\n"); return false; } // save the BSS info pBSSList->bActive = true; memcpy( pBSSList->abyBSSID, abyBSSIDAddr, WLAN_BSSID_LEN); pBSSList->qwBSSTimestamp = cpu_to_le64(qwTimestamp); pBSSList->wBeaconInterval = cpu_to_le16(wBeaconInterval); pBSSList->wCapInfo = cpu_to_le16(wCapInfo); pBSSList->uClearCount = 0; if (pSSID->len > WLAN_SSID_MAXLEN) pSSID->len = WLAN_SSID_MAXLEN; memcpy( pBSSList->abySSID, pSSID, pSSID->len + WLAN_IEHDR_LEN); pBSSList->uChannel = byCurrChannel; if (pSuppRates->len > WLAN_RATES_MAXLEN) pSuppRates->len = WLAN_RATES_MAXLEN; memcpy( pBSSList->abySuppRates, pSuppRates, pSuppRates->len + WLAN_IEHDR_LEN); if (pExtSuppRates != NULL) { if (pExtSuppRates->len > WLAN_RATES_MAXLEN) pExtSuppRates->len = WLAN_RATES_MAXLEN; memcpy(pBSSList->abyExtSuppRates, pExtSuppRates, pExtSuppRates->len + WLAN_IEHDR_LEN); DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO"BSSbInsertToBSSList: pExtSuppRates->len = %d\n", pExtSuppRates->len); } else { memset(pBSSList->abyExtSuppRates, 0, WLAN_IEHDR_LEN + WLAN_RATES_MAXLEN + 1); } pBSSList->sERP.byERP = psERP->byERP; pBSSList->sERP.bERPExist = psERP->bERPExist; // Check if BSS is 802.11a/b/g if (pBSSList->uChannel > CB_MAX_CHANNEL_24G) { pBSSList->eNetworkTypeInUse = PHY_TYPE_11A; } else { if (pBSSList->sERP.bERPExist == true) { pBSSList->eNetworkTypeInUse = PHY_TYPE_11G; } else { pBSSList->eNetworkTypeInUse = PHY_TYPE_11B; } } pBSSList->byRxRate = pRxPacket->byRxRate; pBSSList->qwLocalTSF = pRxPacket->qwLocalTSF; pBSSList->uRSSI = pRxPacket->uRSSI; pBSSList->bySQ = pRxPacket->bySQ; if ((pMgmt->eCurrMode == WMAC_MODE_ESS_STA) && (pMgmt->eCurrState == WMAC_STATE_ASSOC)) { // assoc with BSS if (pBSSList == pMgmt->pCurrBSS) { bParsingQuiet = true; } } WPA_ClearRSN(pBSSList); if (pRSNWPA != NULL) { unsigned int uLen = pRSNWPA->len + 2; if (uLen <= (uIELength - (unsigned int) (u32) ((u8 *) pRSNWPA - pbyIEs))) { pBSSList->wWPALen = uLen; memcpy(pBSSList->byWPAIE, pRSNWPA, uLen); WPA_ParseRSN(pBSSList, pRSNWPA); } } WPA2_ClearRSN(pBSSList); if (pRSN != NULL) { unsigned int uLen = pRSN->len + 2; if (uLen <= (uIELength - (unsigned int) (u32) ((u8 *) pRSN - pbyIEs))) { pBSSList->wRSNLen = uLen; memcpy(pBSSList->byRSNIE, pRSN, uLen); WPA2vParseRSN(pBSSList, pRSN); } } if ((pMgmt->eAuthenMode == WMAC_AUTH_WPA2) || (pBSSList->bWPA2Valid == true)) { PSKeyItem pTransmitKey = NULL; bool bIs802_1x = false; for (ii = 0; ii < pBSSList->wAKMSSAuthCount; ii ++) { if (pBSSList->abyAKMSSAuthType[ii] == WLAN_11i_AKMSS_802_1X) { bIs802_1x = true; break; } } if ((bIs802_1x == true) && (pSSID->len == ((PWLAN_IE_SSID)pMgmt->abyDesireSSID)->len) && ( !memcmp(pSSID->abySSID, ((PWLAN_IE_SSID)pMgmt->abyDesireSSID)->abySSID, pSSID->len))) { bAdd_PMKID_Candidate((void *) pDevice, pBSSList->abyBSSID, &pBSSList->sRSNCapObj); if ((pDevice->bLinkPass == true) && (pMgmt->eCurrState == WMAC_STATE_ASSOC)) { if ((KeybGetTransmitKey(&(pDevice->sKey), pDevice->abyBSSID, PAIRWISE_KEY, &pTransmitKey) == true) || (KeybGetTransmitKey(&(pDevice->sKey), pDevice->abyBSSID, GROUP_KEY, &pTransmitKey) == true)) { pDevice->gsPMKIDCandidate.StatusType = Ndis802_11StatusType_PMKID_CandidateList; pDevice->gsPMKIDCandidate.Version = 1; } } } } if (pDevice->bUpdateBBVGA) { // Monitor if RSSI is too strong. pBSSList->byRSSIStatCnt = 0; RFvRSSITodBm(pDevice, (u8)(pRxPacket->uRSSI), &pBSSList->ldBmMAX); pBSSList->ldBmAverage[0] = pBSSList->ldBmMAX; pBSSList->ldBmAverRange = pBSSList->ldBmMAX; for (ii = 1; ii < RSSI_STAT_COUNT; ii++) pBSSList->ldBmAverage[ii] = 0; } pBSSList->uIELength = uIELength; if (pBSSList->uIELength > WLAN_BEACON_FR_MAXLEN) pBSSList->uIELength = WLAN_BEACON_FR_MAXLEN; memcpy(pBSSList->abyIEs, pbyIEs, pBSSList->uIELength); return true; } /*+ * * Routine Description: * Update BSS set in known BSS list * * Return Value: * true if success. * -*/ // TODO: input structure modify int BSSbUpdateToBSSList(struct vnt_private *pDevice, u64 qwTimestamp, u16 wBeaconInterval, u16 wCapInfo, u8 byCurrChannel, int bChannelHit, PWLAN_IE_SSID pSSID, PWLAN_IE_SUPP_RATES pSuppRates, PWLAN_IE_SUPP_RATES pExtSuppRates, PERPObject psERP, PWLAN_IE_RSN pRSN, PWLAN_IE_RSN_EXT pRSNWPA, PWLAN_IE_COUNTRY pIE_Country, PWLAN_IE_QUIET pIE_Quiet, PKnownBSS pBSSList, u32 uIELength, u8 *pbyIEs, void *pRxPacketContext) { struct vnt_manager *pMgmt = &pDevice->vnt_mgmt; struct vnt_rx_mgmt *pRxPacket = (struct vnt_rx_mgmt *)pRxPacketContext; int ii, jj; signed long ldBm, ldBmSum; bool bParsingQuiet = false; if (pBSSList == NULL) return false; pBSSList->qwBSSTimestamp = cpu_to_le64(qwTimestamp); pBSSList->wBeaconInterval = cpu_to_le16(wBeaconInterval); pBSSList->wCapInfo = cpu_to_le16(wCapInfo); pBSSList->uClearCount = 0; pBSSList->uChannel = byCurrChannel; if (pSSID->len > WLAN_SSID_MAXLEN) pSSID->len = WLAN_SSID_MAXLEN; if ((pSSID->len != 0) && (pSSID->abySSID[0] != 0)) memcpy(pBSSList->abySSID, pSSID, pSSID->len + WLAN_IEHDR_LEN); memcpy(pBSSList->abySuppRates, pSuppRates,pSuppRates->len + WLAN_IEHDR_LEN); if (pExtSuppRates != NULL) { memcpy(pBSSList->abyExtSuppRates, pExtSuppRates,pExtSuppRates->len + WLAN_IEHDR_LEN); } else { memset(pBSSList->abyExtSuppRates, 0, WLAN_IEHDR_LEN + WLAN_RATES_MAXLEN + 1); } pBSSList->sERP.byERP = psERP->byERP; pBSSList->sERP.bERPExist = psERP->bERPExist; // Check if BSS is 802.11a/b/g if (pBSSList->uChannel > CB_MAX_CHANNEL_24G) { pBSSList->eNetworkTypeInUse = PHY_TYPE_11A; } else { if (pBSSList->sERP.bERPExist == true) { pBSSList->eNetworkTypeInUse = PHY_TYPE_11G; } else { pBSSList->eNetworkTypeInUse = PHY_TYPE_11B; } } pBSSList->byRxRate = pRxPacket->byRxRate; pBSSList->qwLocalTSF = pRxPacket->qwLocalTSF; if(bChannelHit) pBSSList->uRSSI = pRxPacket->uRSSI; pBSSList->bySQ = pRxPacket->bySQ; if ((pMgmt->eCurrMode == WMAC_MODE_ESS_STA) && (pMgmt->eCurrState == WMAC_STATE_ASSOC)) { // assoc with BSS if (pBSSList == pMgmt->pCurrBSS) { bParsingQuiet = true; } } WPA_ClearRSN(pBSSList); //mike update if (pRSNWPA != NULL) { unsigned int uLen = pRSNWPA->len + 2; if (uLen <= (uIELength - (unsigned int) (u32) ((u8 *) pRSNWPA - pbyIEs))) { pBSSList->wWPALen = uLen; memcpy(pBSSList->byWPAIE, pRSNWPA, uLen); WPA_ParseRSN(pBSSList, pRSNWPA); } } WPA2_ClearRSN(pBSSList); //mike update if (pRSN != NULL) { unsigned int uLen = pRSN->len + 2; if (uLen <= (uIELength - (unsigned int) (u32) ((u8 *) pRSN - pbyIEs))) { pBSSList->wRSNLen = uLen; memcpy(pBSSList->byRSNIE, pRSN, uLen); WPA2vParseRSN(pBSSList, pRSN); } } if (pRxPacket->uRSSI != 0) { RFvRSSITodBm(pDevice, (u8)(pRxPacket->uRSSI), &ldBm); // Monitor if RSSI is too strong. pBSSList->byRSSIStatCnt++; pBSSList->byRSSIStatCnt %= RSSI_STAT_COUNT; pBSSList->ldBmAverage[pBSSList->byRSSIStatCnt] = ldBm; ldBmSum = 0; for (ii = 0, jj = 0; ii < RSSI_STAT_COUNT; ii++) { if (pBSSList->ldBmAverage[ii] != 0) { pBSSList->ldBmMAX = max(pBSSList->ldBmAverage[ii], ldBm); ldBmSum += pBSSList->ldBmAverage[ii]; jj++; } } pBSSList->ldBmAverRange = ldBmSum /jj; } pBSSList->uIELength = uIELength; if (pBSSList->uIELength > WLAN_BEACON_FR_MAXLEN) pBSSList->uIELength = WLAN_BEACON_FR_MAXLEN; memcpy(pBSSList->abyIEs, pbyIEs, pBSSList->uIELength); return true; } /*+ * * Routine Description: * Search Node DB table to find the index of matched DstAddr * * Return Value: * None * -*/ int BSSbIsSTAInNodeDB(struct vnt_private *pDevice, u8 *abyDstAddr, u32 *puNodeIndex) { struct vnt_manager *pMgmt = &pDevice->vnt_mgmt; unsigned int ii; // Index = 0 reserved for AP Node for (ii = 1; ii < (MAX_NODE_NUM + 1); ii++) { if (pMgmt->sNodeDBTable[ii].bActive) { if (!compare_ether_addr(abyDstAddr, pMgmt->sNodeDBTable[ii].abyMACAddr)) { *puNodeIndex = ii; return true; } } } return false; }; /*+ * * Routine Description: * Find an empty node and allocate it; if no empty node * is found, then use the most inactive one. * * Return Value: * None * -*/ void BSSvCreateOneNode(struct vnt_private *pDevice, u32 *puNodeIndex) { struct vnt_manager *pMgmt = &pDevice->vnt_mgmt; int ii; u32 BigestCount = 0; u32 SelectIndex; struct sk_buff *skb; // Index = 0 reserved for AP Node (In STA mode) // Index = 0 reserved for Broadcast/MultiCast (In AP mode) SelectIndex = 1; for (ii = 1; ii < (MAX_NODE_NUM + 1); ii++) { if (pMgmt->sNodeDBTable[ii].bActive) { if (pMgmt->sNodeDBTable[ii].uInActiveCount > BigestCount) { BigestCount = pMgmt->sNodeDBTable[ii].uInActiveCount; SelectIndex = ii; } } else { break; } } // if not found replace uInActiveCount with the largest one. if ( ii == (MAX_NODE_NUM + 1)) { *puNodeIndex = SelectIndex; DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO "Replace inactive node = %d\n", SelectIndex); // clear ps buffer if (pMgmt->sNodeDBTable[*puNodeIndex].sTxPSQueue.next != NULL) { while ((skb = skb_dequeue(&pMgmt->sNodeDBTable[*puNodeIndex].sTxPSQueue)) != NULL) dev_kfree_skb(skb); } } else { *puNodeIndex = ii; } memset(&pMgmt->sNodeDBTable[*puNodeIndex], 0, sizeof(KnownNodeDB)); pMgmt->sNodeDBTable[*puNodeIndex].bActive = true; pMgmt->sNodeDBTable[*puNodeIndex].uRatePollTimeout = FALLBACK_POLL_SECOND; // for AP mode PS queue skb_queue_head_init(&pMgmt->sNodeDBTable[*puNodeIndex].sTxPSQueue); pMgmt->sNodeDBTable[*puNodeIndex].byAuthSequence = 0; pMgmt->sNodeDBTable[*puNodeIndex].wEnQueueCnt = 0; DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO "Create node index = %d\n", ii); }; /*+ * * Routine Description: * Remove Node by NodeIndex * * * Return Value: * None * -*/ void BSSvRemoveOneNode(struct vnt_private *pDevice, u32 uNodeIndex) { struct vnt_manager *pMgmt = &pDevice->vnt_mgmt; u8 byMask[8] = {1, 2, 4, 8, 0x10, 0x20, 0x40, 0x80}; struct sk_buff *skb; while ((skb = skb_dequeue(&pMgmt->sNodeDBTable[uNodeIndex].sTxPSQueue)) != NULL) dev_kfree_skb(skb); // clear context memset(&pMgmt->sNodeDBTable[uNodeIndex], 0, sizeof(KnownNodeDB)); // clear tx bit map pMgmt->abyPSTxMap[pMgmt->sNodeDBTable[uNodeIndex].wAID >> 3] &= ~byMask[pMgmt->sNodeDBTable[uNodeIndex].wAID & 7]; }; /*+ * * Routine Description: * Update AP Node content in Index 0 of KnownNodeDB * * * Return Value: * None * -*/ void BSSvUpdateAPNode(struct vnt_private *pDevice, u16 *pwCapInfo, PWLAN_IE_SUPP_RATES pSuppRates, PWLAN_IE_SUPP_RATES pExtSuppRates) { struct vnt_manager *pMgmt = &pDevice->vnt_mgmt; u32 uRateLen = WLAN_RATES_MAXLEN; memset(&pMgmt->sNodeDBTable[0], 0, sizeof(KnownNodeDB)); pMgmt->sNodeDBTable[0].bActive = true; if (pDevice->byBBType == BB_TYPE_11B) { uRateLen = WLAN_RATES_MAXLEN_11B; } pMgmt->abyCurrSuppRates[1] = RATEuSetIE((PWLAN_IE_SUPP_RATES)pSuppRates, (PWLAN_IE_SUPP_RATES)pMgmt->abyCurrSuppRates, uRateLen); pMgmt->abyCurrExtSuppRates[1] = RATEuSetIE((PWLAN_IE_SUPP_RATES)pExtSuppRates, (PWLAN_IE_SUPP_RATES)pMgmt->abyCurrExtSuppRates, uRateLen); RATEvParseMaxRate((void *) pDevice, (PWLAN_IE_SUPP_RATES)pMgmt->abyCurrSuppRates, (PWLAN_IE_SUPP_RATES)pMgmt->abyCurrExtSuppRates, true, &(pMgmt->sNodeDBTable[0].wMaxBasicRate), &(pMgmt->sNodeDBTable[0].wMaxSuppRate), &(pMgmt->sNodeDBTable[0].wSuppRate), &(pMgmt->sNodeDBTable[0].byTopCCKBasicRate), &(pMgmt->sNodeDBTable[0].byTopOFDMBasicRate) ); memcpy(pMgmt->sNodeDBTable[0].abyMACAddr, pMgmt->abyCurrBSSID, WLAN_ADDR_LEN); pMgmt->sNodeDBTable[0].wTxDataRate = pMgmt->sNodeDBTable[0].wMaxSuppRate; pMgmt->sNodeDBTable[0].bShortPreamble = WLAN_GET_CAP_INFO_SHORTPREAMBLE(*pwCapInfo); pMgmt->sNodeDBTable[0].uRatePollTimeout = FALLBACK_POLL_SECOND; // Auto rate fallback function initiation. // RATEbInit(pDevice); DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO"pMgmt->sNodeDBTable[0].wTxDataRate = %d \n", pMgmt->sNodeDBTable[0].wTxDataRate); }; /*+ * * Routine Description: * Add Multicast Node content in Index 0 of KnownNodeDB * * * Return Value: * None * -*/ void BSSvAddMulticastNode(struct vnt_private *pDevice) { struct vnt_manager *pMgmt = &pDevice->vnt_mgmt; if (!pDevice->bEnableHostWEP) memset(&pMgmt->sNodeDBTable[0], 0, sizeof(KnownNodeDB)); memset(pMgmt->sNodeDBTable[0].abyMACAddr, 0xff, WLAN_ADDR_LEN); pMgmt->sNodeDBTable[0].bActive = true; pMgmt->sNodeDBTable[0].bPSEnable = false; skb_queue_head_init(&pMgmt->sNodeDBTable[0].sTxPSQueue); RATEvParseMaxRate((void *) pDevice, (PWLAN_IE_SUPP_RATES)pMgmt->abyCurrSuppRates, (PWLAN_IE_SUPP_RATES)pMgmt->abyCurrExtSuppRates, true, &(pMgmt->sNodeDBTable[0].wMaxBasicRate), &(pMgmt->sNodeDBTable[0].wMaxSuppRate), &(pMgmt->sNodeDBTable[0].wSuppRate), &(pMgmt->sNodeDBTable[0].byTopCCKBasicRate), &(pMgmt->sNodeDBTable[0].byTopOFDMBasicRate) ); pMgmt->sNodeDBTable[0].wTxDataRate = pMgmt->sNodeDBTable[0].wMaxBasicRate; pMgmt->sNodeDBTable[0].uRatePollTimeout = FALLBACK_POLL_SECOND; }; /*+ * * Routine Description: * * * Second call back function to update Node DB info & AP link status * * * Return Value: * none. * -*/ void BSSvSecondCallBack(struct vnt_private *pDevice) { struct vnt_manager *pMgmt = &pDevice->vnt_mgmt; int ii; PWLAN_IE_SSID pItemSSID, pCurrSSID; u32 uSleepySTACnt = 0; u32 uNonShortSlotSTACnt = 0; u32 uLongPreambleSTACnt = 0; spin_lock_irq(&pDevice->lock); pDevice->uAssocCount = 0; //Power Saving Mode Tx Burst if ( pDevice->bEnablePSMode == true ) { pDevice->ulPSModeWaitTx++; if ( pDevice->ulPSModeWaitTx >= 2 ) { pDevice->ulPSModeWaitTx = 0; pDevice->bPSModeTxBurst = false; } } pDevice->byERPFlag &= ~(WLAN_SET_ERP_BARKER_MODE(1) | WLAN_SET_ERP_NONERP_PRESENT(1)); if (pDevice->wUseProtectCntDown > 0) { pDevice->wUseProtectCntDown --; } else { // disable protect mode pDevice->byERPFlag &= ~(WLAN_SET_ERP_USE_PROTECTION(1)); } if(pDevice->byReAssocCount > 0) { pDevice->byReAssocCount++; if((pDevice->byReAssocCount > 10) && (pDevice->bLinkPass != true)) { //10 sec timeout printk("Re-association timeout!!!\n"); pDevice->byReAssocCount = 0; // if(pDevice->bWPASuppWextEnabled == true) { union iwreq_data wrqu; memset(&wrqu, 0, sizeof (wrqu)); wrqu.ap_addr.sa_family = ARPHRD_ETHER; PRINT_K("wireless_send_event--->SIOCGIWAP(disassociated)\n"); wireless_send_event(pDevice->dev, SIOCGIWAP, &wrqu, NULL); } } else if(pDevice->bLinkPass == true) pDevice->byReAssocCount = 0; } pMgmt->eLastState = pMgmt->eCurrState ; s_uCalculateLinkQual(pDevice); for (ii = 0; ii < (MAX_NODE_NUM + 1); ii++) { if (pMgmt->sNodeDBTable[ii].bActive) { // Increase in-activity counter pMgmt->sNodeDBTable[ii].uInActiveCount++; if (ii > 0) { if (pMgmt->sNodeDBTable[ii].uInActiveCount > MAX_INACTIVE_COUNT) { BSSvRemoveOneNode(pDevice, ii); DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO "Inactive timeout [%d] sec, STA index = [%d] remove\n", MAX_INACTIVE_COUNT, ii); continue; } if (pMgmt->sNodeDBTable[ii].eNodeState >= NODE_ASSOC) { pDevice->uAssocCount++; // check if Non ERP exist if (pMgmt->sNodeDBTable[ii].uInActiveCount < ERP_RECOVER_COUNT) { if (!pMgmt->sNodeDBTable[ii].bShortPreamble) { pDevice->byERPFlag |= WLAN_SET_ERP_BARKER_MODE(1); uLongPreambleSTACnt ++; } if (!pMgmt->sNodeDBTable[ii].bERPExist) { pDevice->byERPFlag |= WLAN_SET_ERP_NONERP_PRESENT(1); pDevice->byERPFlag |= WLAN_SET_ERP_USE_PROTECTION(1); } if (!pMgmt->sNodeDBTable[ii].bShortSlotTime) uNonShortSlotSTACnt++; } } // check if any STA in PS mode if (pMgmt->sNodeDBTable[ii].bPSEnable) uSleepySTACnt++; } // Rate fallback check if (!pDevice->bFixRate) { if (ii > 0) { // ii = 0 for multicast node (AP & Adhoc) RATEvTxRateFallBack((void *)pDevice, &(pMgmt->sNodeDBTable[ii])); } else { // ii = 0 reserved for unicast AP node (Infra STA) if (pMgmt->eCurrMode == WMAC_MODE_ESS_STA) RATEvTxRateFallBack((void *)pDevice, &(pMgmt->sNodeDBTable[ii])); } } // check if pending PS queue if (pMgmt->sNodeDBTable[ii].wEnQueueCnt != 0) { DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO "Index= %d, Queue = %d pending \n", ii, pMgmt->sNodeDBTable[ii].wEnQueueCnt); if ((ii >0) && (pMgmt->sNodeDBTable[ii].wEnQueueCnt > 15)) { BSSvRemoveOneNode(pDevice, ii); DBG_PRT(MSG_LEVEL_NOTICE, KERN_INFO "Pending many queues PS STA Index = %d remove \n", ii); continue; } } } } if ((pMgmt->eCurrMode == WMAC_MODE_ESS_AP) && (pDevice->byBBType == BB_TYPE_11G)) { // on/off protect mode if (WLAN_GET_ERP_USE_PROTECTION(pDevice->byERPFlag)) { if (!pDevice->bProtectMode) { MACvEnableProtectMD(pDevice); pDevice->bProtectMode = true; } } else { if (pDevice->bProtectMode) { MACvDisableProtectMD(pDevice); pDevice->bProtectMode = false; } } // on/off short slot time if (uNonShortSlotSTACnt > 0) { if (pDevice->bShortSlotTime) { pDevice->bShortSlotTime = false; BBvSetShortSlotTime(pDevice); vUpdateIFS((void *)pDevice); } } else { if (!pDevice->bShortSlotTime) { pDevice->bShortSlotTime = true; BBvSetShortSlotTime(pDevice); vUpdateIFS((void *)pDevice); } } // on/off barker long preamble mode if (uLongPreambleSTACnt > 0) { if (!pDevice->bBarkerPreambleMd) { MACvEnableBarkerPreambleMd(pDevice); pDevice->bBarkerPreambleMd = true; } } else { if (pDevice->bBarkerPreambleMd) { MACvDisableBarkerPreambleMd(pDevice); pDevice->bBarkerPreambleMd = false; } } } // Check if any STA in PS mode, enable DTIM multicast deliver if (pMgmt->eCurrMode == WMAC_MODE_ESS_AP) { if (uSleepySTACnt > 0) pMgmt->sNodeDBTable[0].bPSEnable = true; else pMgmt->sNodeDBTable[0].bPSEnable = false; } pItemSSID = (PWLAN_IE_SSID)pMgmt->abyDesireSSID; pCurrSSID = (PWLAN_IE_SSID)pMgmt->abyCurrSSID; if ((pMgmt->eCurrMode == WMAC_MODE_STANDBY) || (pMgmt->eCurrMode == WMAC_MODE_ESS_STA)) { if (pMgmt->sNodeDBTable[0].bActive) { // Assoc with BSS if (pDevice->bUpdateBBVGA) { s_vCheckSensitivity(pDevice); s_vCheckPreEDThreshold(pDevice); } if ((pMgmt->sNodeDBTable[0].uInActiveCount >= (LOST_BEACON_COUNT/2)) && (pDevice->byBBVGACurrent != pDevice->abyBBVGA[0]) ) { pDevice->byBBVGANew = pDevice->abyBBVGA[0]; bScheduleCommand((void *) pDevice, WLAN_CMD_CHANGE_BBSENSITIVITY, NULL); } if (pMgmt->sNodeDBTable[0].uInActiveCount >= LOST_BEACON_COUNT) { pMgmt->sNodeDBTable[0].bActive = false; pMgmt->eCurrMode = WMAC_MODE_STANDBY; pMgmt->eCurrState = WMAC_STATE_IDLE; netif_stop_queue(pDevice->dev); pDevice->bLinkPass = false; ControlvMaskByte(pDevice,MESSAGE_REQUEST_MACREG,MAC_REG_PAPEDELAY,LEDSTS_STS,LEDSTS_SLOW); pDevice->bRoaming = true; pDevice->bIsRoaming = false; DBG_PRT(MSG_LEVEL_NOTICE, KERN_INFO "Lost AP beacon [%d] sec, disconnected !\n", pMgmt->sNodeDBTable[0].uInActiveCount); /* let wpa supplicant know AP may disconnect */ { union iwreq_data wrqu; memset(&wrqu, 0, sizeof (wrqu)); wrqu.ap_addr.sa_family = ARPHRD_ETHER; PRINT_K("wireless_send_event--->SIOCGIWAP(disassociated)\n"); wireless_send_event(pDevice->dev, SIOCGIWAP, &wrqu, NULL); } } } else if (pItemSSID->len != 0) { //Davidwang if ((pDevice->bEnableRoaming == true)&&(!(pMgmt->Cisco_cckm))) { DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO "bRoaming %d, !\n", pDevice->bRoaming ); DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO "bIsRoaming %d, !\n", pDevice->bIsRoaming ); if ((pDevice->bRoaming == true)&&(pDevice->bIsRoaming == true)){ DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO "Fast Roaming ...\n"); BSSvClearBSSList((void *) pDevice, pDevice->bLinkPass); bScheduleCommand((void *) pDevice, WLAN_CMD_BSSID_SCAN, pMgmt->abyDesireSSID); bScheduleCommand((void *) pDevice, WLAN_CMD_SSID, pMgmt->abyDesireSSID); pDevice->uAutoReConnectTime = 0; pDevice->uIsroamingTime = 0; pDevice->bRoaming = false; } else if ((pDevice->bRoaming == false)&&(pDevice->bIsRoaming == true)) { pDevice->uIsroamingTime++; if (pDevice->uIsroamingTime >= 20) pDevice->bIsRoaming = false; } } else { if (pDevice->uAutoReConnectTime < 10) { pDevice->uAutoReConnectTime++; //network manager support need not do Roaming scan??? if(pDevice->bWPASuppWextEnabled ==true) pDevice->uAutoReConnectTime = 0; } else { //mike use old encryption status for wpa reauthen if(pDevice->bWPADEVUp) pDevice->eEncryptionStatus = pDevice->eOldEncryptionStatus; DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO "Roaming ...\n"); BSSvClearBSSList((void *) pDevice, pDevice->bLinkPass); pMgmt->eScanType = WMAC_SCAN_ACTIVE; bScheduleCommand((void *) pDevice, WLAN_CMD_BSSID_SCAN, pMgmt->abyDesireSSID); bScheduleCommand((void *) pDevice, WLAN_CMD_SSID, pMgmt->abyDesireSSID); pDevice->uAutoReConnectTime = 0; } } } } if (pMgmt->eCurrMode == WMAC_MODE_IBSS_STA) { // if adhoc started which essid is NULL string, rescanning. if ((pMgmt->eCurrState == WMAC_STATE_STARTED) && (pCurrSSID->len == 0)) { if (pDevice->uAutoReConnectTime < 10) { pDevice->uAutoReConnectTime++; } else { DBG_PRT(MSG_LEVEL_NOTICE, KERN_INFO "Adhoc re-scanning ...\n"); pMgmt->eScanType = WMAC_SCAN_ACTIVE; bScheduleCommand((void *) pDevice, WLAN_CMD_BSSID_SCAN, NULL); bScheduleCommand((void *) pDevice, WLAN_CMD_SSID, NULL); pDevice->uAutoReConnectTime = 0; }; } if (pMgmt->eCurrState == WMAC_STATE_JOINTED) { if (pDevice->bUpdateBBVGA) { s_vCheckSensitivity(pDevice); s_vCheckPreEDThreshold(pDevice); } if (pMgmt->sNodeDBTable[0].uInActiveCount >=ADHOC_LOST_BEACON_COUNT) { DBG_PRT(MSG_LEVEL_NOTICE, KERN_INFO "Lost other STA beacon [%d] sec, started !\n", pMgmt->sNodeDBTable[0].uInActiveCount); pMgmt->sNodeDBTable[0].uInActiveCount = 0; pMgmt->eCurrState = WMAC_STATE_STARTED; netif_stop_queue(pDevice->dev); pDevice->bLinkPass = false; ControlvMaskByte(pDevice,MESSAGE_REQUEST_MACREG,MAC_REG_PAPEDELAY,LEDSTS_STS,LEDSTS_SLOW); } } } if (pDevice->bLinkPass == true) { if (netif_queue_stopped(pDevice->dev)) netif_wake_queue(pDevice->dev); } spin_unlock_irq(&pDevice->lock); pMgmt->sTimerSecondCallback.expires = RUN_AT(HZ); add_timer(&pMgmt->sTimerSecondCallback); } /*+ * * Routine Description: * * * Update Tx attemps, Tx failure counter in Node DB * * * Return Value: * none. * -*/ void BSSvUpdateNodeTxCounter(struct vnt_private *pDevice, PSStatCounter pStatistic, u8 byTSR, u8 byPktNO) { struct vnt_manager *pMgmt = &pDevice->vnt_mgmt; u32 uNodeIndex = 0; u8 byTxRetry; u16 wRate; u16 wFallBackRate = RATE_1M; u8 byFallBack; int ii; u8 *pbyDestAddr; u8 byPktNum; u16 wFIFOCtl; byPktNum = (byPktNO & 0x0F) >> 4; byTxRetry = (byTSR & 0xF0) >> 4; wRate = (u16) (byPktNO & 0xF0) >> 4; wFIFOCtl = pStatistic->abyTxPktInfo[byPktNum].wFIFOCtl; pbyDestAddr = (u8 *) &( pStatistic->abyTxPktInfo[byPktNum].abyDestAddr[0]); if (wFIFOCtl & FIFOCTL_AUTO_FB_0) { byFallBack = AUTO_FB_0; } else if (wFIFOCtl & FIFOCTL_AUTO_FB_1) { byFallBack = AUTO_FB_1; } else { byFallBack = AUTO_FB_NONE; } // Only Unicast using support rates if (wFIFOCtl & FIFOCTL_NEEDACK) { if (pMgmt->eCurrMode == WMAC_MODE_ESS_STA) { pMgmt->sNodeDBTable[0].uTxAttempts += 1; if ( !(byTSR & (TSR_TMO | TSR_RETRYTMO))) { // transmit success, TxAttempts at least plus one pMgmt->sNodeDBTable[0].uTxOk[MAX_RATE]++; if ( (byFallBack == AUTO_FB_NONE) || (wRate < RATE_18M) ) { wFallBackRate = wRate; } else if (byFallBack == AUTO_FB_0) { if (byTxRetry < 5) wFallBackRate = awHWRetry0[wRate-RATE_18M][byTxRetry]; else wFallBackRate = awHWRetry0[wRate-RATE_18M][4]; } else if (byFallBack == AUTO_FB_1) { if (byTxRetry < 5) wFallBackRate = awHWRetry1[wRate-RATE_18M][byTxRetry]; else wFallBackRate = awHWRetry1[wRate-RATE_18M][4]; } pMgmt->sNodeDBTable[0].uTxOk[wFallBackRate]++; } else { pMgmt->sNodeDBTable[0].uTxFailures ++; } pMgmt->sNodeDBTable[0].uTxRetry += byTxRetry; if (byTxRetry != 0) { pMgmt->sNodeDBTable[0].uTxFail[MAX_RATE]+=byTxRetry; if ( (byFallBack == AUTO_FB_NONE) || (wRate < RATE_18M) ) { pMgmt->sNodeDBTable[0].uTxFail[wRate]+=byTxRetry; } else if (byFallBack == AUTO_FB_0) { for (ii = 0; ii < byTxRetry; ii++) { if (ii < 5) wFallBackRate = awHWRetry0[wRate-RATE_18M][ii]; else wFallBackRate = awHWRetry0[wRate-RATE_18M][4]; pMgmt->sNodeDBTable[0].uTxFail[wFallBackRate]++; } } else if (byFallBack == AUTO_FB_1) { for (ii = 0; ii < byTxRetry; ii++) { if (ii < 5) wFallBackRate = awHWRetry1[wRate-RATE_18M][ii]; else wFallBackRate = awHWRetry1[wRate-RATE_18M][4]; pMgmt->sNodeDBTable[0].uTxFail[wFallBackRate]++; } } } } if ((pMgmt->eCurrMode == WMAC_MODE_IBSS_STA) || (pMgmt->eCurrMode == WMAC_MODE_ESS_AP)) { if (BSSbIsSTAInNodeDB((void *) pDevice, pbyDestAddr, &uNodeIndex)) { pMgmt->sNodeDBTable[uNodeIndex].uTxAttempts += 1; if ( !(byTSR & (TSR_TMO | TSR_RETRYTMO))) { // transmit success, TxAttempts at least plus one pMgmt->sNodeDBTable[uNodeIndex].uTxOk[MAX_RATE]++; if ( (byFallBack == AUTO_FB_NONE) || (wRate < RATE_18M) ) { wFallBackRate = wRate; } else if (byFallBack == AUTO_FB_0) { if (byTxRetry < 5) wFallBackRate = awHWRetry0[wRate-RATE_18M][byTxRetry]; else wFallBackRate = awHWRetry0[wRate-RATE_18M][4]; } else if (byFallBack == AUTO_FB_1) { if (byTxRetry < 5) wFallBackRate = awHWRetry1[wRate-RATE_18M][byTxRetry]; else wFallBackRate = awHWRetry1[wRate-RATE_18M][4]; } pMgmt->sNodeDBTable[uNodeIndex].uTxOk[wFallBackRate]++; } else { pMgmt->sNodeDBTable[uNodeIndex].uTxFailures ++; } pMgmt->sNodeDBTable[uNodeIndex].uTxRetry += byTxRetry; if (byTxRetry != 0) { pMgmt->sNodeDBTable[uNodeIndex].uTxFail[MAX_RATE]+=byTxRetry; if ( (byFallBack == AUTO_FB_NONE) || (wRate < RATE_18M) ) { pMgmt->sNodeDBTable[uNodeIndex].uTxFail[wRate]+=byTxRetry; } else if (byFallBack == AUTO_FB_0) { for (ii = 0; ii < byTxRetry; ii++) { if (ii < 5) wFallBackRate = awHWRetry0[wRate-RATE_18M][ii]; else wFallBackRate = awHWRetry0[wRate-RATE_18M][4]; pMgmt->sNodeDBTable[uNodeIndex].uTxFail[wFallBackRate]++; } } else if (byFallBack == AUTO_FB_1) { for (ii = 0; ii < byTxRetry; ii++) { if (ii < 5) wFallBackRate = awHWRetry1[wRate-RATE_18M][ii]; else wFallBackRate = awHWRetry1[wRate-RATE_18M][4]; pMgmt->sNodeDBTable[uNodeIndex].uTxFail[wFallBackRate]++; } } } } } } } /*+ * * Routine Description: * Clear Nodes & skb in DB Table * * * Parameters: * In: * hDeviceContext - The adapter context. * uStartIndex - starting index * Out: * none * * Return Value: * None. * -*/ void BSSvClearNodeDBTable(struct vnt_private *pDevice, u32 uStartIndex) { struct vnt_manager *pMgmt = &pDevice->vnt_mgmt; struct sk_buff *skb; int ii; for (ii = uStartIndex; ii < (MAX_NODE_NUM + 1); ii++) { if (pMgmt->sNodeDBTable[ii].bActive) { // check if sTxPSQueue has been initial if (pMgmt->sNodeDBTable[ii].sTxPSQueue.next != NULL) { while ((skb = skb_dequeue(&pMgmt->sNodeDBTable[ii].sTxPSQueue)) != NULL){ DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO "PS skb != NULL %d\n", ii); dev_kfree_skb(skb); } } memset(&pMgmt->sNodeDBTable[ii], 0, sizeof(KnownNodeDB)); } } }; static void s_vCheckSensitivity(struct vnt_private *pDevice) { PKnownBSS pBSSList = NULL; struct vnt_manager *pMgmt = &pDevice->vnt_mgmt; int ii; if ((pMgmt->eCurrState == WMAC_STATE_ASSOC) || ((pMgmt->eCurrMode == WMAC_MODE_IBSS_STA) && (pMgmt->eCurrState == WMAC_STATE_JOINTED))) { pBSSList = BSSpAddrIsInBSSList(pDevice, pMgmt->abyCurrBSSID, (PWLAN_IE_SSID)pMgmt->abyCurrSSID); if (pBSSList != NULL) { /* Update BB register if RSSI is too strong */ signed long LocalldBmAverage = 0; signed long uNumofdBm = 0; for (ii = 0; ii < RSSI_STAT_COUNT; ii++) { if (pBSSList->ldBmAverage[ii] != 0) { uNumofdBm ++; LocalldBmAverage += pBSSList->ldBmAverage[ii]; } } if (uNumofdBm > 0) { LocalldBmAverage = LocalldBmAverage/uNumofdBm; for (ii=0;iildBmThreshold[ii], pDevice->abyBBVGA[ii]); if (LocalldBmAverage < pDevice->ldBmThreshold[ii]) { pDevice->byBBVGANew = pDevice->abyBBVGA[ii]; break; } } if (pDevice->byBBVGANew != pDevice->byBBVGACurrent) { pDevice->uBBVGADiffCount++; if (pDevice->uBBVGADiffCount >= BB_VGA_CHANGE_THRESHOLD) bScheduleCommand(pDevice, WLAN_CMD_CHANGE_BBSENSITIVITY, NULL); } else { pDevice->uBBVGADiffCount = 0; } } } } } static void s_uCalculateLinkQual(struct vnt_private *pDevice) { unsigned long TxOkRatio, TxCnt; unsigned long RxOkRatio, RxCnt; unsigned long RssiRatio; long ldBm; TxCnt = pDevice->scStatistic.TxNoRetryOkCount + pDevice->scStatistic.TxRetryOkCount + pDevice->scStatistic.TxFailCount; RxCnt = pDevice->scStatistic.RxFcsErrCnt + pDevice->scStatistic.RxOkCnt; TxOkRatio = (TxCnt < 6) ? 4000:((pDevice->scStatistic.TxNoRetryOkCount * 4000) / TxCnt); RxOkRatio = (RxCnt < 6) ? 2000:((pDevice->scStatistic.RxOkCnt * 2000) / RxCnt); //decide link quality if(pDevice->bLinkPass !=true) { pDevice->scStatistic.LinkQuality = 0; pDevice->scStatistic.SignalStren = 0; } else { RFvRSSITodBm(pDevice, (u8)(pDevice->uCurrRSSI), &ldBm); if(-ldBm < 50) { RssiRatio = 4000; } else if(-ldBm > 90) { RssiRatio = 0; } else { RssiRatio = (40-(-ldBm-50))*4000/40; } pDevice->scStatistic.SignalStren = RssiRatio/40; pDevice->scStatistic.LinkQuality = (RssiRatio+TxOkRatio+RxOkRatio)/100; } pDevice->scStatistic.RxFcsErrCnt = 0; pDevice->scStatistic.RxOkCnt = 0; pDevice->scStatistic.TxFailCount = 0; pDevice->scStatistic.TxNoRetryOkCount = 0; pDevice->scStatistic.TxRetryOkCount = 0; } void BSSvClearAnyBSSJoinRecord(struct vnt_private *pDevice) { struct vnt_manager *pMgmt = &pDevice->vnt_mgmt; int ii; for (ii = 0; ii < MAX_BSS_NUM; ii++) pMgmt->sBSSList[ii].bSelected = false; return; } static void s_vCheckPreEDThreshold(struct vnt_private *pDevice) { PKnownBSS pBSSList = NULL; struct vnt_manager *pMgmt = &pDevice->vnt_mgmt; if ((pMgmt->eCurrState == WMAC_STATE_ASSOC) || ((pMgmt->eCurrMode == WMAC_MODE_IBSS_STA) && (pMgmt->eCurrState == WMAC_STATE_JOINTED))) { pBSSList = BSSpAddrIsInBSSList(pDevice, pMgmt->abyCurrBSSID, (PWLAN_IE_SSID)pMgmt->abyCurrSSID); if (pBSSList != NULL) { pDevice->byBBPreEDRSSI = (u8) (~(pBSSList->ldBmAverRange) + 1); BBvUpdatePreEDThreshold(pDevice, false); } } }