/* src/prism2/driver/hfa384x_usb.c * * Functions that talk to the USB variantof the Intersil hfa384x MAC * * Copyright (C) 1999 AbsoluteValue Systems, Inc. All Rights Reserved. * -------------------------------------------------------------------- * * linux-wlan * * The contents of this file are subject to the Mozilla Public * License Version 1.1 (the "License"); you may not use this file * except in compliance with the License. You may obtain a copy of * the License at http://www.mozilla.org/MPL/ * * Software distributed under the License is distributed on an "AS * IS" basis, WITHOUT WARRANTY OF ANY KIND, either express or * implied. See the License for the specific language governing * rights and limitations under the License. * * Alternatively, the contents of this file may be used under the * terms of the GNU Public License version 2 (the "GPL"), in which * case the provisions of the GPL are applicable instead of the * above. If you wish to allow the use of your version of this file * only under the terms of the GPL and not to allow others to use * your version of this file under the MPL, indicate your decision * by deleting the provisions above and replace them with the notice * and other provisions required by the GPL. If you do not delete * the provisions above, a recipient may use your version of this * file under either the MPL or the GPL. * * -------------------------------------------------------------------- * * Inquiries regarding the linux-wlan Open Source project can be * made directly to: * * AbsoluteValue Systems Inc. * info@linux-wlan.com * http://www.linux-wlan.com * * -------------------------------------------------------------------- * * Portions of the development of this software were funded by * Intersil Corporation as part of PRISM(R) chipset product development. * * -------------------------------------------------------------------- * * This file implements functions that correspond to the prism2/hfa384x * 802.11 MAC hardware and firmware host interface. * * The functions can be considered to represent several levels of * abstraction. The lowest level functions are simply C-callable wrappers * around the register accesses. The next higher level represents C-callable * prism2 API functions that match the Intersil documentation as closely * as is reasonable. The next higher layer implements common sequences * of invocations of the API layer (e.g. write to bap, followed by cmd). * * Common sequences: * hfa384x_drvr_xxx Highest level abstractions provided by the * hfa384x code. They are driver defined wrappers * for common sequences. These functions generally * use the services of the lower levels. * * hfa384x_drvr_xxxconfig An example of the drvr level abstraction. These * functions are wrappers for the RID get/set * sequence. They call copy_[to|from]_bap() and * cmd_access(). These functions operate on the * RIDs and buffers without validation. The caller * is responsible for that. * * API wrapper functions: * hfa384x_cmd_xxx functions that provide access to the f/w commands. * The function arguments correspond to each command * argument, even command arguments that get packed * into single registers. These functions _just_ * issue the command by setting the cmd/parm regs * & reading the status/resp regs. Additional * activities required to fully use a command * (read/write from/to bap, get/set int status etc.) * are implemented separately. Think of these as * C-callable prism2 commands. * * Lowest Layer Functions: * hfa384x_docmd_xxx These functions implement the sequence required * to issue any prism2 command. Primarily used by the * hfa384x_cmd_xxx functions. * * hfa384x_bap_xxx BAP read/write access functions. * Note: we usually use BAP0 for non-interrupt context * and BAP1 for interrupt context. * * hfa384x_dl_xxx download related functions. * * Driver State Issues: * Note that there are two pairs of functions that manage the * 'initialized' and 'running' states of the hw/MAC combo. The four * functions are create(), destroy(), start(), and stop(). create() * sets up the data structures required to support the hfa384x_* * functions and destroy() cleans them up. The start() function gets * the actual hardware running and enables the interrupts. The stop() * function shuts the hardware down. The sequence should be: * create() * start() * . * . Do interesting things w/ the hardware * . * stop() * destroy() * * Note that destroy() can be called without calling stop() first. * -------------------------------------------------------------------- */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #define SUBMIT_URB(u, f) usb_submit_urb(u, f) #include "p80211types.h" #include "p80211hdr.h" #include "p80211mgmt.h" #include "p80211conv.h" #include "p80211msg.h" #include "p80211netdev.h" #include "p80211req.h" #include "p80211metadef.h" #include "p80211metastruct.h" #include "hfa384x.h" #include "prism2mgmt.h" enum cmd_mode { DOWAIT = 0, DOASYNC }; #define THROTTLE_JIFFIES (HZ/8) #define URB_ASYNC_UNLINK 0 #define USB_QUEUE_BULK 0 #define ROUNDUP64(a) (((a)+63)&~63) #ifdef DEBUG_USB static void dbprint_urb(struct urb *urb); #endif static void hfa384x_int_rxmonitor(wlandevice_t *wlandev, hfa384x_usb_rxfrm_t *rxfrm); static void hfa384x_usb_defer(struct work_struct *data); static int submit_rx_urb(hfa384x_t *hw, gfp_t flags); static int submit_tx_urb(hfa384x_t *hw, struct urb *tx_urb, gfp_t flags); /*---------------------------------------------------*/ /* Callbacks */ static void hfa384x_usbout_callback(struct urb *urb); static void hfa384x_ctlxout_callback(struct urb *urb); static void hfa384x_usbin_callback(struct urb *urb); static void hfa384x_usbin_txcompl(wlandevice_t *wlandev, hfa384x_usbin_t * usbin); static void hfa384x_usbin_rx(wlandevice_t *wlandev, struct sk_buff *skb); static void hfa384x_usbin_info(wlandevice_t *wlandev, hfa384x_usbin_t * usbin); static void hfa384x_usbout_tx(wlandevice_t *wlandev, hfa384x_usbout_t *usbout); static void hfa384x_usbin_ctlx(hfa384x_t *hw, hfa384x_usbin_t *usbin, int urb_status); /*---------------------------------------------------*/ /* Functions to support the prism2 usb command queue */ static void hfa384x_usbctlxq_run(hfa384x_t *hw); static void hfa384x_usbctlx_reqtimerfn(unsigned long data); static void hfa384x_usbctlx_resptimerfn(unsigned long data); static void hfa384x_usb_throttlefn(unsigned long data); static void hfa384x_usbctlx_completion_task(unsigned long data); static void hfa384x_usbctlx_reaper_task(unsigned long data); static int hfa384x_usbctlx_submit(hfa384x_t *hw, hfa384x_usbctlx_t *ctlx); static void unlocked_usbctlx_complete(hfa384x_t *hw, hfa384x_usbctlx_t *ctlx); struct usbctlx_completor { int (*complete) (struct usbctlx_completor *); }; static int hfa384x_usbctlx_complete_sync(hfa384x_t *hw, hfa384x_usbctlx_t *ctlx, struct usbctlx_completor *completor); static int unlocked_usbctlx_cancel_async(hfa384x_t *hw, hfa384x_usbctlx_t *ctlx); static void hfa384x_cb_status(hfa384x_t *hw, const hfa384x_usbctlx_t *ctlx); static void hfa384x_cb_rrid(hfa384x_t *hw, const hfa384x_usbctlx_t *ctlx); static int usbctlx_get_status(const hfa384x_usb_cmdresp_t *cmdresp, hfa384x_cmdresult_t *result); static void usbctlx_get_rridresult(const hfa384x_usb_rridresp_t *rridresp, hfa384x_rridresult_t *result); /*---------------------------------------------------*/ /* Low level req/resp CTLX formatters and submitters */ static int hfa384x_docmd(hfa384x_t *hw, enum cmd_mode mode, hfa384x_metacmd_t *cmd, ctlx_cmdcb_t cmdcb, ctlx_usercb_t usercb, void *usercb_data); static int hfa384x_dorrid(hfa384x_t *hw, enum cmd_mode mode, u16 rid, void *riddata, unsigned int riddatalen, ctlx_cmdcb_t cmdcb, ctlx_usercb_t usercb, void *usercb_data); static int hfa384x_dowrid(hfa384x_t *hw, enum cmd_mode mode, u16 rid, void *riddata, unsigned int riddatalen, ctlx_cmdcb_t cmdcb, ctlx_usercb_t usercb, void *usercb_data); static int hfa384x_dormem(hfa384x_t *hw, enum cmd_mode mode, u16 page, u16 offset, void *data, unsigned int len, ctlx_cmdcb_t cmdcb, ctlx_usercb_t usercb, void *usercb_data); static int hfa384x_dowmem(hfa384x_t *hw, enum cmd_mode mode, u16 page, u16 offset, void *data, unsigned int len, ctlx_cmdcb_t cmdcb, ctlx_usercb_t usercb, void *usercb_data); static int hfa384x_isgood_pdrcode(u16 pdrcode); static inline const char *ctlxstr(CTLX_STATE s) { static const char *ctlx_str[] = { "Initial state", "Complete", "Request failed", "Request pending", "Request packet submitted", "Request packet completed", "Response packet completed" }; return ctlx_str[s]; }; static inline hfa384x_usbctlx_t *get_active_ctlx(hfa384x_t * hw) { return list_entry(hw->ctlxq.active.next, hfa384x_usbctlx_t, list); } #ifdef DEBUG_USB void dbprint_urb(struct urb *urb) { pr_debug("urb->pipe=0x%08x\n", urb->pipe); pr_debug("urb->status=0x%08x\n", urb->status); pr_debug("urb->transfer_flags=0x%08x\n", urb->transfer_flags); pr_debug("urb->transfer_buffer=0x%08x\n", (unsigned int)urb->transfer_buffer); pr_debug("urb->transfer_buffer_length=0x%08x\n", urb->transfer_buffer_length); pr_debug("urb->actual_length=0x%08x\n", urb->actual_length); pr_debug("urb->bandwidth=0x%08x\n", urb->bandwidth); pr_debug("urb->setup_packet(ctl)=0x%08x\n", (unsigned int)urb->setup_packet); pr_debug("urb->start_frame(iso/irq)=0x%08x\n", urb->start_frame); pr_debug("urb->interval(irq)=0x%08x\n", urb->interval); pr_debug("urb->error_count(iso)=0x%08x\n", urb->error_count); pr_debug("urb->timeout=0x%08x\n", urb->timeout); pr_debug("urb->context=0x%08x\n", (unsigned int)urb->context); pr_debug("urb->complete=0x%08x\n", (unsigned int)urb->complete); } #endif /*---------------------------------------------------------------- * submit_rx_urb * * Listen for input data on the BULK-IN pipe. If the pipe has * stalled then schedule it to be reset. * * Arguments: * hw device struct * memflags memory allocation flags * * Returns: * error code from submission * * Call context: * Any ----------------------------------------------------------------*/ static int submit_rx_urb(hfa384x_t *hw, gfp_t memflags) { struct sk_buff *skb; int result; skb = dev_alloc_skb(sizeof(hfa384x_usbin_t)); if (skb == NULL) { result = -ENOMEM; goto done; } /* Post the IN urb */ usb_fill_bulk_urb(&hw->rx_urb, hw->usb, hw->endp_in, skb->data, sizeof(hfa384x_usbin_t), hfa384x_usbin_callback, hw->wlandev); hw->rx_urb_skb = skb; result = -ENOLINK; if (!hw->wlandev->hwremoved && !test_bit(WORK_RX_HALT, &hw->usb_flags)) { result = SUBMIT_URB(&hw->rx_urb, memflags); /* Check whether we need to reset the RX pipe */ if (result == -EPIPE) { printk(KERN_WARNING "%s rx pipe stalled: requesting reset\n", hw->wlandev->netdev->name); if (!test_and_set_bit(WORK_RX_HALT, &hw->usb_flags)) schedule_work(&hw->usb_work); } } /* Don't leak memory if anything should go wrong */ if (result != 0) { dev_kfree_skb(skb); hw->rx_urb_skb = NULL; } done: return result; } /*---------------------------------------------------------------- * submit_tx_urb * * Prepares and submits the URB of transmitted data. If the * submission fails then it will schedule the output pipe to * be reset. * * Arguments: * hw device struct * tx_urb URB of data for tranmission * memflags memory allocation flags * * Returns: * error code from submission * * Call context: * Any ----------------------------------------------------------------*/ static int submit_tx_urb(hfa384x_t *hw, struct urb *tx_urb, gfp_t memflags) { struct net_device *netdev = hw->wlandev->netdev; int result; result = -ENOLINK; if (netif_running(netdev)) { if (!hw->wlandev->hwremoved && !test_bit(WORK_TX_HALT, &hw->usb_flags)) { result = SUBMIT_URB(tx_urb, memflags); /* Test whether we need to reset the TX pipe */ if (result == -EPIPE) { printk(KERN_WARNING "%s tx pipe stalled: requesting reset\n", netdev->name); set_bit(WORK_TX_HALT, &hw->usb_flags); schedule_work(&hw->usb_work); } else if (result == 0) { netif_stop_queue(netdev); } } } return result; } /*---------------------------------------------------------------- * hfa394x_usb_defer * * There are some things that the USB stack cannot do while * in interrupt context, so we arrange this function to run * in process context. * * Arguments: * hw device structure * * Returns: * nothing * * Call context: * process (by design) ----------------------------------------------------------------*/ static void hfa384x_usb_defer(struct work_struct *data) { hfa384x_t *hw = container_of(data, struct hfa384x, usb_work); struct net_device *netdev = hw->wlandev->netdev; /* Don't bother trying to reset anything if the plug * has been pulled ... */ if (hw->wlandev->hwremoved) return; /* Reception has stopped: try to reset the input pipe */ if (test_bit(WORK_RX_HALT, &hw->usb_flags)) { int ret; usb_kill_urb(&hw->rx_urb); /* Cannot be holding spinlock! */ ret = usb_clear_halt(hw->usb, hw->endp_in); if (ret != 0) { printk(KERN_ERR "Failed to clear rx pipe for %s: err=%d\n", netdev->name, ret); } else { printk(KERN_INFO "%s rx pipe reset complete.\n", netdev->name); clear_bit(WORK_RX_HALT, &hw->usb_flags); set_bit(WORK_RX_RESUME, &hw->usb_flags); } } /* Resume receiving data back from the device. */ if (test_bit(WORK_RX_RESUME, &hw->usb_flags)) { int ret; ret = submit_rx_urb(hw, GFP_KERNEL); if (ret != 0) { printk(KERN_ERR "Failed to resume %s rx pipe.\n", netdev->name); } else { clear_bit(WORK_RX_RESUME, &hw->usb_flags); } } /* Transmission has stopped: try to reset the output pipe */ if (test_bit(WORK_TX_HALT, &hw->usb_flags)) { int ret; usb_kill_urb(&hw->tx_urb); ret = usb_clear_halt(hw->usb, hw->endp_out); if (ret != 0) { printk(KERN_ERR "Failed to clear tx pipe for %s: err=%d\n", netdev->name, ret); } else { printk(KERN_INFO "%s tx pipe reset complete.\n", netdev->name); clear_bit(WORK_TX_HALT, &hw->usb_flags); set_bit(WORK_TX_RESUME, &hw->usb_flags); /* Stopping the BULK-OUT pipe also blocked * us from sending any more CTLX URBs, so * we need to re-run our queue ... */ hfa384x_usbctlxq_run(hw); } } /* Resume transmitting. */ if (test_and_clear_bit(WORK_TX_RESUME, &hw->usb_flags)) netif_wake_queue(hw->wlandev->netdev); } /*---------------------------------------------------------------- * hfa384x_create * * Sets up the hfa384x_t data structure for use. Note this * does _not_ initialize the actual hardware, just the data structures * we use to keep track of its state. * * Arguments: * hw device structure * irq device irq number * iobase i/o base address for register access * membase memory base address for register access * * Returns: * nothing * * Side effects: * * Call context: * process ----------------------------------------------------------------*/ void hfa384x_create(hfa384x_t *hw, struct usb_device *usb) { memset(hw, 0, sizeof(hfa384x_t)); hw->usb = usb; /* set up the endpoints */ hw->endp_in = usb_rcvbulkpipe(usb, 1); hw->endp_out = usb_sndbulkpipe(usb, 2); /* Set up the waitq */ init_waitqueue_head(&hw->cmdq); /* Initialize the command queue */ spin_lock_init(&hw->ctlxq.lock); INIT_LIST_HEAD(&hw->ctlxq.pending); INIT_LIST_HEAD(&hw->ctlxq.active); INIT_LIST_HEAD(&hw->ctlxq.completing); INIT_LIST_HEAD(&hw->ctlxq.reapable); /* Initialize the authentication queue */ skb_queue_head_init(&hw->authq); tasklet_init(&hw->reaper_bh, hfa384x_usbctlx_reaper_task, (unsigned long)hw); tasklet_init(&hw->completion_bh, hfa384x_usbctlx_completion_task, (unsigned long)hw); INIT_WORK(&hw->link_bh, prism2sta_processing_defer); INIT_WORK(&hw->usb_work, hfa384x_usb_defer); init_timer(&hw->throttle); hw->throttle.function = hfa384x_usb_throttlefn; hw->throttle.data = (unsigned long)hw; init_timer(&hw->resptimer); hw->resptimer.function = hfa384x_usbctlx_resptimerfn; hw->resptimer.data = (unsigned long)hw; init_timer(&hw->reqtimer); hw->reqtimer.function = hfa384x_usbctlx_reqtimerfn; hw->reqtimer.data = (unsigned long)hw; usb_init_urb(&hw->rx_urb); usb_init_urb(&hw->tx_urb); usb_init_urb(&hw->ctlx_urb); hw->link_status = HFA384x_LINK_NOTCONNECTED; hw->state = HFA384x_STATE_INIT; INIT_WORK(&hw->commsqual_bh, prism2sta_commsqual_defer); init_timer(&hw->commsqual_timer); hw->commsqual_timer.data = (unsigned long)hw; hw->commsqual_timer.function = prism2sta_commsqual_timer; } /*---------------------------------------------------------------- * hfa384x_destroy * * Partner to hfa384x_create(). This function cleans up the hw * structure so that it can be freed by the caller using a simple * kfree. Currently, this function is just a placeholder. If, at some * point in the future, an hw in the 'shutdown' state requires a 'deep' * kfree, this is where it should be done. Note that if this function * is called on a _running_ hw structure, the drvr_stop() function is * called. * * Arguments: * hw device structure * * Returns: * nothing, this function is not allowed to fail. * * Side effects: * * Call context: * process ----------------------------------------------------------------*/ void hfa384x_destroy(hfa384x_t *hw) { struct sk_buff *skb; if (hw->state == HFA384x_STATE_RUNNING) hfa384x_drvr_stop(hw); hw->state = HFA384x_STATE_PREINIT; kfree(hw->scanresults); hw->scanresults = NULL; /* Now to clean out the auth queue */ while ((skb = skb_dequeue(&hw->authq))) dev_kfree_skb(skb); } static hfa384x_usbctlx_t *usbctlx_alloc(void) { hfa384x_usbctlx_t *ctlx; ctlx = kmalloc(sizeof(*ctlx), in_interrupt() ? GFP_ATOMIC : GFP_KERNEL); if (ctlx != NULL) { memset(ctlx, 0, sizeof(*ctlx)); init_completion(&ctlx->done); } return ctlx; } static int usbctlx_get_status(const hfa384x_usb_cmdresp_t *cmdresp, hfa384x_cmdresult_t *result) { result->status = le16_to_cpu(cmdresp->status); result->resp0 = le16_to_cpu(cmdresp->resp0); result->resp1 = le16_to_cpu(cmdresp->resp1); result->resp2 = le16_to_cpu(cmdresp->resp2); pr_debug("cmdresult:status=0x%04x " "resp0=0x%04x resp1=0x%04x resp2=0x%04x\n", result->status, result->resp0, result->resp1, result->resp2); return result->status & HFA384x_STATUS_RESULT; } static void usbctlx_get_rridresult(const hfa384x_usb_rridresp_t *rridresp, hfa384x_rridresult_t *result) { result->rid = le16_to_cpu(rridresp->rid); result->riddata = rridresp->data; result->riddata_len = ((le16_to_cpu(rridresp->frmlen) - 1) * 2); } /*---------------------------------------------------------------- * Completor object: * This completor must be passed to hfa384x_usbctlx_complete_sync() * when processing a CTLX that returns a hfa384x_cmdresult_t structure. ----------------------------------------------------------------*/ struct usbctlx_cmd_completor { struct usbctlx_completor head; const hfa384x_usb_cmdresp_t *cmdresp; hfa384x_cmdresult_t *result; }; static inline int usbctlx_cmd_completor_fn(struct usbctlx_completor *head) { struct usbctlx_cmd_completor *complete; complete = (struct usbctlx_cmd_completor *) head; return usbctlx_get_status(complete->cmdresp, complete->result); } static inline struct usbctlx_completor *init_cmd_completor( struct usbctlx_cmd_completor *completor, const hfa384x_usb_cmdresp_t *cmdresp, hfa384x_cmdresult_t *result) { completor->head.complete = usbctlx_cmd_completor_fn; completor->cmdresp = cmdresp; completor->result = result; return &(completor->head); } /*---------------------------------------------------------------- * Completor object: * This completor must be passed to hfa384x_usbctlx_complete_sync() * when processing a CTLX that reads a RID. ----------------------------------------------------------------*/ struct usbctlx_rrid_completor { struct usbctlx_completor head; const hfa384x_usb_rridresp_t *rridresp; void *riddata; unsigned int riddatalen; }; static int usbctlx_rrid_completor_fn(struct usbctlx_completor *head) { struct usbctlx_rrid_completor *complete; hfa384x_rridresult_t rridresult; complete = (struct usbctlx_rrid_completor *) head; usbctlx_get_rridresult(complete->rridresp, &rridresult); /* Validate the length, note body len calculation in bytes */ if (rridresult.riddata_len != complete->riddatalen) { printk(KERN_WARNING "RID len mismatch, rid=0x%04x hlen=%d fwlen=%d\n", rridresult.rid, complete->riddatalen, rridresult.riddata_len); return -ENODATA; } memcpy(complete->riddata, rridresult.riddata, complete->riddatalen); return 0; } static inline struct usbctlx_completor *init_rrid_completor( struct usbctlx_rrid_completor *completor, const hfa384x_usb_rridresp_t *rridresp, void *riddata, unsigned int riddatalen) { completor->head.complete = usbctlx_rrid_completor_fn; completor->rridresp = rridresp; completor->riddata = riddata; completor->riddatalen = riddatalen; return &(completor->head); } /*---------------------------------------------------------------- * Completor object: * Interprets the results of a synchronous RID-write ----------------------------------------------------------------*/ typedef struct usbctlx_cmd_completor usbctlx_wrid_completor_t; #define init_wrid_completor init_cmd_completor /*---------------------------------------------------------------- * Completor object: * Interprets the results of a synchronous memory-write ----------------------------------------------------------------*/ typedef struct usbctlx_cmd_completor usbctlx_wmem_completor_t; #define init_wmem_completor init_cmd_completor /*---------------------------------------------------------------- * Completor object: * Interprets the results of a synchronous memory-read ----------------------------------------------------------------*/ struct usbctlx_rmem_completor { struct usbctlx_completor head; const hfa384x_usb_rmemresp_t *rmemresp; void *data; unsigned int len; }; typedef struct usbctlx_rmem_completor usbctlx_rmem_completor_t; static int usbctlx_rmem_completor_fn(struct usbctlx_completor *head) { usbctlx_rmem_completor_t *complete = (usbctlx_rmem_completor_t *) head; pr_debug("rmemresp:len=%d\n", complete->rmemresp->frmlen); memcpy(complete->data, complete->rmemresp->data, complete->len); return 0; } static inline struct usbctlx_completor *init_rmem_completor( usbctlx_rmem_completor_t *completor, hfa384x_usb_rmemresp_t *rmemresp, void *data, unsigned int len) { completor->head.complete = usbctlx_rmem_completor_fn; completor->rmemresp = rmemresp; completor->data = data; completor->len = len; return &(completor->head); } /*---------------------------------------------------------------- * hfa384x_cb_status * * Ctlx_complete handler for async CMD type control exchanges. * mark the hw struct as such. * * Note: If the handling is changed here, it should probably be * changed in docmd as well. * * Arguments: * hw hw struct * ctlx completed CTLX * * Returns: * nothing * * Side effects: * * Call context: * interrupt ----------------------------------------------------------------*/ static void hfa384x_cb_status(hfa384x_t *hw, const hfa384x_usbctlx_t *ctlx) { if (ctlx->usercb != NULL) { hfa384x_cmdresult_t cmdresult; if (ctlx->state != CTLX_COMPLETE) { memset(&cmdresult, 0, sizeof(cmdresult)); cmdresult.status = HFA384x_STATUS_RESULT_SET(HFA384x_CMD_ERR); } else { usbctlx_get_status(&ctlx->inbuf.cmdresp, &cmdresult); } ctlx->usercb(hw, &cmdresult, ctlx->usercb_data); } } /*---------------------------------------------------------------- * hfa384x_cb_rrid * * CTLX completion handler for async RRID type control exchanges. * * Note: If the handling is changed here, it should probably be * changed in dorrid as well. * * Arguments: * hw hw struct * ctlx completed CTLX * * Returns: * nothing * * Side effects: * * Call context: * interrupt ----------------------------------------------------------------*/ static void hfa384x_cb_rrid(hfa384x_t *hw, const hfa384x_usbctlx_t *ctlx) { if (ctlx->usercb != NULL) { hfa384x_rridresult_t rridresult; if (ctlx->state != CTLX_COMPLETE) { memset(&rridresult, 0, sizeof(rridresult)); rridresult.rid = le16_to_cpu(ctlx->outbuf.rridreq.rid); } else { usbctlx_get_rridresult(&ctlx->inbuf.rridresp, &rridresult); } ctlx->usercb(hw, &rridresult, ctlx->usercb_data); } } static inline int hfa384x_docmd_wait(hfa384x_t *hw, hfa384x_metacmd_t *cmd) { return hfa384x_docmd(hw, DOWAIT, cmd, NULL, NULL, NULL); } static inline int hfa384x_docmd_async(hfa384x_t *hw, hfa384x_metacmd_t *cmd, ctlx_cmdcb_t cmdcb, ctlx_usercb_t usercb, void *usercb_data) { return hfa384x_docmd(hw, DOASYNC, cmd, cmdcb, usercb, usercb_data); } static inline int hfa384x_dorrid_wait(hfa384x_t *hw, u16 rid, void *riddata, unsigned int riddatalen) { return hfa384x_dorrid(hw, DOWAIT, rid, riddata, riddatalen, NULL, NULL, NULL); } static inline int hfa384x_dorrid_async(hfa384x_t *hw, u16 rid, void *riddata, unsigned int riddatalen, ctlx_cmdcb_t cmdcb, ctlx_usercb_t usercb, void *usercb_data) { return hfa384x_dorrid(hw, DOASYNC, rid, riddata, riddatalen, cmdcb, usercb, usercb_data); } static inline int hfa384x_dowrid_wait(hfa384x_t *hw, u16 rid, void *riddata, unsigned int riddatalen) { return hfa384x_dowrid(hw, DOWAIT, rid, riddata, riddatalen, NULL, NULL, NULL); } static inline int hfa384x_dowrid_async(hfa384x_t *hw, u16 rid, void *riddata, unsigned int riddatalen, ctlx_cmdcb_t cmdcb, ctlx_usercb_t usercb, void *usercb_data) { return hfa384x_dowrid(hw, DOASYNC, rid, riddata, riddatalen, cmdcb, usercb, usercb_data); } static inline int hfa384x_dormem_wait(hfa384x_t *hw, u16 page, u16 offset, void *data, unsigned int len) { return hfa384x_dormem(hw, DOWAIT, page, offset, data, len, NULL, NULL, NULL); } static inline int hfa384x_dormem_async(hfa384x_t *hw, u16 page, u16 offset, void *data, unsigned int len, ctlx_cmdcb_t cmdcb, ctlx_usercb_t usercb, void *usercb_data) { return hfa384x_dormem(hw, DOASYNC, page, offset, data, len, cmdcb, usercb, usercb_data); } static inline int hfa384x_dowmem_wait(hfa384x_t *hw, u16 page, u16 offset, void *data, unsigned int len) { return hfa384x_dowmem(hw, DOWAIT, page, offset, data, len, NULL, NULL, NULL); } static inline int hfa384x_dowmem_async(hfa384x_t *hw, u16 page, u16 offset, void *data, unsigned int len, ctlx_cmdcb_t cmdcb, ctlx_usercb_t usercb, void *usercb_data) { return hfa384x_dowmem(hw, DOASYNC, page, offset, data, len, cmdcb, usercb, usercb_data); } /*---------------------------------------------------------------- * hfa384x_cmd_initialize * * Issues the initialize command and sets the hw->state based * on the result. * * Arguments: * hw device structure * * Returns: * 0 success * >0 f/w reported error - f/w status code * <0 driver reported error * * Side effects: * * Call context: * process ----------------------------------------------------------------*/ int hfa384x_cmd_initialize(hfa384x_t *hw) { int result = 0; int i; hfa384x_metacmd_t cmd; cmd.cmd = HFA384x_CMDCODE_INIT; cmd.parm0 = 0; cmd.parm1 = 0; cmd.parm2 = 0; result = hfa384x_docmd_wait(hw, &cmd); pr_debug("cmdresp.init: " "status=0x%04x, resp0=0x%04x, " "resp1=0x%04x, resp2=0x%04x\n", cmd.result.status, cmd.result.resp0, cmd.result.resp1, cmd.result.resp2); if (result == 0) { for (i = 0; i < HFA384x_NUMPORTS_MAX; i++) hw->port_enabled[i] = 0; } hw->link_status = HFA384x_LINK_NOTCONNECTED; return result; } /*---------------------------------------------------------------- * hfa384x_cmd_disable * * Issues the disable command to stop communications on one of * the MACs 'ports'. * * Arguments: * hw device structure * macport MAC port number (host order) * * Returns: * 0 success * >0 f/w reported failure - f/w status code * <0 driver reported error (timeout|bad arg) * * Side effects: * * Call context: * process ----------------------------------------------------------------*/ int hfa384x_cmd_disable(hfa384x_t *hw, u16 macport) { int result = 0; hfa384x_metacmd_t cmd; cmd.cmd = HFA384x_CMD_CMDCODE_SET(HFA384x_CMDCODE_DISABLE) | HFA384x_CMD_MACPORT_SET(macport); cmd.parm0 = 0; cmd.parm1 = 0; cmd.parm2 = 0; result = hfa384x_docmd_wait(hw, &cmd); return result; } /*---------------------------------------------------------------- * hfa384x_cmd_enable * * Issues the enable command to enable communications on one of * the MACs 'ports'. * * Arguments: * hw device structure * macport MAC port number * * Returns: * 0 success * >0 f/w reported failure - f/w status code * <0 driver reported error (timeout|bad arg) * * Side effects: * * Call context: * process ----------------------------------------------------------------*/ int hfa384x_cmd_enable(hfa384x_t *hw, u16 macport) { int result = 0; hfa384x_metacmd_t cmd; cmd.cmd = HFA384x_CMD_CMDCODE_SET(HFA384x_CMDCODE_ENABLE) | HFA384x_CMD_MACPORT_SET(macport); cmd.parm0 = 0; cmd.parm1 = 0; cmd.parm2 = 0; result = hfa384x_docmd_wait(hw, &cmd); return result; } /*---------------------------------------------------------------- * hfa384x_cmd_monitor * * Enables the 'monitor mode' of the MAC. Here's the description of * monitor mode that I've received thus far: * * "The "monitor mode" of operation is that the MAC passes all * frames for which the PLCP checks are correct. All received * MPDUs are passed to the host with MAC Port = 7, with a * receive status of good, FCS error, or undecryptable. Passing * certain MPDUs is a violation of the 802.11 standard, but useful * for a debugging tool." Normal communication is not possible * while monitor mode is enabled. * * Arguments: * hw device structure * enable a code (0x0b|0x0f) that enables/disables * monitor mode. (host order) * * Returns: * 0 success * >0 f/w reported failure - f/w status code * <0 driver reported error (timeout|bad arg) * * Side effects: * * Call context: * process ----------------------------------------------------------------*/ int hfa384x_cmd_monitor(hfa384x_t *hw, u16 enable) { int result = 0; hfa384x_metacmd_t cmd; cmd.cmd = HFA384x_CMD_CMDCODE_SET(HFA384x_CMDCODE_MONITOR) | HFA384x_CMD_AINFO_SET(enable); cmd.parm0 = 0; cmd.parm1 = 0; cmd.parm2 = 0; result = hfa384x_docmd_wait(hw, &cmd); return result; } /*---------------------------------------------------------------- * hfa384x_cmd_download * * Sets the controls for the MAC controller code/data download * process. The arguments set the mode and address associated * with a download. Note that the aux registers should be enabled * prior to setting one of the download enable modes. * * Arguments: * hw device structure * mode 0 - Disable programming and begin code exec * 1 - Enable volatile mem programming * 2 - Enable non-volatile mem programming * 3 - Program non-volatile section from NV download * buffer. * (host order) * lowaddr * highaddr For mode 1, sets the high & low order bits of * the "destination address". This address will be * the execution start address when download is * subsequently disabled. * For mode 2, sets the high & low order bits of * the destination in NV ram. * For modes 0 & 3, should be zero. (host order) * NOTE: these are CMD format. * codelen Length of the data to write in mode 2, * zero otherwise. (host order) * * Returns: * 0 success * >0 f/w reported failure - f/w status code * <0 driver reported error (timeout|bad arg) * * Side effects: * * Call context: * process ----------------------------------------------------------------*/ int hfa384x_cmd_download(hfa384x_t *hw, u16 mode, u16 lowaddr, u16 highaddr, u16 codelen) { int result = 0; hfa384x_metacmd_t cmd; pr_debug("mode=%d, lowaddr=0x%04x, highaddr=0x%04x, codelen=%d\n", mode, lowaddr, highaddr, codelen); cmd.cmd = (HFA384x_CMD_CMDCODE_SET(HFA384x_CMDCODE_DOWNLD) | HFA384x_CMD_PROGMODE_SET(mode)); cmd.parm0 = lowaddr; cmd.parm1 = highaddr; cmd.parm2 = codelen; result = hfa384x_docmd_wait(hw, &cmd); return result; } /*---------------------------------------------------------------- * hfa384x_corereset * * Perform a reset of the hfa38xx MAC core. We assume that the hw * structure is in its "created" state. That is, it is initialized * with proper values. Note that if a reset is done after the * device has been active for awhile, the caller might have to clean * up some leftover cruft in the hw structure. * * Arguments: * hw device structure * holdtime how long (in ms) to hold the reset * settletime how long (in ms) to wait after releasing * the reset * * Returns: * nothing * * Side effects: * * Call context: * process ----------------------------------------------------------------*/ int hfa384x_corereset(hfa384x_t *hw, int holdtime, int settletime, int genesis) { int result = 0; result = usb_reset_device(hw->usb); if (result < 0) { printk(KERN_ERR "usb_reset_device() failed, result=%d.\n", result); } return result; } /*---------------------------------------------------------------- * hfa384x_usbctlx_complete_sync * * Waits for a synchronous CTLX object to complete, * and then handles the response. * * Arguments: * hw device structure * ctlx CTLX ptr * completor functor object to decide what to * do with the CTLX's result. * * Returns: * 0 Success * -ERESTARTSYS Interrupted by a signal * -EIO CTLX failed * -ENODEV Adapter was unplugged * ??? Result from completor * * Side effects: * * Call context: * process ----------------------------------------------------------------*/ static int hfa384x_usbctlx_complete_sync(hfa384x_t *hw, hfa384x_usbctlx_t *ctlx, struct usbctlx_completor *completor) { unsigned long flags; int result; result = wait_for_completion_interruptible(&ctlx->done); spin_lock_irqsave(&hw->ctlxq.lock, flags); /* * We can only handle the CTLX if the USB disconnect * function has not run yet ... */ cleanup: if (hw->wlandev->hwremoved) { spin_unlock_irqrestore(&hw->ctlxq.lock, flags); result = -ENODEV; } else if (result != 0) { int runqueue = 0; /* * We were probably interrupted, so delete * this CTLX asynchronously, kill the timers * and the URB, and then start the next * pending CTLX. * * NOTE: We can only delete the timers and * the URB if this CTLX is active. */ if (ctlx == get_active_ctlx(hw)) { spin_unlock_irqrestore(&hw->ctlxq.lock, flags); del_singleshot_timer_sync(&hw->reqtimer); del_singleshot_timer_sync(&hw->resptimer); hw->req_timer_done = 1; hw->resp_timer_done = 1; usb_kill_urb(&hw->ctlx_urb); spin_lock_irqsave(&hw->ctlxq.lock, flags); runqueue = 1; /* * This scenario is so unlikely that I'm * happy with a grubby "goto" solution ... */ if (hw->wlandev->hwremoved) goto cleanup; } /* * The completion task will send this CTLX * to the reaper the next time it runs. We * are no longer in a hurry. */ ctlx->reapable = 1; ctlx->state = CTLX_REQ_FAILED; list_move_tail(&ctlx->list, &hw->ctlxq.completing); spin_unlock_irqrestore(&hw->ctlxq.lock, flags); if (runqueue) hfa384x_usbctlxq_run(hw); } else { if (ctlx->state == CTLX_COMPLETE) { result = completor->complete(completor); } else { printk(KERN_WARNING "CTLX[%d] error: state(%s)\n", le16_to_cpu(ctlx->outbuf.type), ctlxstr(ctlx->state)); result = -EIO; } list_del(&ctlx->list); spin_unlock_irqrestore(&hw->ctlxq.lock, flags); kfree(ctlx); } return result; } /*---------------------------------------------------------------- * hfa384x_docmd * * Constructs a command CTLX and submits it. * * NOTE: Any changes to the 'post-submit' code in this function * need to be carried over to hfa384x_cbcmd() since the handling * is virtually identical. * * Arguments: * hw device structure * mode DOWAIT or DOASYNC * cmd cmd structure. Includes all arguments and result * data points. All in host order. in host order * cmdcb command-specific callback * usercb user callback for async calls, NULL for DOWAIT calls * usercb_data user supplied data pointer for async calls, NULL * for DOASYNC calls * * Returns: * 0 success * -EIO CTLX failure * -ERESTARTSYS Awakened on signal * >0 command indicated error, Status and Resp0-2 are * in hw structure. * * Side effects: * * * Call context: * process ----------------------------------------------------------------*/ static int hfa384x_docmd(hfa384x_t *hw, enum cmd_mode mode, hfa384x_metacmd_t *cmd, ctlx_cmdcb_t cmdcb, ctlx_usercb_t usercb, void *usercb_data) { int result; hfa384x_usbctlx_t *ctlx; ctlx = usbctlx_alloc(); if (ctlx == NULL) { result = -ENOMEM; goto done; } /* Initialize the command */ ctlx->outbuf.cmdreq.type = cpu_to_le16(HFA384x_USB_CMDREQ); ctlx->outbuf.cmdreq.cmd = cpu_to_le16(cmd->cmd); ctlx->outbuf.cmdreq.parm0 = cpu_to_le16(cmd->parm0); ctlx->outbuf.cmdreq.parm1 = cpu_to_le16(cmd->parm1); ctlx->outbuf.cmdreq.parm2 = cpu_to_le16(cmd->parm2); ctlx->outbufsize = sizeof(ctlx->outbuf.cmdreq); pr_debug("cmdreq: cmd=0x%04x " "parm0=0x%04x parm1=0x%04x parm2=0x%04x\n", cmd->cmd, cmd->parm0, cmd->parm1, cmd->parm2); ctlx->reapable = mode; ctlx->cmdcb = cmdcb; ctlx->usercb = usercb; ctlx->usercb_data = usercb_data; result = hfa384x_usbctlx_submit(hw, ctlx); if (result != 0) { kfree(ctlx); } else if (mode == DOWAIT) { struct usbctlx_cmd_completor completor; result = hfa384x_usbctlx_complete_sync(hw, ctlx, init_cmd_completor(&completor, &ctlx-> inbuf. cmdresp, &cmd-> result)); } done: return result; } /*---------------------------------------------------------------- * hfa384x_dorrid * * Constructs a read rid CTLX and issues it. * * NOTE: Any changes to the 'post-submit' code in this function * need to be carried over to hfa384x_cbrrid() since the handling * is virtually identical. * * Arguments: * hw device structure * mode DOWAIT or DOASYNC * rid Read RID number (host order) * riddata Caller supplied buffer that MAC formatted RID.data * record will be written to for DOWAIT calls. Should * be NULL for DOASYNC calls. * riddatalen Buffer length for DOWAIT calls. Zero for DOASYNC calls. * cmdcb command callback for async calls, NULL for DOWAIT calls * usercb user callback for async calls, NULL for DOWAIT calls * usercb_data user supplied data pointer for async calls, NULL * for DOWAIT calls * * Returns: * 0 success * -EIO CTLX failure * -ERESTARTSYS Awakened on signal * -ENODATA riddatalen != macdatalen * >0 command indicated error, Status and Resp0-2 are * in hw structure. * * Side effects: * * Call context: * interrupt (DOASYNC) * process (DOWAIT or DOASYNC) ----------------------------------------------------------------*/ static int hfa384x_dorrid(hfa384x_t *hw, enum cmd_mode mode, u16 rid, void *riddata, unsigned int riddatalen, ctlx_cmdcb_t cmdcb, ctlx_usercb_t usercb, void *usercb_data) { int result; hfa384x_usbctlx_t *ctlx; ctlx = usbctlx_alloc(); if (ctlx == NULL) { result = -ENOMEM; goto done; } /* Initialize the command */ ctlx->outbuf.rridreq.type = cpu_to_le16(HFA384x_USB_RRIDREQ); ctlx->outbuf.rridreq.frmlen = cpu_to_le16(sizeof(ctlx->outbuf.rridreq.rid)); ctlx->outbuf.rridreq.rid = cpu_to_le16(rid); ctlx->outbufsize = sizeof(ctlx->outbuf.rridreq); ctlx->reapable = mode; ctlx->cmdcb = cmdcb; ctlx->usercb = usercb; ctlx->usercb_data = usercb_data; /* Submit the CTLX */ result = hfa384x_usbctlx_submit(hw, ctlx); if (result != 0) { kfree(ctlx); } else if (mode == DOWAIT) { struct usbctlx_rrid_completor completor; result = hfa384x_usbctlx_complete_sync(hw, ctlx, init_rrid_completor (&completor, &ctlx->inbuf.rridresp, riddata, riddatalen)); } done: return result; } /*---------------------------------------------------------------- * hfa384x_dowrid * * Constructs a write rid CTLX and issues it. * * NOTE: Any changes to the 'post-submit' code in this function * need to be carried over to hfa384x_cbwrid() since the handling * is virtually identical. * * Arguments: * hw device structure * enum cmd_mode DOWAIT or DOASYNC * rid RID code * riddata Data portion of RID formatted for MAC * riddatalen Length of the data portion in bytes * cmdcb command callback for async calls, NULL for DOWAIT calls * usercb user callback for async calls, NULL for DOWAIT calls * usercb_data user supplied data pointer for async calls * * Returns: * 0 success * -ETIMEDOUT timed out waiting for register ready or * command completion * >0 command indicated error, Status and Resp0-2 are * in hw structure. * * Side effects: * * Call context: * interrupt (DOASYNC) * process (DOWAIT or DOASYNC) ----------------------------------------------------------------*/ static int hfa384x_dowrid(hfa384x_t *hw, enum cmd_mode mode, u16 rid, void *riddata, unsigned int riddatalen, ctlx_cmdcb_t cmdcb, ctlx_usercb_t usercb, void *usercb_data) { int result; hfa384x_usbctlx_t *ctlx; ctlx = usbctlx_alloc(); if (ctlx == NULL) { result = -ENOMEM; goto done; } /* Initialize the command */ ctlx->outbuf.wridreq.type = cpu_to_le16(HFA384x_USB_WRIDREQ); ctlx->outbuf.wridreq.frmlen = cpu_to_le16((sizeof (ctlx->outbuf.wridreq.rid) + riddatalen + 1) / 2); ctlx->outbuf.wridreq.rid = cpu_to_le16(rid); memcpy(ctlx->outbuf.wridreq.data, riddata, riddatalen); ctlx->outbufsize = sizeof(ctlx->outbuf.wridreq.type) + sizeof(ctlx->outbuf.wridreq.frmlen) + sizeof(ctlx->outbuf.wridreq.rid) + riddatalen; ctlx->reapable = mode; ctlx->cmdcb = cmdcb; ctlx->usercb = usercb; ctlx->usercb_data = usercb_data; /* Submit the CTLX */ result = hfa384x_usbctlx_submit(hw, ctlx); if (result != 0) { kfree(ctlx); } else if (mode == DOWAIT) { usbctlx_wrid_completor_t completor; hfa384x_cmdresult_t wridresult; result = hfa384x_usbctlx_complete_sync(hw, ctlx, init_wrid_completor (&completor, &ctlx->inbuf.wridresp, &wridresult)); } done: return result; } /*---------------------------------------------------------------- * hfa384x_dormem * * Constructs a readmem CTLX and issues it. * * NOTE: Any changes to the 'post-submit' code in this function * need to be carried over to hfa384x_cbrmem() since the handling * is virtually identical. * * Arguments: * hw device structure * mode DOWAIT or DOASYNC * page MAC address space page (CMD format) * offset MAC address space offset * data Ptr to data buffer to receive read * len Length of the data to read (max == 2048) * cmdcb command callback for async calls, NULL for DOWAIT calls * usercb user callback for async calls, NULL for DOWAIT calls * usercb_data user supplied data pointer for async calls * * Returns: * 0 success * -ETIMEDOUT timed out waiting for register ready or * command completion * >0 command indicated error, Status and Resp0-2 are * in hw structure. * * Side effects: * * Call context: * interrupt (DOASYNC) * process (DOWAIT or DOASYNC) ----------------------------------------------------------------*/ static int hfa384x_dormem(hfa384x_t *hw, enum cmd_mode mode, u16 page, u16 offset, void *data, unsigned int len, ctlx_cmdcb_t cmdcb, ctlx_usercb_t usercb, void *usercb_data) { int result; hfa384x_usbctlx_t *ctlx; ctlx = usbctlx_alloc(); if (ctlx == NULL) { result = -ENOMEM; goto done; } /* Initialize the command */ ctlx->outbuf.rmemreq.type = cpu_to_le16(HFA384x_USB_RMEMREQ); ctlx->outbuf.rmemreq.frmlen = cpu_to_le16(sizeof(ctlx->outbuf.rmemreq.offset) + sizeof(ctlx->outbuf.rmemreq.page) + len); ctlx->outbuf.rmemreq.offset = cpu_to_le16(offset); ctlx->outbuf.rmemreq.page = cpu_to_le16(page); ctlx->outbufsize = sizeof(ctlx->outbuf.rmemreq); pr_debug("type=0x%04x frmlen=%d offset=0x%04x page=0x%04x\n", ctlx->outbuf.rmemreq.type, ctlx->outbuf.rmemreq.frmlen, ctlx->outbuf.rmemreq.offset, ctlx->outbuf.rmemreq.page); pr_debug("pktsize=%zd\n", ROUNDUP64(sizeof(ctlx->outbuf.rmemreq))); ctlx->reapable = mode; ctlx->cmdcb = cmdcb; ctlx->usercb = usercb; ctlx->usercb_data = usercb_data; result = hfa384x_usbctlx_submit(hw, ctlx); if (result != 0) { kfree(ctlx); } else if (mode == DOWAIT) { usbctlx_rmem_completor_t completor; result = hfa384x_usbctlx_complete_sync(hw, ctlx, init_rmem_completor (&completor, &ctlx->inbuf.rmemresp, data, len)); } done: return result; } /*---------------------------------------------------------------- * hfa384x_dowmem * * Constructs a writemem CTLX and issues it. * * NOTE: Any changes to the 'post-submit' code in this function * need to be carried over to hfa384x_cbwmem() since the handling * is virtually identical. * * Arguments: * hw device structure * mode DOWAIT or DOASYNC * page MAC address space page (CMD format) * offset MAC address space offset * data Ptr to data buffer containing write data * len Length of the data to read (max == 2048) * cmdcb command callback for async calls, NULL for DOWAIT calls * usercb user callback for async calls, NULL for DOWAIT calls * usercb_data user supplied data pointer for async calls. * * Returns: * 0 success * -ETIMEDOUT timed out waiting for register ready or * command completion * >0 command indicated error, Status and Resp0-2 are * in hw structure. * * Side effects: * * Call context: * interrupt (DOWAIT) * process (DOWAIT or DOASYNC) ----------------------------------------------------------------*/ static int hfa384x_dowmem(hfa384x_t *hw, enum cmd_mode mode, u16 page, u16 offset, void *data, unsigned int len, ctlx_cmdcb_t cmdcb, ctlx_usercb_t usercb, void *usercb_data) { int result; hfa384x_usbctlx_t *ctlx; pr_debug("page=0x%04x offset=0x%04x len=%d\n", page, offset, len); ctlx = usbctlx_alloc(); if (ctlx == NULL) { result = -ENOMEM; goto done; } /* Initialize the command */ ctlx->outbuf.wmemreq.type = cpu_to_le16(HFA384x_USB_WMEMREQ); ctlx->outbuf.wmemreq.frmlen = cpu_to_le16(sizeof(ctlx->outbuf.wmemreq.offset) + sizeof(ctlx->outbuf.wmemreq.page) + len); ctlx->outbuf.wmemreq.offset = cpu_to_le16(offset); ctlx->outbuf.wmemreq.page = cpu_to_le16(page); memcpy(ctlx->outbuf.wmemreq.data, data, len); ctlx->outbufsize = sizeof(ctlx->outbuf.wmemreq.type) + sizeof(ctlx->outbuf.wmemreq.frmlen) + sizeof(ctlx->outbuf.wmemreq.offset) + sizeof(ctlx->outbuf.wmemreq.page) + len; ctlx->reapable = mode; ctlx->cmdcb = cmdcb; ctlx->usercb = usercb; ctlx->usercb_data = usercb_data; result = hfa384x_usbctlx_submit(hw, ctlx); if (result != 0) { kfree(ctlx); } else if (mode == DOWAIT) { usbctlx_wmem_completor_t completor; hfa384x_cmdresult_t wmemresult; result = hfa384x_usbctlx_complete_sync(hw, ctlx, init_wmem_completor (&completor, &ctlx->inbuf.wmemresp, &wmemresult)); } done: return result; } /*---------------------------------------------------------------- * hfa384x_drvr_commtallies * * Send a commtallies inquiry to the MAC. Note that this is an async * call that will result in an info frame arriving sometime later. * * Arguments: * hw device structure * * Returns: * zero success. * * Side effects: * * Call context: * process ----------------------------------------------------------------*/ int hfa384x_drvr_commtallies(hfa384x_t *hw) { hfa384x_metacmd_t cmd; cmd.cmd = HFA384x_CMDCODE_INQ; cmd.parm0 = HFA384x_IT_COMMTALLIES; cmd.parm1 = 0; cmd.parm2 = 0; hfa384x_docmd_async(hw, &cmd, NULL, NULL, NULL); return 0; } /*---------------------------------------------------------------- * hfa384x_drvr_disable * * Issues the disable command to stop communications on one of * the MACs 'ports'. Only macport 0 is valid for stations. * APs may also disable macports 1-6. Only ports that have been * previously enabled may be disabled. * * Arguments: * hw device structure * macport MAC port number (host order) * * Returns: * 0 success * >0 f/w reported failure - f/w status code * <0 driver reported error (timeout|bad arg) * * Side effects: * * Call context: * process ----------------------------------------------------------------*/ int hfa384x_drvr_disable(hfa384x_t *hw, u16 macport) { int result = 0; if ((!hw->isap && macport != 0) || (hw->isap && !(macport <= HFA384x_PORTID_MAX)) || !(hw->port_enabled[macport])) { result = -EINVAL; } else { result = hfa384x_cmd_disable(hw, macport); if (result == 0) hw->port_enabled[macport] = 0; } return result; } /*---------------------------------------------------------------- * hfa384x_drvr_enable * * Issues the enable command to enable communications on one of * the MACs 'ports'. Only macport 0 is valid for stations. * APs may also enable macports 1-6. Only ports that are currently * disabled may be enabled. * * Arguments: * hw device structure * macport MAC port number * * Returns: * 0 success * >0 f/w reported failure - f/w status code * <0 driver reported error (timeout|bad arg) * * Side effects: * * Call context: * process ----------------------------------------------------------------*/ int hfa384x_drvr_enable(hfa384x_t *hw, u16 macport) { int result = 0; if ((!hw->isap && macport != 0) || (hw->isap && !(macport <= HFA384x_PORTID_MAX)) || (hw->port_enabled[macport])) { result = -EINVAL; } else { result = hfa384x_cmd_enable(hw, macport); if (result == 0) hw->port_enabled[macport] = 1; } return result; } /*---------------------------------------------------------------- * hfa384x_drvr_flashdl_enable * * Begins the flash download state. Checks to see that we're not * already in a download state and that a port isn't enabled. * Sets the download state and retrieves the flash download * buffer location, buffer size, and timeout length. * * Arguments: * hw device structure * * Returns: * 0 success * >0 f/w reported error - f/w status code * <0 driver reported error * * Side effects: * * Call context: * process ----------------------------------------------------------------*/ int hfa384x_drvr_flashdl_enable(hfa384x_t *hw) { int result = 0; int i; /* Check that a port isn't active */ for (i = 0; i < HFA384x_PORTID_MAX; i++) { if (hw->port_enabled[i]) { pr_debug("called when port enabled.\n"); return -EINVAL; } } /* Check that we're not already in a download state */ if (hw->dlstate != HFA384x_DLSTATE_DISABLED) return -EINVAL; /* Retrieve the buffer loc&size and timeout */ result = hfa384x_drvr_getconfig(hw, HFA384x_RID_DOWNLOADBUFFER, &(hw->bufinfo), sizeof(hw->bufinfo)); if (result) return result; hw->bufinfo.page = le16_to_cpu(hw->bufinfo.page); hw->bufinfo.offset = le16_to_cpu(hw->bufinfo.offset); hw->bufinfo.len = le16_to_cpu(hw->bufinfo.len); result = hfa384x_drvr_getconfig16(hw, HFA384x_RID_MAXLOADTIME, &(hw->dltimeout)); if (result) return result; hw->dltimeout = le16_to_cpu(hw->dltimeout); pr_debug("flashdl_enable\n"); hw->dlstate = HFA384x_DLSTATE_FLASHENABLED; return result; } /*---------------------------------------------------------------- * hfa384x_drvr_flashdl_disable * * Ends the flash download state. Note that this will cause the MAC * firmware to restart. * * Arguments: * hw device structure * * Returns: * 0 success * >0 f/w reported error - f/w status code * <0 driver reported error * * Side effects: * * Call context: * process ----------------------------------------------------------------*/ int hfa384x_drvr_flashdl_disable(hfa384x_t *hw) { /* Check that we're already in the download state */ if (hw->dlstate != HFA384x_DLSTATE_FLASHENABLED) return -EINVAL; pr_debug("flashdl_enable\n"); /* There isn't much we can do at this point, so I don't */ /* bother w/ the return value */ hfa384x_cmd_download(hw, HFA384x_PROGMODE_DISABLE, 0, 0, 0); hw->dlstate = HFA384x_DLSTATE_DISABLED; return 0; } /*---------------------------------------------------------------- * hfa384x_drvr_flashdl_write * * Performs a FLASH download of a chunk of data. First checks to see * that we're in the FLASH download state, then sets the download * mode, uses the aux functions to 1) copy the data to the flash * buffer, 2) sets the download 'write flash' mode, 3) readback and * compare. Lather rinse, repeat as many times an necessary to get * all the given data into flash. * When all data has been written using this function (possibly * repeatedly), call drvr_flashdl_disable() to end the download state * and restart the MAC. * * Arguments: * hw device structure * daddr Card address to write to. (host order) * buf Ptr to data to write. * len Length of data (host order). * * Returns: * 0 success * >0 f/w reported error - f/w status code * <0 driver reported error * * Side effects: * * Call context: * process ----------------------------------------------------------------*/ int hfa384x_drvr_flashdl_write(hfa384x_t *hw, u32 daddr, void *buf, u32 len) { int result = 0; u32 dlbufaddr; int nburns; u32 burnlen; u32 burndaddr; u16 burnlo; u16 burnhi; int nwrites; u8 *writebuf; u16 writepage; u16 writeoffset; u32 writelen; int i; int j; pr_debug("daddr=0x%08x len=%d\n", daddr, len); /* Check that we're in the flash download state */ if (hw->dlstate != HFA384x_DLSTATE_FLASHENABLED) return -EINVAL; printk(KERN_INFO "Download %d bytes to flash @0x%06x\n", len, daddr); /* Convert to flat address for arithmetic */ /* NOTE: dlbuffer RID stores the address in AUX format */ dlbufaddr = HFA384x_ADDR_AUX_MKFLAT(hw->bufinfo.page, hw->bufinfo.offset); pr_debug("dlbuf.page=0x%04x dlbuf.offset=0x%04x dlbufaddr=0x%08x\n", hw->bufinfo.page, hw->bufinfo.offset, dlbufaddr); #if 0 printk(KERN_WARNING "dlbuf@0x%06lx len=%d to=%d\n", dlbufaddr, hw->bufinfo.len, hw->dltimeout); #endif /* Calculations to determine how many fills of the dlbuffer to do * and how many USB wmemreq's to do for each fill. At this point * in time, the dlbuffer size and the wmemreq size are the same. * Therefore, nwrites should always be 1. The extra complexity * here is a hedge against future changes. */ /* Figure out how many times to do the flash programming */ nburns = len / hw->bufinfo.len; nburns += (len % hw->bufinfo.len) ? 1 : 0; /* For each flash program cycle, how many USB wmemreq's are needed? */ nwrites = hw->bufinfo.len / HFA384x_USB_RWMEM_MAXLEN; nwrites += (hw->bufinfo.len % HFA384x_USB_RWMEM_MAXLEN) ? 1 : 0; /* For each burn */ for (i = 0; i < nburns; i++) { /* Get the dest address and len */ burnlen = (len - (hw->bufinfo.len * i)) > hw->bufinfo.len ? hw->bufinfo.len : (len - (hw->bufinfo.len * i)); burndaddr = daddr + (hw->bufinfo.len * i); burnlo = HFA384x_ADDR_CMD_MKOFF(burndaddr); burnhi = HFA384x_ADDR_CMD_MKPAGE(burndaddr); printk(KERN_INFO "Writing %d bytes to flash @0x%06x\n", burnlen, burndaddr); /* Set the download mode */ result = hfa384x_cmd_download(hw, HFA384x_PROGMODE_NV, burnlo, burnhi, burnlen); if (result) { printk(KERN_ERR "download(NV,lo=%x,hi=%x,len=%x) " "cmd failed, result=%d. Aborting d/l\n", burnlo, burnhi, burnlen, result); goto exit_proc; } /* copy the data to the flash download buffer */ for (j = 0; j < nwrites; j++) { writebuf = buf + (i * hw->bufinfo.len) + (j * HFA384x_USB_RWMEM_MAXLEN); writepage = HFA384x_ADDR_CMD_MKPAGE(dlbufaddr + (j * HFA384x_USB_RWMEM_MAXLEN)); writeoffset = HFA384x_ADDR_CMD_MKOFF(dlbufaddr + (j * HFA384x_USB_RWMEM_MAXLEN)); writelen = burnlen - (j * HFA384x_USB_RWMEM_MAXLEN); writelen = writelen > HFA384x_USB_RWMEM_MAXLEN ? HFA384x_USB_RWMEM_MAXLEN : writelen; result = hfa384x_dowmem_wait(hw, writepage, writeoffset, writebuf, writelen); } /* set the download 'write flash' mode */ result = hfa384x_cmd_download(hw, HFA384x_PROGMODE_NVWRITE, 0, 0, 0); if (result) { printk(KERN_ERR "download(NVWRITE,lo=%x,hi=%x,len=%x) " "cmd failed, result=%d. Aborting d/l\n", burnlo, burnhi, burnlen, result); goto exit_proc; } /* TODO: We really should do a readback and compare. */ } exit_proc: /* Leave the firmware in the 'post-prog' mode. flashdl_disable will */ /* actually disable programming mode. Remember, that will cause the */ /* the firmware to effectively reset itself. */ return result; } /*---------------------------------------------------------------- * hfa384x_drvr_getconfig * * Performs the sequence necessary to read a config/info item. * * Arguments: * hw device structure * rid config/info record id (host order) * buf host side record buffer. Upon return it will * contain the body portion of the record (minus the * RID and len). * len buffer length (in bytes, should match record length) * * Returns: * 0 success * >0 f/w reported error - f/w status code * <0 driver reported error * -ENODATA length mismatch between argument and retrieved * record. * * Side effects: * * Call context: * process ----------------------------------------------------------------*/ int hfa384x_drvr_getconfig(hfa384x_t *hw, u16 rid, void *buf, u16 len) { int result; result = hfa384x_dorrid_wait(hw, rid, buf, len); return result; } /*---------------------------------------------------------------- * hfa384x_drvr_getconfig_async * * Performs the sequence necessary to perform an async read of * of a config/info item. * * Arguments: * hw device structure * rid config/info record id (host order) * buf host side record buffer. Upon return it will * contain the body portion of the record (minus the * RID and len). * len buffer length (in bytes, should match record length) * cbfn caller supplied callback, called when the command * is done (successful or not). * cbfndata pointer to some caller supplied data that will be * passed in as an argument to the cbfn. * * Returns: * nothing the cbfn gets a status argument identifying if * any errors occur. * Side effects: * Queues an hfa384x_usbcmd_t for subsequent execution. * * Call context: * Any ----------------------------------------------------------------*/ int hfa384x_drvr_getconfig_async(hfa384x_t *hw, u16 rid, ctlx_usercb_t usercb, void *usercb_data) { return hfa384x_dorrid_async(hw, rid, NULL, 0, hfa384x_cb_rrid, usercb, usercb_data); } /*---------------------------------------------------------------- * hfa384x_drvr_setconfig_async * * Performs the sequence necessary to write a config/info item. * * Arguments: * hw device structure * rid config/info record id (in host order) * buf host side record buffer * len buffer length (in bytes) * usercb completion callback * usercb_data completion callback argument * * Returns: * 0 success * >0 f/w reported error - f/w status code * <0 driver reported error * * Side effects: * * Call context: * process ----------------------------------------------------------------*/ int hfa384x_drvr_setconfig_async(hfa384x_t *hw, u16 rid, void *buf, u16 len, ctlx_usercb_t usercb, void *usercb_data) { return hfa384x_dowrid_async(hw, rid, buf, len, hfa384x_cb_status, usercb, usercb_data); } /*---------------------------------------------------------------- * hfa384x_drvr_ramdl_disable * * Ends the ram download state. * * Arguments: * hw device structure * * Returns: * 0 success * >0 f/w reported error - f/w status code * <0 driver reported error * * Side effects: * * Call context: * process ----------------------------------------------------------------*/ int hfa384x_drvr_ramdl_disable(hfa384x_t *hw) { /* Check that we're already in the download state */ if (hw->dlstate != HFA384x_DLSTATE_RAMENABLED) return -EINVAL; pr_debug("ramdl_disable()\n"); /* There isn't much we can do at this point, so I don't */ /* bother w/ the return value */ hfa384x_cmd_download(hw, HFA384x_PROGMODE_DISABLE, 0, 0, 0); hw->dlstate = HFA384x_DLSTATE_DISABLED; return 0; } /*---------------------------------------------------------------- * hfa384x_drvr_ramdl_enable * * Begins the ram download state. Checks to see that we're not * already in a download state and that a port isn't enabled. * Sets the download state and calls cmd_download with the * ENABLE_VOLATILE subcommand and the exeaddr argument. * * Arguments: * hw device structure * exeaddr the card execution address that will be * jumped to when ramdl_disable() is called * (host order). * * Returns: * 0 success * >0 f/w reported error - f/w status code * <0 driver reported error * * Side effects: * * Call context: * process ----------------------------------------------------------------*/ int hfa384x_drvr_ramdl_enable(hfa384x_t *hw, u32 exeaddr) { int result = 0; u16 lowaddr; u16 hiaddr; int i; /* Check that a port isn't active */ for (i = 0; i < HFA384x_PORTID_MAX; i++) { if (hw->port_enabled[i]) { printk(KERN_ERR "Can't download with a macport enabled.\n"); return -EINVAL; } } /* Check that we're not already in a download state */ if (hw->dlstate != HFA384x_DLSTATE_DISABLED) { printk(KERN_ERR "Download state not disabled.\n"); return -EINVAL; } pr_debug("ramdl_enable, exeaddr=0x%08x\n", exeaddr); /* Call the download(1,addr) function */ lowaddr = HFA384x_ADDR_CMD_MKOFF(exeaddr); hiaddr = HFA384x_ADDR_CMD_MKPAGE(exeaddr); result = hfa384x_cmd_download(hw, HFA384x_PROGMODE_RAM, lowaddr, hiaddr, 0); if (result == 0) { /* Set the download state */ hw->dlstate = HFA384x_DLSTATE_RAMENABLED; } else { pr_debug("cmd_download(0x%04x, 0x%04x) failed, result=%d.\n", lowaddr, hiaddr, result); } return result; } /*---------------------------------------------------------------- * hfa384x_drvr_ramdl_write * * Performs a RAM download of a chunk of data. First checks to see * that we're in the RAM download state, then uses the [read|write]mem USB * commands to 1) copy the data, 2) readback and compare. The download * state is unaffected. When all data has been written using * this function, call drvr_ramdl_disable() to end the download state * and restart the MAC. * * Arguments: * hw device structure * daddr Card address to write to. (host order) * buf Ptr to data to write. * len Length of data (host order). * * Returns: * 0 success * >0 f/w reported error - f/w status code * <0 driver reported error * * Side effects: * * Call context: * process ----------------------------------------------------------------*/ int hfa384x_drvr_ramdl_write(hfa384x_t *hw, u32 daddr, void *buf, u32 len) { int result = 0; int nwrites; u8 *data = buf; int i; u32 curraddr; u16 currpage; u16 curroffset; u16 currlen; /* Check that we're in the ram download state */ if (hw->dlstate != HFA384x_DLSTATE_RAMENABLED) return -EINVAL; printk(KERN_INFO "Writing %d bytes to ram @0x%06x\n", len, daddr); /* How many dowmem calls? */ nwrites = len / HFA384x_USB_RWMEM_MAXLEN; nwrites += len % HFA384x_USB_RWMEM_MAXLEN ? 1 : 0; /* Do blocking wmem's */ for (i = 0; i < nwrites; i++) { /* make address args */ curraddr = daddr + (i * HFA384x_USB_RWMEM_MAXLEN); currpage = HFA384x_ADDR_CMD_MKPAGE(curraddr); curroffset = HFA384x_ADDR_CMD_MKOFF(curraddr); currlen = len - (i * HFA384x_USB_RWMEM_MAXLEN); if (currlen > HFA384x_USB_RWMEM_MAXLEN) currlen = HFA384x_USB_RWMEM_MAXLEN; /* Do blocking ctlx */ result = hfa384x_dowmem_wait(hw, currpage, curroffset, data + (i * HFA384x_USB_RWMEM_MAXLEN), currlen); if (result) break; /* TODO: We really should have a readback. */ } return result; } /*---------------------------------------------------------------- * hfa384x_drvr_readpda * * Performs the sequence to read the PDA space. Note there is no * drvr_writepda() function. Writing a PDA is * generally implemented by a calling component via calls to * cmd_download and writing to the flash download buffer via the * aux regs. * * Arguments: * hw device structure * buf buffer to store PDA in * len buffer length * * Returns: * 0 success * >0 f/w reported error - f/w status code * <0 driver reported error * -ETIMEDOUT timout waiting for the cmd regs to become * available, or waiting for the control reg * to indicate the Aux port is enabled. * -ENODATA the buffer does NOT contain a valid PDA. * Either the card PDA is bad, or the auxdata * reads are giving us garbage. * * Side effects: * * Call context: * process or non-card interrupt. ----------------------------------------------------------------*/ int hfa384x_drvr_readpda(hfa384x_t *hw, void *buf, unsigned int len) { int result = 0; u16 *pda = buf; int pdaok = 0; int morepdrs = 1; int currpdr = 0; /* word offset of the current pdr */ size_t i; u16 pdrlen; /* pdr length in bytes, host order */ u16 pdrcode; /* pdr code, host order */ u16 currpage; u16 curroffset; struct pdaloc { u32 cardaddr; u16 auxctl; } pdaloc[] = { { HFA3842_PDA_BASE, 0}, { HFA3841_PDA_BASE, 0}, { HFA3841_PDA_BOGUS_BASE, 0} }; /* Read the pda from each known address. */ for (i = 0; i < ARRAY_SIZE(pdaloc); i++) { /* Make address */ currpage = HFA384x_ADDR_CMD_MKPAGE(pdaloc[i].cardaddr); curroffset = HFA384x_ADDR_CMD_MKOFF(pdaloc[i].cardaddr); /* units of bytes */ result = hfa384x_dormem_wait(hw, currpage, curroffset, buf, len); if (result) { printk(KERN_WARNING "Read from index %zd failed, continuing\n", i); continue; } /* Test for garbage */ pdaok = 1; /* initially assume good */ morepdrs = 1; while (pdaok && morepdrs) { pdrlen = le16_to_cpu(pda[currpdr]) * 2; pdrcode = le16_to_cpu(pda[currpdr + 1]); /* Test the record length */ if (pdrlen > HFA384x_PDR_LEN_MAX || pdrlen == 0) { printk(KERN_ERR "pdrlen invalid=%d\n", pdrlen); pdaok = 0; break; } /* Test the code */ if (!hfa384x_isgood_pdrcode(pdrcode)) { printk(KERN_ERR "pdrcode invalid=%d\n", pdrcode); pdaok = 0; break; } /* Test for completion */ if (pdrcode == HFA384x_PDR_END_OF_PDA) morepdrs = 0; /* Move to the next pdr (if necessary) */ if (morepdrs) { /* note the access to pda[], need words here */ currpdr += le16_to_cpu(pda[currpdr]) + 1; } } if (pdaok) { printk(KERN_INFO "PDA Read from 0x%08x in %s space.\n", pdaloc[i].cardaddr, pdaloc[i].auxctl == 0 ? "EXTDS" : pdaloc[i].auxctl == 1 ? "NV" : pdaloc[i].auxctl == 2 ? "PHY" : pdaloc[i].auxctl == 3 ? "ICSRAM" : ""); break; } } result = pdaok ? 0 : -ENODATA; if (result) pr_debug("Failure: pda is not okay\n"); return result; } /*---------------------------------------------------------------- * hfa384x_drvr_setconfig * * Performs the sequence necessary to write a config/info item. * * Arguments: * hw device structure * rid config/info record id (in host order) * buf host side record buffer * len buffer length (in bytes) * * Returns: * 0 success * >0 f/w reported error - f/w status code * <0 driver reported error * * Side effects: * * Call context: * process ----------------------------------------------------------------*/ int hfa384x_drvr_setconfig(hfa384x_t *hw, u16 rid, void *buf, u16 len) { return hfa384x_dowrid_wait(hw, rid, buf, len); } /*---------------------------------------------------------------- * hfa384x_drvr_start * * Issues the MAC initialize command, sets up some data structures, * and enables the interrupts. After this function completes, the * low-level stuff should be ready for any/all commands. * * Arguments: * hw device structure * Returns: * 0 success * >0 f/w reported error - f/w status code * <0 driver reported error * * Side effects: * * Call context: * process ----------------------------------------------------------------*/ int hfa384x_drvr_start(hfa384x_t *hw) { int result, result1, result2; u16 status; might_sleep(); /* Clear endpoint stalls - but only do this if the endpoint * is showing a stall status. Some prism2 cards seem to behave * badly if a clear_halt is called when the endpoint is already * ok */ result = usb_get_status(hw->usb, USB_RECIP_ENDPOINT, hw->endp_in, &status); if (result < 0) { printk(KERN_ERR "Cannot get bulk in endpoint status.\n"); goto done; } if ((status == 1) && usb_clear_halt(hw->usb, hw->endp_in)) printk(KERN_ERR "Failed to reset bulk in endpoint.\n"); result = usb_get_status(hw->usb, USB_RECIP_ENDPOINT, hw->endp_out, &status); if (result < 0) { printk(KERN_ERR "Cannot get bulk out endpoint status.\n"); goto done; } if ((status == 1) && usb_clear_halt(hw->usb, hw->endp_out)) printk(KERN_ERR "Failed to reset bulk out endpoint.\n"); /* Synchronous unlink, in case we're trying to restart the driver */ usb_kill_urb(&hw->rx_urb); /* Post the IN urb */ result = submit_rx_urb(hw, GFP_KERNEL); if (result != 0) { printk(KERN_ERR "Fatal, failed to submit RX URB, result=%d\n", result); goto done; } /* Call initialize twice, with a 1 second sleep in between. * This is a nasty work-around since many prism2 cards seem to * need time to settle after an init from cold. The second * call to initialize in theory is not necessary - but we call * it anyway as a double insurance policy: * 1) If the first init should fail, the second may well succeed * and the card can still be used * 2) It helps ensures all is well with the card after the first * init and settle time. */ result1 = hfa384x_cmd_initialize(hw); msleep(1000); result = result2 = hfa384x_cmd_initialize(hw); if (result1 != 0) { if (result2 != 0) { printk(KERN_ERR "cmd_initialize() failed on two attempts, results %d and %d\n", result1, result2); usb_kill_urb(&hw->rx_urb); goto done; } else { pr_debug("First cmd_initialize() failed (result %d),\n", result1); pr_debug("but second attempt succeeded. All should be ok\n"); } } else if (result2 != 0) { printk(KERN_WARNING "First cmd_initialize() succeeded, but second attempt failed (result=%d)\n", result2); printk(KERN_WARNING "Most likely the card will be functional\n"); goto done; } hw->state = HFA384x_STATE_RUNNING; done: return result; } /*---------------------------------------------------------------- * hfa384x_drvr_stop * * Shuts down the MAC to the point where it is safe to unload the * driver. Any subsystem that may be holding a data or function * ptr into the driver must be cleared/deinitialized. * * Arguments: * hw device structure * Returns: * 0 success * >0 f/w reported error - f/w status code * <0 driver reported error * * Side effects: * * Call context: * process ----------------------------------------------------------------*/ int hfa384x_drvr_stop(hfa384x_t *hw) { int result = 0; int i; might_sleep(); /* There's no need for spinlocks here. The USB "disconnect" * function sets this "removed" flag and then calls us. */ if (!hw->wlandev->hwremoved) { /* Call initialize to leave the MAC in its 'reset' state */ hfa384x_cmd_initialize(hw); /* Cancel the rxurb */ usb_kill_urb(&hw->rx_urb); } hw->link_status = HFA384x_LINK_NOTCONNECTED; hw->state = HFA384x_STATE_INIT; del_timer_sync(&hw->commsqual_timer); /* Clear all the port status */ for (i = 0; i < HFA384x_NUMPORTS_MAX; i++) hw->port_enabled[i] = 0; return result; } /*---------------------------------------------------------------- * hfa384x_drvr_txframe * * Takes a frame from prism2sta and queues it for transmission. * * Arguments: * hw device structure * skb packet buffer struct. Contains an 802.11 * data frame. * p80211_hdr points to the 802.11 header for the packet. * Returns: * 0 Success and more buffs available * 1 Success but no more buffs * 2 Allocation failure * 4 Buffer full or queue busy * * Side effects: * * Call context: * interrupt ----------------------------------------------------------------*/ int hfa384x_drvr_txframe(hfa384x_t *hw, struct sk_buff *skb, union p80211_hdr *p80211_hdr, struct p80211_metawep *p80211_wep) { int usbpktlen = sizeof(hfa384x_tx_frame_t); int result; int ret; char *ptr; if (hw->tx_urb.status == -EINPROGRESS) { printk(KERN_WARNING "TX URB already in use\n"); result = 3; goto exit; } /* Build Tx frame structure */ /* Set up the control field */ memset(&hw->txbuff.txfrm.desc, 0, sizeof(hw->txbuff.txfrm.desc)); /* Setup the usb type field */ hw->txbuff.type = cpu_to_le16(HFA384x_USB_TXFRM); /* Set up the sw_support field to identify this frame */ hw->txbuff.txfrm.desc.sw_support = 0x0123; /* Tx complete and Tx exception disable per dleach. Might be causing * buf depletion */ /* #define DOEXC SLP -- doboth breaks horribly under load, doexc less so. */ #if defined(DOBOTH) hw->txbuff.txfrm.desc.tx_control = HFA384x_TX_MACPORT_SET(0) | HFA384x_TX_STRUCTYPE_SET(1) | HFA384x_TX_TXEX_SET(1) | HFA384x_TX_TXOK_SET(1); #elif defined(DOEXC) hw->txbuff.txfrm.desc.tx_control = HFA384x_TX_MACPORT_SET(0) | HFA384x_TX_STRUCTYPE_SET(1) | HFA384x_TX_TXEX_SET(1) | HFA384x_TX_TXOK_SET(0); #else hw->txbuff.txfrm.desc.tx_control = HFA384x_TX_MACPORT_SET(0) | HFA384x_TX_STRUCTYPE_SET(1) | HFA384x_TX_TXEX_SET(0) | HFA384x_TX_TXOK_SET(0); #endif hw->txbuff.txfrm.desc.tx_control = cpu_to_le16(hw->txbuff.txfrm.desc.tx_control); /* copy the header over to the txdesc */ memcpy(&(hw->txbuff.txfrm.desc.frame_control), p80211_hdr, sizeof(union p80211_hdr)); /* if we're using host WEP, increase size by IV+ICV */ if (p80211_wep->data) { hw->txbuff.txfrm.desc.data_len = cpu_to_le16(skb->len + 8); usbpktlen += 8; } else { hw->txbuff.txfrm.desc.data_len = cpu_to_le16(skb->len); } usbpktlen += skb->len; /* copy over the WEP IV if we are using host WEP */ ptr = hw->txbuff.txfrm.data; if (p80211_wep->data) { memcpy(ptr, p80211_wep->iv, sizeof(p80211_wep->iv)); ptr += sizeof(p80211_wep->iv); memcpy(ptr, p80211_wep->data, skb->len); } else { memcpy(ptr, skb->data, skb->len); } /* copy over the packet data */ ptr += skb->len; /* copy over the WEP ICV if we are using host WEP */ if (p80211_wep->data) memcpy(ptr, p80211_wep->icv, sizeof(p80211_wep->icv)); /* Send the USB packet */ usb_fill_bulk_urb(&(hw->tx_urb), hw->usb, hw->endp_out, &(hw->txbuff), ROUNDUP64(usbpktlen), hfa384x_usbout_callback, hw->wlandev); hw->tx_urb.transfer_flags |= USB_QUEUE_BULK; result = 1; ret = submit_tx_urb(hw, &hw->tx_urb, GFP_ATOMIC); if (ret != 0) { printk(KERN_ERR "submit_tx_urb() failed, error=%d\n", ret); result = 3; } exit: return result; } void hfa384x_tx_timeout(wlandevice_t *wlandev) { hfa384x_t *hw = wlandev->priv; unsigned long flags; spin_lock_irqsave(&hw->ctlxq.lock, flags); if (!hw->wlandev->hwremoved) { int sched; sched = !test_and_set_bit(WORK_TX_HALT, &hw->usb_flags); sched |= !test_and_set_bit(WORK_RX_HALT, &hw->usb_flags); if (sched) schedule_work(&hw->usb_work); } spin_unlock_irqrestore(&hw->ctlxq.lock, flags); } /*---------------------------------------------------------------- * hfa384x_usbctlx_reaper_task * * Tasklet to delete dead CTLX objects * * Arguments: * data ptr to a hfa384x_t * * Returns: * * Call context: * Interrupt ----------------------------------------------------------------*/ static void hfa384x_usbctlx_reaper_task(unsigned long data) { hfa384x_t *hw = (hfa384x_t *) data; struct list_head *entry; struct list_head *temp; unsigned long flags; spin_lock_irqsave(&hw->ctlxq.lock, flags); /* This list is guaranteed to be empty if someone * has unplugged the adapter. */ list_for_each_safe(entry, temp, &hw->ctlxq.reapable) { hfa384x_usbctlx_t *ctlx; ctlx = list_entry(entry, hfa384x_usbctlx_t, list); list_del(&ctlx->list); kfree(ctlx); } spin_unlock_irqrestore(&hw->ctlxq.lock, flags); } /*---------------------------------------------------------------- * hfa384x_usbctlx_completion_task * * Tasklet to call completion handlers for returned CTLXs * * Arguments: * data ptr to hfa384x_t * * Returns: * Nothing * * Call context: * Interrupt ----------------------------------------------------------------*/ static void hfa384x_usbctlx_completion_task(unsigned long data) { hfa384x_t *hw = (hfa384x_t *) data; struct list_head *entry; struct list_head *temp; unsigned long flags; int reap = 0; spin_lock_irqsave(&hw->ctlxq.lock, flags); /* This list is guaranteed to be empty if someone * has unplugged the adapter ... */ list_for_each_safe(entry, temp, &hw->ctlxq.completing) { hfa384x_usbctlx_t *ctlx; ctlx = list_entry(entry, hfa384x_usbctlx_t, list); /* Call the completion function that this * command was assigned, assuming it has one. */ if (ctlx->cmdcb != NULL) { spin_unlock_irqrestore(&hw->ctlxq.lock, flags); ctlx->cmdcb(hw, ctlx); spin_lock_irqsave(&hw->ctlxq.lock, flags); /* Make sure we don't try and complete * this CTLX more than once! */ ctlx->cmdcb = NULL; /* Did someone yank the adapter out * while our list was (briefly) unlocked? */ if (hw->wlandev->hwremoved) { reap = 0; break; } } /* * "Reapable" CTLXs are ones which don't have any * threads waiting for them to die. Hence they must * be delivered to The Reaper! */ if (ctlx->reapable) { /* Move the CTLX off the "completing" list (hopefully) * on to the "reapable" list where the reaper task * can find it. And "reapable" means that this CTLX * isn't sitting on a wait-queue somewhere. */ list_move_tail(&ctlx->list, &hw->ctlxq.reapable); reap = 1; } complete(&ctlx->done); } spin_unlock_irqrestore(&hw->ctlxq.lock, flags); if (reap) tasklet_schedule(&hw->reaper_bh); } /*---------------------------------------------------------------- * unlocked_usbctlx_cancel_async * * Mark the CTLX dead asynchronously, and ensure that the * next command on the queue is run afterwards. * * Arguments: * hw ptr to the hfa384x_t structure * ctlx ptr to a CTLX structure * * Returns: * 0 the CTLX's URB is inactive * -EINPROGRESS the URB is currently being unlinked * * Call context: * Either process or interrupt, but presumably interrupt ----------------------------------------------------------------*/ static int unlocked_usbctlx_cancel_async(hfa384x_t *hw, hfa384x_usbctlx_t *ctlx) { int ret; /* * Try to delete the URB containing our request packet. * If we succeed, then its completion handler will be * called with a status of -ECONNRESET. */ hw->ctlx_urb.transfer_flags |= URB_ASYNC_UNLINK; ret = usb_unlink_urb(&hw->ctlx_urb); if (ret != -EINPROGRESS) { /* * The OUT URB had either already completed * or was still in the pending queue, so the * URB's completion function will not be called. * We will have to complete the CTLX ourselves. */ ctlx->state = CTLX_REQ_FAILED; unlocked_usbctlx_complete(hw, ctlx); ret = 0; } return ret; } /*---------------------------------------------------------------- * unlocked_usbctlx_complete * * A CTLX has completed. It may have been successful, it may not * have been. At this point, the CTLX should be quiescent. The URBs * aren't active and the timers should have been stopped. * * The CTLX is migrated to the "completing" queue, and the completing * tasklet is scheduled. * * Arguments: * hw ptr to a hfa384x_t structure * ctlx ptr to a ctlx structure * * Returns: * nothing * * Side effects: * * Call context: * Either, assume interrupt ----------------------------------------------------------------*/ static void unlocked_usbctlx_complete(hfa384x_t *hw, hfa384x_usbctlx_t *ctlx) { /* Timers have been stopped, and ctlx should be in * a terminal state. Retire it from the "active" * queue. */ list_move_tail(&ctlx->list, &hw->ctlxq.completing); tasklet_schedule(&hw->completion_bh); switch (ctlx->state) { case CTLX_COMPLETE: case CTLX_REQ_FAILED: /* This are the correct terminating states. */ break; default: printk(KERN_ERR "CTLX[%d] not in a terminating state(%s)\n", le16_to_cpu(ctlx->outbuf.type), ctlxstr(ctlx->state)); break; } /* switch */ } /*---------------------------------------------------------------- * hfa384x_usbctlxq_run * * Checks to see if the head item is running. If not, starts it. * * Arguments: * hw ptr to hfa384x_t * * Returns: * nothing * * Side effects: * * Call context: * any ----------------------------------------------------------------*/ static void hfa384x_usbctlxq_run(hfa384x_t *hw) { unsigned long flags; /* acquire lock */ spin_lock_irqsave(&hw->ctlxq.lock, flags); /* Only one active CTLX at any one time, because there's no * other (reliable) way to match the response URB to the * correct CTLX. * * Don't touch any of these CTLXs if the hardware * has been removed or the USB subsystem is stalled. */ if (!list_empty(&hw->ctlxq.active) || test_bit(WORK_TX_HALT, &hw->usb_flags) || hw->wlandev->hwremoved) goto unlock; while (!list_empty(&hw->ctlxq.pending)) { hfa384x_usbctlx_t *head; int result; /* This is the first pending command */ head = list_entry(hw->ctlxq.pending.next, hfa384x_usbctlx_t, list); /* We need to split this off to avoid a race condition */ list_move_tail(&head->list, &hw->ctlxq.active); /* Fill the out packet */ usb_fill_bulk_urb(&(hw->ctlx_urb), hw->usb, hw->endp_out, &(head->outbuf), ROUNDUP64(head->outbufsize), hfa384x_ctlxout_callback, hw); hw->ctlx_urb.transfer_flags |= USB_QUEUE_BULK; /* Now submit the URB and update the CTLX's state */ result = SUBMIT_URB(&hw->ctlx_urb, GFP_ATOMIC); if (result == 0) { /* This CTLX is now running on the active queue */ head->state = CTLX_REQ_SUBMITTED; /* Start the OUT wait timer */ hw->req_timer_done = 0; hw->reqtimer.expires = jiffies + HZ; add_timer(&hw->reqtimer); /* Start the IN wait timer */ hw->resp_timer_done = 0; hw->resptimer.expires = jiffies + 2 * HZ; add_timer(&hw->resptimer); break; } if (result == -EPIPE) { /* The OUT pipe needs resetting, so put * this CTLX back in the "pending" queue * and schedule a reset ... */ printk(KERN_WARNING "%s tx pipe stalled: requesting reset\n", hw->wlandev->netdev->name); list_move(&head->list, &hw->ctlxq.pending); set_bit(WORK_TX_HALT, &hw->usb_flags); schedule_work(&hw->usb_work); break; } if (result == -ESHUTDOWN) { printk(KERN_WARNING "%s urb shutdown!\n", hw->wlandev->netdev->name); break; } printk(KERN_ERR "Failed to submit CTLX[%d]: error=%d\n", le16_to_cpu(head->outbuf.type), result); unlocked_usbctlx_complete(hw, head); } /* while */ unlock: spin_unlock_irqrestore(&hw->ctlxq.lock, flags); } /*---------------------------------------------------------------- * hfa384x_usbin_callback * * Callback for URBs on the BULKIN endpoint. * * Arguments: * urb ptr to the completed urb * * Returns: * nothing * * Side effects: * * Call context: * interrupt ----------------------------------------------------------------*/ static void hfa384x_usbin_callback(struct urb *urb) { wlandevice_t *wlandev = urb->context; hfa384x_t *hw; hfa384x_usbin_t *usbin = (hfa384x_usbin_t *) urb->transfer_buffer; struct sk_buff *skb = NULL; int result; int urb_status; u16 type; enum USBIN_ACTION { HANDLE, RESUBMIT, ABORT } action; if (!wlandev || !wlandev->netdev || wlandev->hwremoved) goto exit; hw = wlandev->priv; if (!hw) goto exit; skb = hw->rx_urb_skb; BUG_ON(!skb || (skb->data != urb->transfer_buffer)); hw->rx_urb_skb = NULL; /* Check for error conditions within the URB */ switch (urb->status) { case 0: action = HANDLE; /* Check for short packet */ if (urb->actual_length == 0) { ++(wlandev->linux_stats.rx_errors); ++(wlandev->linux_stats.rx_length_errors); action = RESUBMIT; } break; case -EPIPE: printk(KERN_WARNING "%s rx pipe stalled: requesting reset\n", wlandev->netdev->name); if (!test_and_set_bit(WORK_RX_HALT, &hw->usb_flags)) schedule_work(&hw->usb_work); ++(wlandev->linux_stats.rx_errors); action = ABORT; break; case -EILSEQ: case -ETIMEDOUT: case -EPROTO: if (!test_and_set_bit(THROTTLE_RX, &hw->usb_flags) && !timer_pending(&hw->throttle)) { mod_timer(&hw->throttle, jiffies + THROTTLE_JIFFIES); } ++(wlandev->linux_stats.rx_errors); action = ABORT; break; case -EOVERFLOW: ++(wlandev->linux_stats.rx_over_errors); action = RESUBMIT; break; case -ENODEV: case -ESHUTDOWN: pr_debug("status=%d, device removed.\n", urb->status); action = ABORT; break; case -ENOENT: case -ECONNRESET: pr_debug("status=%d, urb explicitly unlinked.\n", urb->status); action = ABORT; break; default: pr_debug("urb status=%d, transfer flags=0x%x\n", urb->status, urb->transfer_flags); ++(wlandev->linux_stats.rx_errors); action = RESUBMIT; break; } urb_status = urb->status; if (action != ABORT) { /* Repost the RX URB */ result = submit_rx_urb(hw, GFP_ATOMIC); if (result != 0) { printk(KERN_ERR "Fatal, failed to resubmit rx_urb. error=%d\n", result); } } /* Handle any USB-IN packet */ /* Note: the check of the sw_support field, the type field doesn't * have bit 12 set like the docs suggest. */ type = le16_to_cpu(usbin->type); if (HFA384x_USB_ISRXFRM(type)) { if (action == HANDLE) { if (usbin->txfrm.desc.sw_support == 0x0123) { hfa384x_usbin_txcompl(wlandev, usbin); } else { skb_put(skb, sizeof(*usbin)); hfa384x_usbin_rx(wlandev, skb); skb = NULL; } } goto exit; } if (HFA384x_USB_ISTXFRM(type)) { if (action == HANDLE) hfa384x_usbin_txcompl(wlandev, usbin); goto exit; } switch (type) { case HFA384x_USB_INFOFRM: if (action == ABORT) goto exit; if (action == HANDLE) hfa384x_usbin_info(wlandev, usbin); break; case HFA384x_USB_CMDRESP: case HFA384x_USB_WRIDRESP: case HFA384x_USB_RRIDRESP: case HFA384x_USB_WMEMRESP: case HFA384x_USB_RMEMRESP: /* ALWAYS, ALWAYS, ALWAYS handle this CTLX!!!! */ hfa384x_usbin_ctlx(hw, usbin, urb_status); break; case HFA384x_USB_BUFAVAIL: pr_debug("Received BUFAVAIL packet, frmlen=%d\n", usbin->bufavail.frmlen); break; case HFA384x_USB_ERROR: pr_debug("Received USB_ERROR packet, errortype=%d\n", usbin->usberror.errortype); break; default: pr_debug("Unrecognized USBIN packet, type=%x, status=%d\n", usbin->type, urb_status); break; } /* switch */ exit: if (skb) dev_kfree_skb(skb); } /*---------------------------------------------------------------- * hfa384x_usbin_ctlx * * We've received a URB containing a Prism2 "response" message. * This message needs to be matched up with a CTLX on the active * queue and our state updated accordingly. * * Arguments: * hw ptr to hfa384x_t * usbin ptr to USB IN packet * urb_status status of this Bulk-In URB * * Returns: * nothing * * Side effects: * * Call context: * interrupt ----------------------------------------------------------------*/ static void hfa384x_usbin_ctlx(hfa384x_t *hw, hfa384x_usbin_t *usbin, int urb_status) { hfa384x_usbctlx_t *ctlx; int run_queue = 0; unsigned long flags; retry: spin_lock_irqsave(&hw->ctlxq.lock, flags); /* There can be only one CTLX on the active queue * at any one time, and this is the CTLX that the * timers are waiting for. */ if (list_empty(&hw->ctlxq.active)) goto unlock; /* Remove the "response timeout". It's possible that * we are already too late, and that the timeout is * already running. And that's just too bad for us, * because we could lose our CTLX from the active * queue here ... */ if (del_timer(&hw->resptimer) == 0) { if (hw->resp_timer_done == 0) { spin_unlock_irqrestore(&hw->ctlxq.lock, flags); goto retry; } } else { hw->resp_timer_done = 1; } ctlx = get_active_ctlx(hw); if (urb_status != 0) { /* * Bad CTLX, so get rid of it. But we only * remove it from the active queue if we're no * longer expecting the OUT URB to complete. */ if (unlocked_usbctlx_cancel_async(hw, ctlx) == 0) run_queue = 1; } else { const u16 intype = (usbin->type & ~cpu_to_le16(0x8000)); /* * Check that our message is what we're expecting ... */ if (ctlx->outbuf.type != intype) { printk(KERN_WARNING "Expected IN[%d], received IN[%d] - ignored.\n", le16_to_cpu(ctlx->outbuf.type), le16_to_cpu(intype)); goto unlock; } /* This URB has succeeded, so grab the data ... */ memcpy(&ctlx->inbuf, usbin, sizeof(ctlx->inbuf)); switch (ctlx->state) { case CTLX_REQ_SUBMITTED: /* * We have received our response URB before * our request has been acknowledged. Odd, * but our OUT URB is still alive... */ pr_debug("Causality violation: please reboot Universe\n"); ctlx->state = CTLX_RESP_COMPLETE; break; case CTLX_REQ_COMPLETE: /* * This is the usual path: our request * has already been acknowledged, and * now we have received the reply too. */ ctlx->state = CTLX_COMPLETE; unlocked_usbctlx_complete(hw, ctlx); run_queue = 1; break; default: /* * Throw this CTLX away ... */ printk(KERN_ERR "Matched IN URB, CTLX[%d] in invalid state(%s)." " Discarded.\n", le16_to_cpu(ctlx->outbuf.type), ctlxstr(ctlx->state)); if (unlocked_usbctlx_cancel_async(hw, ctlx) == 0) run_queue = 1; break; } /* switch */ } unlock: spin_unlock_irqrestore(&hw->ctlxq.lock, flags); if (run_queue) hfa384x_usbctlxq_run(hw); } /*---------------------------------------------------------------- * hfa384x_usbin_txcompl * * At this point we have the results of a previous transmit. * * Arguments: * wlandev wlan device * usbin ptr to the usb transfer buffer * * Returns: * nothing * * Side effects: * * Call context: * interrupt ----------------------------------------------------------------*/ static void hfa384x_usbin_txcompl(wlandevice_t *wlandev, hfa384x_usbin_t *usbin) { u16 status; status = le16_to_cpu(usbin->type); /* yeah I know it says type... */ /* Was there an error? */ if (HFA384x_TXSTATUS_ISERROR(status)) prism2sta_ev_txexc(wlandev, status); else prism2sta_ev_tx(wlandev, status); } /*---------------------------------------------------------------- * hfa384x_usbin_rx * * At this point we have a successful received a rx frame packet. * * Arguments: * wlandev wlan device * usbin ptr to the usb transfer buffer * * Returns: * nothing * * Side effects: * * Call context: * interrupt ----------------------------------------------------------------*/ static void hfa384x_usbin_rx(wlandevice_t *wlandev, struct sk_buff *skb) { hfa384x_usbin_t *usbin = (hfa384x_usbin_t *) skb->data; hfa384x_t *hw = wlandev->priv; int hdrlen; struct p80211_rxmeta *rxmeta; u16 data_len; u16 fc; /* Byte order convert once up front. */ usbin->rxfrm.desc.status = le16_to_cpu(usbin->rxfrm.desc.status); usbin->rxfrm.desc.time = le32_to_cpu(usbin->rxfrm.desc.time); /* Now handle frame based on port# */ switch (HFA384x_RXSTATUS_MACPORT_GET(usbin->rxfrm.desc.status)) { case 0: fc = le16_to_cpu(usbin->rxfrm.desc.frame_control); /* If exclude and we receive an unencrypted, drop it */ if ((wlandev->hostwep & HOSTWEP_EXCLUDEUNENCRYPTED) && !WLAN_GET_FC_ISWEP(fc)) { goto done; } data_len = le16_to_cpu(usbin->rxfrm.desc.data_len); /* How much header data do we have? */ hdrlen = p80211_headerlen(fc); /* Pull off the descriptor */ skb_pull(skb, sizeof(hfa384x_rx_frame_t)); /* Now shunt the header block up against the data block * with an "overlapping" copy */ memmove(skb_push(skb, hdrlen), &usbin->rxfrm.desc.frame_control, hdrlen); skb->dev = wlandev->netdev; skb->dev->last_rx = jiffies; /* And set the frame length properly */ skb_trim(skb, data_len + hdrlen); /* The prism2 series does not return the CRC */ memset(skb_put(skb, WLAN_CRC_LEN), 0xff, WLAN_CRC_LEN); skb_reset_mac_header(skb); /* Attach the rxmeta, set some stuff */ p80211skb_rxmeta_attach(wlandev, skb); rxmeta = P80211SKB_RXMETA(skb); rxmeta->mactime = usbin->rxfrm.desc.time; rxmeta->rxrate = usbin->rxfrm.desc.rate; rxmeta->signal = usbin->rxfrm.desc.signal - hw->dbmadjust; rxmeta->noise = usbin->rxfrm.desc.silence - hw->dbmadjust; prism2sta_ev_rx(wlandev, skb); break; case 7: if (!HFA384x_RXSTATUS_ISFCSERR(usbin->rxfrm.desc.status)) { /* Copy to wlansnif skb */ hfa384x_int_rxmonitor(wlandev, &usbin->rxfrm); dev_kfree_skb(skb); } else { pr_debug("Received monitor frame: FCSerr set\n"); } break; default: printk(KERN_WARNING "Received frame on unsupported port=%d\n", HFA384x_RXSTATUS_MACPORT_GET(usbin->rxfrm.desc.status)); goto done; break; } done: return; } /*---------------------------------------------------------------- * hfa384x_int_rxmonitor * * Helper function for int_rx. Handles monitor frames. * Note that this function allocates space for the FCS and sets it * to 0xffffffff. The hfa384x doesn't give us the FCS value but the * higher layers expect it. 0xffffffff is used as a flag to indicate * the FCS is bogus. * * Arguments: * wlandev wlan device structure * rxfrm rx descriptor read from card in int_rx * * Returns: * nothing * * Side effects: * Allocates an skb and passes it up via the PF_PACKET interface. * Call context: * interrupt ----------------------------------------------------------------*/ static void hfa384x_int_rxmonitor(wlandevice_t *wlandev, hfa384x_usb_rxfrm_t *rxfrm) { hfa384x_rx_frame_t *rxdesc = &(rxfrm->desc); unsigned int hdrlen = 0; unsigned int datalen = 0; unsigned int skblen = 0; u8 *datap; u16 fc; struct sk_buff *skb; hfa384x_t *hw = wlandev->priv; /* Remember the status, time, and data_len fields are in host order */ /* Figure out how big the frame is */ fc = le16_to_cpu(rxdesc->frame_control); hdrlen = p80211_headerlen(fc); datalen = le16_to_cpu(rxdesc->data_len); /* Allocate an ind message+framesize skb */ skblen = sizeof(struct p80211_caphdr) + hdrlen + datalen + WLAN_CRC_LEN; /* sanity check the length */ if (skblen > (sizeof(struct p80211_caphdr) + WLAN_HDR_A4_LEN + WLAN_DATA_MAXLEN + WLAN_CRC_LEN)) { pr_debug("overlen frm: len=%zd\n", skblen - sizeof(struct p80211_caphdr)); } skb = dev_alloc_skb(skblen); if (skb == NULL) { printk(KERN_ERR "alloc_skb failed trying to allocate %d bytes\n", skblen); return; } /* only prepend the prism header if in the right mode */ if ((wlandev->netdev->type == ARPHRD_IEEE80211_PRISM) && (hw->sniffhdr != 0)) { struct p80211_caphdr *caphdr; /* The NEW header format! */ datap = skb_put(skb, sizeof(struct p80211_caphdr)); caphdr = (struct p80211_caphdr *) datap; caphdr->version = htonl(P80211CAPTURE_VERSION); caphdr->length = htonl(sizeof(struct p80211_caphdr)); caphdr->mactime = __cpu_to_be64(rxdesc->time) * 1000; caphdr->hosttime = __cpu_to_be64(jiffies); caphdr->phytype = htonl(4); /* dss_dot11_b */ caphdr->channel = htonl(hw->sniff_channel); caphdr->datarate = htonl(rxdesc->rate); caphdr->antenna = htonl(0); /* unknown */ caphdr->priority = htonl(0); /* unknown */ caphdr->ssi_type = htonl(3); /* rssi_raw */ caphdr->ssi_signal = htonl(rxdesc->signal); caphdr->ssi_noise = htonl(rxdesc->silence); caphdr->preamble = htonl(0); /* unknown */ caphdr->encoding = htonl(1); /* cck */ } /* Copy the 802.11 header to the skb (ctl frames may be less than a full header) */ datap = skb_put(skb, hdrlen); memcpy(datap, &(rxdesc->frame_control), hdrlen); /* If any, copy the data from the card to the skb */ if (datalen > 0) { datap = skb_put(skb, datalen); memcpy(datap, rxfrm->data, datalen); /* check for unencrypted stuff if WEP bit set. */ if (*(datap - hdrlen + 1) & 0x40) /* wep set */ if ((*(datap) == 0xaa) && (*(datap + 1) == 0xaa)) /* clear wep; it's the 802.2 header! */ *(datap - hdrlen + 1) &= 0xbf; } if (hw->sniff_fcs) { /* Set the FCS */ datap = skb_put(skb, WLAN_CRC_LEN); memset(datap, 0xff, WLAN_CRC_LEN); } /* pass it back up */ prism2sta_ev_rx(wlandev, skb); return; } /*---------------------------------------------------------------- * hfa384x_usbin_info * * At this point we have a successful received a Prism2 info frame. * * Arguments: * wlandev wlan device * usbin ptr to the usb transfer buffer * * Returns: * nothing * * Side effects: * * Call context: * interrupt ----------------------------------------------------------------*/ static void hfa384x_usbin_info(wlandevice_t *wlandev, hfa384x_usbin_t *usbin) { usbin->infofrm.info.framelen = le16_to_cpu(usbin->infofrm.info.framelen); prism2sta_ev_info(wlandev, &usbin->infofrm.info); } /*---------------------------------------------------------------- * hfa384x_usbout_callback * * Callback for URBs on the BULKOUT endpoint. * * Arguments: * urb ptr to the completed urb * * Returns: * nothing * * Side effects: * * Call context: * interrupt ----------------------------------------------------------------*/ static void hfa384x_usbout_callback(struct urb *urb) { wlandevice_t *wlandev = urb->context; hfa384x_usbout_t *usbout = urb->transfer_buffer; #ifdef DEBUG_USB dbprint_urb(urb); #endif if (wlandev && wlandev->netdev) { switch (urb->status) { case 0: hfa384x_usbout_tx(wlandev, usbout); break; case -EPIPE: { hfa384x_t *hw = wlandev->priv; printk(KERN_WARNING "%s tx pipe stalled: requesting reset\n", wlandev->netdev->name); if (!test_and_set_bit (WORK_TX_HALT, &hw->usb_flags)) schedule_work(&hw->usb_work); ++(wlandev->linux_stats.tx_errors); break; } case -EPROTO: case -ETIMEDOUT: case -EILSEQ: { hfa384x_t *hw = wlandev->priv; if (!test_and_set_bit (THROTTLE_TX, &hw->usb_flags) && !timer_pending(&hw->throttle)) { mod_timer(&hw->throttle, jiffies + THROTTLE_JIFFIES); } ++(wlandev->linux_stats.tx_errors); netif_stop_queue(wlandev->netdev); break; } case -ENOENT: case -ESHUTDOWN: /* Ignorable errors */ break; default: printk(KERN_INFO "unknown urb->status=%d\n", urb->status); ++(wlandev->linux_stats.tx_errors); break; } /* switch */ } } /*---------------------------------------------------------------- * hfa384x_ctlxout_callback * * Callback for control data on the BULKOUT endpoint. * * Arguments: * urb ptr to the completed urb * * Returns: * nothing * * Side effects: * * Call context: * interrupt ----------------------------------------------------------------*/ static void hfa384x_ctlxout_callback(struct urb *urb) { hfa384x_t *hw = urb->context; int delete_resptimer = 0; int timer_ok = 1; int run_queue = 0; hfa384x_usbctlx_t *ctlx; unsigned long flags; pr_debug("urb->status=%d\n", urb->status); #ifdef DEBUG_USB dbprint_urb(urb); #endif if ((urb->status == -ESHUTDOWN) || (urb->status == -ENODEV) || (hw == NULL)) goto done; retry: spin_lock_irqsave(&hw->ctlxq.lock, flags); /* * Only one CTLX at a time on the "active" list, and * none at all if we are unplugged. However, we can * rely on the disconnect function to clean everything * up if someone unplugged the adapter. */ if (list_empty(&hw->ctlxq.active)) { spin_unlock_irqrestore(&hw->ctlxq.lock, flags); goto done; } /* * Having something on the "active" queue means * that we have timers to worry about ... */ if (del_timer(&hw->reqtimer) == 0) { if (hw->req_timer_done == 0) { /* * This timer was actually running while we * were trying to delete it. Let it terminate * gracefully instead. */ spin_unlock_irqrestore(&hw->ctlxq.lock, flags); goto retry; } } else { hw->req_timer_done = 1; } ctlx = get_active_ctlx(hw); if (urb->status == 0) { /* Request portion of a CTLX is successful */ switch (ctlx->state) { case CTLX_REQ_SUBMITTED: /* This OUT-ACK received before IN */ ctlx->state = CTLX_REQ_COMPLETE; break; case CTLX_RESP_COMPLETE: /* IN already received before this OUT-ACK, * so this command must now be complete. */ ctlx->state = CTLX_COMPLETE; unlocked_usbctlx_complete(hw, ctlx); run_queue = 1; break; default: /* This is NOT a valid CTLX "success" state! */ printk(KERN_ERR "Illegal CTLX[%d] success state(%s, %d) in OUT URB\n", le16_to_cpu(ctlx->outbuf.type), ctlxstr(ctlx->state), urb->status); break; } /* switch */ } else { /* If the pipe has stalled then we need to reset it */ if ((urb->status == -EPIPE) && !test_and_set_bit(WORK_TX_HALT, &hw->usb_flags)) { printk(KERN_WARNING "%s tx pipe stalled: requesting reset\n", hw->wlandev->netdev->name); schedule_work(&hw->usb_work); } /* If someone cancels the OUT URB then its status * should be either -ECONNRESET or -ENOENT. */ ctlx->state = CTLX_REQ_FAILED; unlocked_usbctlx_complete(hw, ctlx); delete_resptimer = 1; run_queue = 1; } delresp: if (delete_resptimer) { timer_ok = del_timer(&hw->resptimer); if (timer_ok != 0) hw->resp_timer_done = 1; } spin_unlock_irqrestore(&hw->ctlxq.lock, flags); if (!timer_ok && (hw->resp_timer_done == 0)) { spin_lock_irqsave(&hw->ctlxq.lock, flags); goto delresp; } if (run_queue) hfa384x_usbctlxq_run(hw); done: ; } /*---------------------------------------------------------------- * hfa384x_usbctlx_reqtimerfn * * Timer response function for CTLX request timeouts. If this * function is called, it means that the callback for the OUT * URB containing a Prism2.x XXX_Request was never called. * * Arguments: * data a ptr to the hfa384x_t * * Returns: * nothing * * Side effects: * * Call context: * interrupt ----------------------------------------------------------------*/ static void hfa384x_usbctlx_reqtimerfn(unsigned long data) { hfa384x_t *hw = (hfa384x_t *) data; unsigned long flags; spin_lock_irqsave(&hw->ctlxq.lock, flags); hw->req_timer_done = 1; /* Removing the hardware automatically empties * the active list ... */ if (!list_empty(&hw->ctlxq.active)) { /* * We must ensure that our URB is removed from * the system, if it hasn't already expired. */ hw->ctlx_urb.transfer_flags |= URB_ASYNC_UNLINK; if (usb_unlink_urb(&hw->ctlx_urb) == -EINPROGRESS) { hfa384x_usbctlx_t *ctlx = get_active_ctlx(hw); ctlx->state = CTLX_REQ_FAILED; /* This URB was active, but has now been * cancelled. It will now have a status of * -ECONNRESET in the callback function. * * We are cancelling this CTLX, so we're * not going to need to wait for a response. * The URB's callback function will check * that this timer is truly dead. */ if (del_timer(&hw->resptimer) != 0) hw->resp_timer_done = 1; } } spin_unlock_irqrestore(&hw->ctlxq.lock, flags); } /*---------------------------------------------------------------- * hfa384x_usbctlx_resptimerfn * * Timer response function for CTLX response timeouts. If this * function is called, it means that the callback for the IN * URB containing a Prism2.x XXX_Response was never called. * * Arguments: * data a ptr to the hfa384x_t * * Returns: * nothing * * Side effects: * * Call context: * interrupt ----------------------------------------------------------------*/ static void hfa384x_usbctlx_resptimerfn(unsigned long data) { hfa384x_t *hw = (hfa384x_t *) data; unsigned long flags; spin_lock_irqsave(&hw->ctlxq.lock, flags); hw->resp_timer_done = 1; /* The active list will be empty if the * adapter has been unplugged ... */ if (!list_empty(&hw->ctlxq.active)) { hfa384x_usbctlx_t *ctlx = get_active_ctlx(hw); if (unlocked_usbctlx_cancel_async(hw, ctlx) == 0) { spin_unlock_irqrestore(&hw->ctlxq.lock, flags); hfa384x_usbctlxq_run(hw); goto done; } } spin_unlock_irqrestore(&hw->ctlxq.lock, flags); done: ; } /*---------------------------------------------------------------- * hfa384x_usb_throttlefn * * * Arguments: * data ptr to hw * * Returns: * Nothing * * Side effects: * * Call context: * Interrupt ----------------------------------------------------------------*/ static void hfa384x_usb_throttlefn(unsigned long data) { hfa384x_t *hw = (hfa384x_t *) data; unsigned long flags; spin_lock_irqsave(&hw->ctlxq.lock, flags); /* * We need to check BOTH the RX and the TX throttle controls, * so we use the bitwise OR instead of the logical OR. */ pr_debug("flags=0x%lx\n", hw->usb_flags); if (!hw->wlandev->hwremoved && ((test_and_clear_bit(THROTTLE_RX, &hw->usb_flags) && !test_and_set_bit(WORK_RX_RESUME, &hw->usb_flags)) | (test_and_clear_bit(THROTTLE_TX, &hw->usb_flags) && !test_and_set_bit(WORK_TX_RESUME, &hw->usb_flags)) )) { schedule_work(&hw->usb_work); } spin_unlock_irqrestore(&hw->ctlxq.lock, flags); } /*---------------------------------------------------------------- * hfa384x_usbctlx_submit * * Called from the doxxx functions to submit a CTLX to the queue * * Arguments: * hw ptr to the hw struct * ctlx ctlx structure to enqueue * * Returns: * -ENODEV if the adapter is unplugged * 0 * * Side effects: * * Call context: * process or interrupt ----------------------------------------------------------------*/ static int hfa384x_usbctlx_submit(hfa384x_t *hw, hfa384x_usbctlx_t *ctlx) { unsigned long flags; int ret; spin_lock_irqsave(&hw->ctlxq.lock, flags); if (hw->wlandev->hwremoved) { spin_unlock_irqrestore(&hw->ctlxq.lock, flags); ret = -ENODEV; } else { ctlx->state = CTLX_PENDING; list_add_tail(&ctlx->list, &hw->ctlxq.pending); spin_unlock_irqrestore(&hw->ctlxq.lock, flags); hfa384x_usbctlxq_run(hw); ret = 0; } return ret; } /*---------------------------------------------------------------- * hfa384x_usbout_tx * * At this point we have finished a send of a frame. Mark the URB * as available and call ev_alloc to notify higher layers we're * ready for more. * * Arguments: * wlandev wlan device * usbout ptr to the usb transfer buffer * * Returns: * nothing * * Side effects: * * Call context: * interrupt ----------------------------------------------------------------*/ static void hfa384x_usbout_tx(wlandevice_t *wlandev, hfa384x_usbout_t *usbout) { prism2sta_ev_alloc(wlandev); } /*---------------------------------------------------------------- * hfa384x_isgood_pdrcore * * Quick check of PDR codes. * * Arguments: * pdrcode PDR code number (host order) * * Returns: * zero not good. * one is good. * * Side effects: * * Call context: ----------------------------------------------------------------*/ static int hfa384x_isgood_pdrcode(u16 pdrcode) { switch (pdrcode) { case HFA384x_PDR_END_OF_PDA: case HFA384x_PDR_PCB_PARTNUM: case HFA384x_PDR_PDAVER: case HFA384x_PDR_NIC_SERIAL: case HFA384x_PDR_MKK_MEASUREMENTS: case HFA384x_PDR_NIC_RAMSIZE: case HFA384x_PDR_MFISUPRANGE: case HFA384x_PDR_CFISUPRANGE: case HFA384x_PDR_NICID: case HFA384x_PDR_MAC_ADDRESS: case HFA384x_PDR_REGDOMAIN: case HFA384x_PDR_ALLOWED_CHANNEL: case HFA384x_PDR_DEFAULT_CHANNEL: case HFA384x_PDR_TEMPTYPE: case HFA384x_PDR_IFR_SETTING: case HFA384x_PDR_RFR_SETTING: case HFA384x_PDR_HFA3861_BASELINE: case HFA384x_PDR_HFA3861_SHADOW: case HFA384x_PDR_HFA3861_IFRF: case HFA384x_PDR_HFA3861_CHCALSP: case HFA384x_PDR_HFA3861_CHCALI: case HFA384x_PDR_3842_NIC_CONFIG: case HFA384x_PDR_USB_ID: case HFA384x_PDR_PCI_ID: case HFA384x_PDR_PCI_IFCONF: case HFA384x_PDR_PCI_PMCONF: case HFA384x_PDR_RFENRGY: case HFA384x_PDR_HFA3861_MANF_TESTSP: case HFA384x_PDR_HFA3861_MANF_TESTI: /* code is OK */ return 1; break; default: if (pdrcode < 0x1000) { /* code is OK, but we don't know exactly what it is */ pr_debug("Encountered unknown PDR#=0x%04x, " "assuming it's ok.\n", pdrcode); return 1; } else { /* bad code */ pr_debug("Encountered unknown PDR#=0x%04x, " "(>=0x1000), assuming it's bad.\n", pdrcode); return 0; } break; } return 0; /* avoid compiler warnings */ }