/* * bcm63xx_udc.c -- BCM63xx UDC high/full speed USB device controller * * Copyright (C) 2012 Kevin Cernekee * Copyright (C) 2012 Broadcom Corporation * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #define DRV_MODULE_NAME "bcm63xx_udc" static const char bcm63xx_ep0name[] = "ep0"; static const char *const bcm63xx_ep_name[] = { bcm63xx_ep0name, "ep1in-bulk", "ep2out-bulk", "ep3in-int", "ep4out-int", }; static bool use_fullspeed; module_param(use_fullspeed, bool, S_IRUGO); MODULE_PARM_DESC(use_fullspeed, "true for fullspeed only"); /* * RX IRQ coalescing options: * * false (default) - one IRQ per DATAx packet. Slow but reliable. The * driver is able to pass the "testusb" suite and recover from conditions like: * * 1) Device queues up a 2048-byte RX IUDMA transaction on an OUT bulk ep * 2) Host sends 512 bytes of data * 3) Host decides to reconfigure the device and sends SET_INTERFACE * 4) Device shuts down the endpoint and cancels the RX transaction * * true - one IRQ per transfer, for transfers <= 2048B. Generates * considerably fewer IRQs, but error recovery is less robust. Does not * reliably pass "testusb". * * TX always uses coalescing, because we can cancel partially complete TX * transfers by repeatedly flushing the FIFO. The hardware doesn't allow * this on RX. */ static bool irq_coalesce; module_param(irq_coalesce, bool, S_IRUGO); MODULE_PARM_DESC(irq_coalesce, "take one IRQ per RX transfer"); #define BCM63XX_NUM_EP 5 #define BCM63XX_NUM_IUDMA 6 #define BCM63XX_NUM_FIFO_PAIRS 3 #define IUDMA_RESET_TIMEOUT_US 10000 #define IUDMA_EP0_RXCHAN 0 #define IUDMA_EP0_TXCHAN 1 #define IUDMA_MAX_FRAGMENT 2048 #define BCM63XX_MAX_CTRL_PKT 64 #define BCMEP_CTRL 0x00 #define BCMEP_ISOC 0x01 #define BCMEP_BULK 0x02 #define BCMEP_INTR 0x03 #define BCMEP_OUT 0x00 #define BCMEP_IN 0x01 #define BCM63XX_SPD_FULL 1 #define BCM63XX_SPD_HIGH 0 #define IUDMA_DMAC_OFFSET 0x200 #define IUDMA_DMAS_OFFSET 0x400 enum bcm63xx_ep0_state { EP0_REQUEUE, EP0_IDLE, EP0_IN_DATA_PHASE_SETUP, EP0_IN_DATA_PHASE_COMPLETE, EP0_OUT_DATA_PHASE_SETUP, EP0_OUT_DATA_PHASE_COMPLETE, EP0_OUT_STATUS_PHASE, EP0_IN_FAKE_STATUS_PHASE, EP0_SHUTDOWN, }; static const char __maybe_unused bcm63xx_ep0_state_names[][32] = { "REQUEUE", "IDLE", "IN_DATA_PHASE_SETUP", "IN_DATA_PHASE_COMPLETE", "OUT_DATA_PHASE_SETUP", "OUT_DATA_PHASE_COMPLETE", "OUT_STATUS_PHASE", "IN_FAKE_STATUS_PHASE", "SHUTDOWN", }; /** * struct iudma_ch_cfg - Static configuration for an IUDMA channel. * @ep_num: USB endpoint number. * @n_bds: Number of buffer descriptors in the ring. * @ep_type: Endpoint type (control, bulk, interrupt). * @dir: Direction (in, out). * @n_fifo_slots: Number of FIFO entries to allocate for this channel. * @max_pkt_hs: Maximum packet size in high speed mode. * @max_pkt_fs: Maximum packet size in full speed mode. */ struct iudma_ch_cfg { int ep_num; int n_bds; int ep_type; int dir; int n_fifo_slots; int max_pkt_hs; int max_pkt_fs; }; static const struct iudma_ch_cfg iudma_defaults[] = { /* This controller was designed to support a CDC/RNDIS application. It may be possible to reconfigure some of the endpoints, but the hardware limitations (FIFO sizing and number of DMA channels) may significantly impact flexibility and/or stability. Change these values at your own risk. ep_num ep_type n_fifo_slots max_pkt_fs idx | n_bds | dir | max_pkt_hs | | | | | | | | | */ [0] = { -1, 4, BCMEP_CTRL, BCMEP_OUT, 32, 64, 64 }, [1] = { 0, 4, BCMEP_CTRL, BCMEP_OUT, 32, 64, 64 }, [2] = { 2, 16, BCMEP_BULK, BCMEP_OUT, 128, 512, 64 }, [3] = { 1, 16, BCMEP_BULK, BCMEP_IN, 128, 512, 64 }, [4] = { 4, 4, BCMEP_INTR, BCMEP_OUT, 32, 64, 64 }, [5] = { 3, 4, BCMEP_INTR, BCMEP_IN, 32, 64, 64 }, }; struct bcm63xx_udc; /** * struct iudma_ch - Represents the current state of a single IUDMA channel. * @ch_idx: IUDMA channel index (0 to BCM63XX_NUM_IUDMA-1). * @ep_num: USB endpoint number. -1 for ep0 RX. * @enabled: Whether bcm63xx_ep_enable() has been called. * @max_pkt: "Chunk size" on the USB interface. Based on interface speed. * @is_tx: true for TX, false for RX. * @bep: Pointer to the associated endpoint. NULL for ep0 RX. * @udc: Reference to the device controller. * @read_bd: Next buffer descriptor to reap from the hardware. * @write_bd: Next BD available for a new packet. * @end_bd: Points to the final BD in the ring. * @n_bds_used: Number of BD entries currently occupied. * @bd_ring: Base pointer to the BD ring. * @bd_ring_dma: Physical (DMA) address of bd_ring. * @n_bds: Total number of BDs in the ring. * * ep0 has two IUDMA channels (IUDMA_EP0_RXCHAN and IUDMA_EP0_TXCHAN), as it is * bidirectional. The "struct usb_ep" associated with ep0 is for TX (IN) * only. * * Each bulk/intr endpoint has a single IUDMA channel and a single * struct usb_ep. */ struct iudma_ch { unsigned int ch_idx; int ep_num; bool enabled; int max_pkt; bool is_tx; struct bcm63xx_ep *bep; struct bcm63xx_udc *udc; struct bcm_enet_desc *read_bd; struct bcm_enet_desc *write_bd; struct bcm_enet_desc *end_bd; int n_bds_used; struct bcm_enet_desc *bd_ring; dma_addr_t bd_ring_dma; unsigned int n_bds; }; /** * struct bcm63xx_ep - Internal (driver) state of a single endpoint. * @ep_num: USB endpoint number. * @iudma: Pointer to IUDMA channel state. * @ep: USB gadget layer representation of the EP. * @udc: Reference to the device controller. * @queue: Linked list of outstanding requests for this EP. * @halted: 1 if the EP is stalled; 0 otherwise. */ struct bcm63xx_ep { unsigned int ep_num; struct iudma_ch *iudma; struct usb_ep ep; struct bcm63xx_udc *udc; struct list_head queue; unsigned halted:1; }; /** * struct bcm63xx_req - Internal (driver) state of a single request. * @queue: Links back to the EP's request list. * @req: USB gadget layer representation of the request. * @offset: Current byte offset into the data buffer (next byte to queue). * @bd_bytes: Number of data bytes in outstanding BD entries. * @iudma: IUDMA channel used for the request. */ struct bcm63xx_req { struct list_head queue; /* ep's requests */ struct usb_request req; unsigned int offset; unsigned int bd_bytes; struct iudma_ch *iudma; }; /** * struct bcm63xx_udc - Driver/hardware private context. * @lock: Spinlock to mediate access to this struct, and (most) HW regs. * @dev: Generic Linux device structure. * @pd: Platform data (board/port info). * @usbd_clk: Clock descriptor for the USB device block. * @usbh_clk: Clock descriptor for the USB host block. * @gadget: USB slave device. * @driver: Driver for USB slave devices. * @usbd_regs: Base address of the USBD/USB20D block. * @iudma_regs: Base address of the USBD's associated IUDMA block. * @bep: Array of endpoints, including ep0. * @iudma: Array of all IUDMA channels used by this controller. * @cfg: USB configuration number, from SET_CONFIGURATION wValue. * @iface: USB interface number, from SET_INTERFACE wIndex. * @alt_iface: USB alt interface number, from SET_INTERFACE wValue. * @ep0_ctrl_req: Request object for bcm63xx_udc-initiated ep0 transactions. * @ep0_ctrl_buf: Data buffer for ep0_ctrl_req. * @ep0state: Current state of the ep0 state machine. * @ep0_wq: Workqueue struct used to wake up the ep0 state machine. * @wedgemap: Bitmap of wedged endpoints. * @ep0_req_reset: USB reset is pending. * @ep0_req_set_cfg: Need to spoof a SET_CONFIGURATION packet. * @ep0_req_set_iface: Need to spoof a SET_INTERFACE packet. * @ep0_req_shutdown: Driver is shutting down; requesting ep0 to halt activity. * @ep0_req_completed: ep0 request has completed; worker has not seen it yet. * @ep0_reply: Pending reply from gadget driver. * @ep0_request: Outstanding ep0 request. * @debugfs_root: debugfs directory: /sys/kernel/debug/. * @debugfs_usbd: debugfs file "usbd" for controller state. * @debugfs_iudma: debugfs file "usbd" for IUDMA state. */ struct bcm63xx_udc { spinlock_t lock; struct device *dev; struct bcm63xx_usbd_platform_data *pd; struct clk *usbd_clk; struct clk *usbh_clk; struct usb_gadget gadget; struct usb_gadget_driver *driver; void __iomem *usbd_regs; void __iomem *iudma_regs; struct bcm63xx_ep bep[BCM63XX_NUM_EP]; struct iudma_ch iudma[BCM63XX_NUM_IUDMA]; int cfg; int iface; int alt_iface; struct bcm63xx_req ep0_ctrl_req; u8 *ep0_ctrl_buf; int ep0state; struct work_struct ep0_wq; unsigned long wedgemap; unsigned ep0_req_reset:1; unsigned ep0_req_set_cfg:1; unsigned ep0_req_set_iface:1; unsigned ep0_req_shutdown:1; unsigned ep0_req_completed:1; struct usb_request *ep0_reply; struct usb_request *ep0_request; struct dentry *debugfs_root; struct dentry *debugfs_usbd; struct dentry *debugfs_iudma; }; static const struct usb_ep_ops bcm63xx_udc_ep_ops; /*********************************************************************** * Convenience functions ***********************************************************************/ static inline struct bcm63xx_udc *gadget_to_udc(struct usb_gadget *g) { return container_of(g, struct bcm63xx_udc, gadget); } static inline struct bcm63xx_ep *our_ep(struct usb_ep *ep) { return container_of(ep, struct bcm63xx_ep, ep); } static inline struct bcm63xx_req *our_req(struct usb_request *req) { return container_of(req, struct bcm63xx_req, req); } static inline u32 usbd_readl(struct bcm63xx_udc *udc, u32 off) { return bcm_readl(udc->usbd_regs + off); } static inline void usbd_writel(struct bcm63xx_udc *udc, u32 val, u32 off) { bcm_writel(val, udc->usbd_regs + off); } static inline u32 usb_dma_readl(struct bcm63xx_udc *udc, u32 off) { return bcm_readl(udc->iudma_regs + off); } static inline void usb_dma_writel(struct bcm63xx_udc *udc, u32 val, u32 off) { bcm_writel(val, udc->iudma_regs + off); } static inline u32 usb_dmac_readl(struct bcm63xx_udc *udc, u32 off) { return bcm_readl(udc->iudma_regs + IUDMA_DMAC_OFFSET + off); } static inline void usb_dmac_writel(struct bcm63xx_udc *udc, u32 val, u32 off) { bcm_writel(val, udc->iudma_regs + IUDMA_DMAC_OFFSET + off); } static inline u32 usb_dmas_readl(struct bcm63xx_udc *udc, u32 off) { return bcm_readl(udc->iudma_regs + IUDMA_DMAS_OFFSET + off); } static inline void usb_dmas_writel(struct bcm63xx_udc *udc, u32 val, u32 off) { bcm_writel(val, udc->iudma_regs + IUDMA_DMAS_OFFSET + off); } static inline void set_clocks(struct bcm63xx_udc *udc, bool is_enabled) { if (is_enabled) { clk_enable(udc->usbh_clk); clk_enable(udc->usbd_clk); udelay(10); } else { clk_disable(udc->usbd_clk); clk_disable(udc->usbh_clk); } } /*********************************************************************** * Low-level IUDMA / FIFO operations ***********************************************************************/ /** * bcm63xx_ep_dma_select - Helper function to set up the init_sel signal. * @udc: Reference to the device controller. * @idx: Desired init_sel value. * * The "init_sel" signal is used as a selection index for both endpoints * and IUDMA channels. Since these do not map 1:1, the use of this signal * depends on the context. */ static void bcm63xx_ep_dma_select(struct bcm63xx_udc *udc, int idx) { u32 val = usbd_readl(udc, USBD_CONTROL_REG); val &= ~USBD_CONTROL_INIT_SEL_MASK; val |= idx << USBD_CONTROL_INIT_SEL_SHIFT; usbd_writel(udc, val, USBD_CONTROL_REG); } /** * bcm63xx_set_stall - Enable/disable stall on one endpoint. * @udc: Reference to the device controller. * @bep: Endpoint on which to operate. * @is_stalled: true to enable stall, false to disable. * * See notes in bcm63xx_update_wedge() regarding automatic clearing of * halt/stall conditions. */ static void bcm63xx_set_stall(struct bcm63xx_udc *udc, struct bcm63xx_ep *bep, bool is_stalled) { u32 val; val = USBD_STALL_UPDATE_MASK | (is_stalled ? USBD_STALL_ENABLE_MASK : 0) | (bep->ep_num << USBD_STALL_EPNUM_SHIFT); usbd_writel(udc, val, USBD_STALL_REG); } /** * bcm63xx_fifo_setup - (Re)initialize FIFO boundaries and settings. * @udc: Reference to the device controller. * * These parameters depend on the USB link speed. Settings are * per-IUDMA-channel-pair. */ static void bcm63xx_fifo_setup(struct bcm63xx_udc *udc) { int is_hs = udc->gadget.speed == USB_SPEED_HIGH; u32 i, val, rx_fifo_slot, tx_fifo_slot; /* set up FIFO boundaries and packet sizes; this is done in pairs */ rx_fifo_slot = tx_fifo_slot = 0; for (i = 0; i < BCM63XX_NUM_IUDMA; i += 2) { const struct iudma_ch_cfg *rx_cfg = &iudma_defaults[i]; const struct iudma_ch_cfg *tx_cfg = &iudma_defaults[i + 1]; bcm63xx_ep_dma_select(udc, i >> 1); val = (rx_fifo_slot << USBD_RXFIFO_CONFIG_START_SHIFT) | ((rx_fifo_slot + rx_cfg->n_fifo_slots - 1) << USBD_RXFIFO_CONFIG_END_SHIFT); rx_fifo_slot += rx_cfg->n_fifo_slots; usbd_writel(udc, val, USBD_RXFIFO_CONFIG_REG); usbd_writel(udc, is_hs ? rx_cfg->max_pkt_hs : rx_cfg->max_pkt_fs, USBD_RXFIFO_EPSIZE_REG); val = (tx_fifo_slot << USBD_TXFIFO_CONFIG_START_SHIFT) | ((tx_fifo_slot + tx_cfg->n_fifo_slots - 1) << USBD_TXFIFO_CONFIG_END_SHIFT); tx_fifo_slot += tx_cfg->n_fifo_slots; usbd_writel(udc, val, USBD_TXFIFO_CONFIG_REG); usbd_writel(udc, is_hs ? tx_cfg->max_pkt_hs : tx_cfg->max_pkt_fs, USBD_TXFIFO_EPSIZE_REG); usbd_readl(udc, USBD_TXFIFO_EPSIZE_REG); } } /** * bcm63xx_fifo_reset_ep - Flush a single endpoint's FIFO. * @udc: Reference to the device controller. * @ep_num: Endpoint number. */ static void bcm63xx_fifo_reset_ep(struct bcm63xx_udc *udc, int ep_num) { u32 val; bcm63xx_ep_dma_select(udc, ep_num); val = usbd_readl(udc, USBD_CONTROL_REG); val |= USBD_CONTROL_FIFO_RESET_MASK; usbd_writel(udc, val, USBD_CONTROL_REG); usbd_readl(udc, USBD_CONTROL_REG); } /** * bcm63xx_fifo_reset - Flush all hardware FIFOs. * @udc: Reference to the device controller. */ static void bcm63xx_fifo_reset(struct bcm63xx_udc *udc) { int i; for (i = 0; i < BCM63XX_NUM_FIFO_PAIRS; i++) bcm63xx_fifo_reset_ep(udc, i); } /** * bcm63xx_ep_init - Initial (one-time) endpoint initialization. * @udc: Reference to the device controller. */ static void bcm63xx_ep_init(struct bcm63xx_udc *udc) { u32 i, val; for (i = 0; i < BCM63XX_NUM_IUDMA; i++) { const struct iudma_ch_cfg *cfg = &iudma_defaults[i]; if (cfg->ep_num < 0) continue; bcm63xx_ep_dma_select(udc, cfg->ep_num); val = (cfg->ep_type << USBD_EPNUM_TYPEMAP_TYPE_SHIFT) | ((i >> 1) << USBD_EPNUM_TYPEMAP_DMA_CH_SHIFT); usbd_writel(udc, val, USBD_EPNUM_TYPEMAP_REG); } } /** * bcm63xx_ep_setup - Configure per-endpoint settings. * @udc: Reference to the device controller. * * This needs to be rerun if the speed/cfg/intf/altintf changes. */ static void bcm63xx_ep_setup(struct bcm63xx_udc *udc) { u32 val, i; usbd_writel(udc, USBD_CSR_SETUPADDR_DEF, USBD_CSR_SETUPADDR_REG); for (i = 0; i < BCM63XX_NUM_IUDMA; i++) { const struct iudma_ch_cfg *cfg = &iudma_defaults[i]; int max_pkt = udc->gadget.speed == USB_SPEED_HIGH ? cfg->max_pkt_hs : cfg->max_pkt_fs; int idx = cfg->ep_num; udc->iudma[i].max_pkt = max_pkt; if (idx < 0) continue; udc->bep[idx].ep.maxpacket = max_pkt; val = (idx << USBD_CSR_EP_LOG_SHIFT) | (cfg->dir << USBD_CSR_EP_DIR_SHIFT) | (cfg->ep_type << USBD_CSR_EP_TYPE_SHIFT) | (udc->cfg << USBD_CSR_EP_CFG_SHIFT) | (udc->iface << USBD_CSR_EP_IFACE_SHIFT) | (udc->alt_iface << USBD_CSR_EP_ALTIFACE_SHIFT) | (max_pkt << USBD_CSR_EP_MAXPKT_SHIFT); usbd_writel(udc, val, USBD_CSR_EP_REG(idx)); } } /** * iudma_write - Queue a single IUDMA transaction. * @udc: Reference to the device controller. * @iudma: IUDMA channel to use. * @breq: Request containing the transaction data. * * For RX IUDMA, this will queue a single buffer descriptor, as RX IUDMA * does not honor SOP/EOP so the handling of multiple buffers is ambiguous. * So iudma_write() may be called several times to fulfill a single * usb_request. * * For TX IUDMA, this can queue multiple buffer descriptors if needed. */ static void iudma_write(struct bcm63xx_udc *udc, struct iudma_ch *iudma, struct bcm63xx_req *breq) { int first_bd = 1, last_bd = 0, extra_zero_pkt = 0; unsigned int bytes_left = breq->req.length - breq->offset; const int max_bd_bytes = !irq_coalesce && !iudma->is_tx ? iudma->max_pkt : IUDMA_MAX_FRAGMENT; iudma->n_bds_used = 0; breq->bd_bytes = 0; breq->iudma = iudma; if ((bytes_left % iudma->max_pkt == 0) && bytes_left && breq->req.zero) extra_zero_pkt = 1; do { struct bcm_enet_desc *d = iudma->write_bd; u32 dmaflags = 0; unsigned int n_bytes; if (d == iudma->end_bd) { dmaflags |= DMADESC_WRAP_MASK; iudma->write_bd = iudma->bd_ring; } else { iudma->write_bd++; } iudma->n_bds_used++; n_bytes = min_t(int, bytes_left, max_bd_bytes); if (n_bytes) dmaflags |= n_bytes << DMADESC_LENGTH_SHIFT; else dmaflags |= (1 << DMADESC_LENGTH_SHIFT) | DMADESC_USB_ZERO_MASK; dmaflags |= DMADESC_OWNER_MASK; if (first_bd) { dmaflags |= DMADESC_SOP_MASK; first_bd = 0; } /* * extra_zero_pkt forces one more iteration through the loop * after all data is queued up, to send the zero packet */ if (extra_zero_pkt && !bytes_left) extra_zero_pkt = 0; if (!iudma->is_tx || iudma->n_bds_used == iudma->n_bds || (n_bytes == bytes_left && !extra_zero_pkt)) { last_bd = 1; dmaflags |= DMADESC_EOP_MASK; } d->address = breq->req.dma + breq->offset; mb(); d->len_stat = dmaflags; breq->offset += n_bytes; breq->bd_bytes += n_bytes; bytes_left -= n_bytes; } while (!last_bd); usb_dmac_writel(udc, ENETDMAC_CHANCFG_EN_MASK, ENETDMAC_CHANCFG_REG(iudma->ch_idx)); } /** * iudma_read - Check for IUDMA buffer completion. * @udc: Reference to the device controller. * @iudma: IUDMA channel to use. * * This checks to see if ALL of the outstanding BDs on the DMA channel * have been filled. If so, it returns the actual transfer length; * otherwise it returns -EBUSY. */ static int iudma_read(struct bcm63xx_udc *udc, struct iudma_ch *iudma) { int i, actual_len = 0; struct bcm_enet_desc *d = iudma->read_bd; if (!iudma->n_bds_used) return -EINVAL; for (i = 0; i < iudma->n_bds_used; i++) { u32 dmaflags; dmaflags = d->len_stat; if (dmaflags & DMADESC_OWNER_MASK) return -EBUSY; actual_len += (dmaflags & DMADESC_LENGTH_MASK) >> DMADESC_LENGTH_SHIFT; if (d == iudma->end_bd) d = iudma->bd_ring; else d++; } iudma->read_bd = d; iudma->n_bds_used = 0; return actual_len; } /** * iudma_reset_channel - Stop DMA on a single channel. * @udc: Reference to the device controller. * @iudma: IUDMA channel to reset. */ static void iudma_reset_channel(struct bcm63xx_udc *udc, struct iudma_ch *iudma) { int timeout = IUDMA_RESET_TIMEOUT_US; struct bcm_enet_desc *d; int ch_idx = iudma->ch_idx; if (!iudma->is_tx) bcm63xx_fifo_reset_ep(udc, max(0, iudma->ep_num)); /* stop DMA, then wait for the hardware to wrap up */ usb_dmac_writel(udc, 0, ENETDMAC_CHANCFG_REG(ch_idx)); while (usb_dmac_readl(udc, ENETDMAC_CHANCFG_REG(ch_idx)) & ENETDMAC_CHANCFG_EN_MASK) { udelay(1); /* repeatedly flush the FIFO data until the BD completes */ if (iudma->is_tx && iudma->ep_num >= 0) bcm63xx_fifo_reset_ep(udc, iudma->ep_num); if (!timeout--) { dev_err(udc->dev, "can't reset IUDMA channel %d\n", ch_idx); break; } if (timeout == IUDMA_RESET_TIMEOUT_US / 2) { dev_warn(udc->dev, "forcibly halting IUDMA channel %d\n", ch_idx); usb_dmac_writel(udc, ENETDMAC_CHANCFG_BUFHALT_MASK, ENETDMAC_CHANCFG_REG(ch_idx)); } } usb_dmac_writel(udc, ~0, ENETDMAC_IR_REG(ch_idx)); /* don't leave "live" HW-owned entries for the next guy to step on */ for (d = iudma->bd_ring; d <= iudma->end_bd; d++) d->len_stat = 0; mb(); iudma->read_bd = iudma->write_bd = iudma->bd_ring; iudma->n_bds_used = 0; /* set up IRQs, UBUS burst size, and BD base for this channel */ usb_dmac_writel(udc, ENETDMAC_IR_BUFDONE_MASK, ENETDMAC_IRMASK_REG(ch_idx)); usb_dmac_writel(udc, 8, ENETDMAC_MAXBURST_REG(ch_idx)); usb_dmas_writel(udc, iudma->bd_ring_dma, ENETDMAS_RSTART_REG(ch_idx)); usb_dmas_writel(udc, 0, ENETDMAS_SRAM2_REG(ch_idx)); } /** * iudma_init_channel - One-time IUDMA channel initialization. * @udc: Reference to the device controller. * @ch_idx: Channel to initialize. */ static int iudma_init_channel(struct bcm63xx_udc *udc, unsigned int ch_idx) { struct iudma_ch *iudma = &udc->iudma[ch_idx]; const struct iudma_ch_cfg *cfg = &iudma_defaults[ch_idx]; unsigned int n_bds = cfg->n_bds; struct bcm63xx_ep *bep = NULL; iudma->ep_num = cfg->ep_num; iudma->ch_idx = ch_idx; iudma->is_tx = !!(ch_idx & 0x01); if (iudma->ep_num >= 0) { bep = &udc->bep[iudma->ep_num]; bep->iudma = iudma; INIT_LIST_HEAD(&bep->queue); } iudma->bep = bep; iudma->udc = udc; /* ep0 is always active; others are controlled by the gadget driver */ if (iudma->ep_num <= 0) iudma->enabled = true; iudma->n_bds = n_bds; iudma->bd_ring = dmam_alloc_coherent(udc->dev, n_bds * sizeof(struct bcm_enet_desc), &iudma->bd_ring_dma, GFP_KERNEL); if (!iudma->bd_ring) return -ENOMEM; iudma->end_bd = &iudma->bd_ring[n_bds - 1]; return 0; } /** * iudma_init - One-time initialization of all IUDMA channels. * @udc: Reference to the device controller. * * Enable DMA, flush channels, and enable global IUDMA IRQs. */ static int iudma_init(struct bcm63xx_udc *udc) { int i, rc; usb_dma_writel(udc, ENETDMA_CFG_EN_MASK, ENETDMA_CFG_REG); for (i = 0; i < BCM63XX_NUM_IUDMA; i++) { rc = iudma_init_channel(udc, i); if (rc) return rc; iudma_reset_channel(udc, &udc->iudma[i]); } usb_dma_writel(udc, BIT(BCM63XX_NUM_IUDMA)-1, ENETDMA_GLB_IRQMASK_REG); return 0; } /** * iudma_uninit - Uninitialize IUDMA channels. * @udc: Reference to the device controller. * * Kill global IUDMA IRQs, flush channels, and kill DMA. */ static void iudma_uninit(struct bcm63xx_udc *udc) { int i; usb_dma_writel(udc, 0, ENETDMA_GLB_IRQMASK_REG); for (i = 0; i < BCM63XX_NUM_IUDMA; i++) iudma_reset_channel(udc, &udc->iudma[i]); usb_dma_writel(udc, 0, ENETDMA_CFG_REG); } /*********************************************************************** * Other low-level USBD operations ***********************************************************************/ /** * bcm63xx_set_ctrl_irqs - Mask/unmask control path interrupts. * @udc: Reference to the device controller. * @enable_irqs: true to enable, false to disable. */ static void bcm63xx_set_ctrl_irqs(struct bcm63xx_udc *udc, bool enable_irqs) { u32 val; usbd_writel(udc, 0, USBD_STATUS_REG); val = BIT(USBD_EVENT_IRQ_USB_RESET) | BIT(USBD_EVENT_IRQ_SETUP) | BIT(USBD_EVENT_IRQ_SETCFG) | BIT(USBD_EVENT_IRQ_SETINTF) | BIT(USBD_EVENT_IRQ_USB_LINK); usbd_writel(udc, enable_irqs ? val : 0, USBD_EVENT_IRQ_MASK_REG); usbd_writel(udc, val, USBD_EVENT_IRQ_STATUS_REG); } /** * bcm63xx_select_phy_mode - Select between USB device and host mode. * @udc: Reference to the device controller. * @is_device: true for device, false for host. * * This should probably be reworked to use the drivers/usb/otg * infrastructure. * * By default, the AFE/pullups are disabled in device mode, until * bcm63xx_select_pullup() is called. */ static void bcm63xx_select_phy_mode(struct bcm63xx_udc *udc, bool is_device) { u32 val, portmask = BIT(udc->pd->port_no); if (BCMCPU_IS_6328()) { /* configure pinmux to sense VBUS signal */ val = bcm_gpio_readl(GPIO_PINMUX_OTHR_REG); val &= ~GPIO_PINMUX_OTHR_6328_USB_MASK; val |= is_device ? GPIO_PINMUX_OTHR_6328_USB_DEV : GPIO_PINMUX_OTHR_6328_USB_HOST; bcm_gpio_writel(val, GPIO_PINMUX_OTHR_REG); } val = bcm_rset_readl(RSET_USBH_PRIV, USBH_PRIV_UTMI_CTL_6368_REG); if (is_device) { val |= (portmask << USBH_PRIV_UTMI_CTL_HOSTB_SHIFT); val |= (portmask << USBH_PRIV_UTMI_CTL_NODRIV_SHIFT); } else { val &= ~(portmask << USBH_PRIV_UTMI_CTL_HOSTB_SHIFT); val &= ~(portmask << USBH_PRIV_UTMI_CTL_NODRIV_SHIFT); } bcm_rset_writel(RSET_USBH_PRIV, val, USBH_PRIV_UTMI_CTL_6368_REG); val = bcm_rset_readl(RSET_USBH_PRIV, USBH_PRIV_SWAP_6368_REG); if (is_device) val |= USBH_PRIV_SWAP_USBD_MASK; else val &= ~USBH_PRIV_SWAP_USBD_MASK; bcm_rset_writel(RSET_USBH_PRIV, val, USBH_PRIV_SWAP_6368_REG); } /** * bcm63xx_select_pullup - Enable/disable the pullup on D+ * @udc: Reference to the device controller. * @is_on: true to enable the pullup, false to disable. * * If the pullup is active, the host will sense a FS/HS device connected to * the port. If the pullup is inactive, the host will think the USB * device has been disconnected. */ static void bcm63xx_select_pullup(struct bcm63xx_udc *udc, bool is_on) { u32 val, portmask = BIT(udc->pd->port_no); val = bcm_rset_readl(RSET_USBH_PRIV, USBH_PRIV_UTMI_CTL_6368_REG); if (is_on) val &= ~(portmask << USBH_PRIV_UTMI_CTL_NODRIV_SHIFT); else val |= (portmask << USBH_PRIV_UTMI_CTL_NODRIV_SHIFT); bcm_rset_writel(RSET_USBH_PRIV, val, USBH_PRIV_UTMI_CTL_6368_REG); } /** * bcm63xx_uninit_udc_hw - Shut down the hardware prior to driver removal. * @udc: Reference to the device controller. * * This just masks the IUDMA IRQs and releases the clocks. It is assumed * that bcm63xx_udc_stop() has already run, and the clocks are stopped. */ static void bcm63xx_uninit_udc_hw(struct bcm63xx_udc *udc) { set_clocks(udc, true); iudma_uninit(udc); set_clocks(udc, false); clk_put(udc->usbd_clk); clk_put(udc->usbh_clk); } /** * bcm63xx_init_udc_hw - Initialize the controller hardware and data structures. * @udc: Reference to the device controller. */ static int bcm63xx_init_udc_hw(struct bcm63xx_udc *udc) { int i, rc = 0; u32 val; udc->ep0_ctrl_buf = devm_kzalloc(udc->dev, BCM63XX_MAX_CTRL_PKT, GFP_KERNEL); if (!udc->ep0_ctrl_buf) return -ENOMEM; INIT_LIST_HEAD(&udc->gadget.ep_list); for (i = 0; i < BCM63XX_NUM_EP; i++) { struct bcm63xx_ep *bep = &udc->bep[i]; bep->ep.name = bcm63xx_ep_name[i]; bep->ep_num = i; bep->ep.ops = &bcm63xx_udc_ep_ops; list_add_tail(&bep->ep.ep_list, &udc->gadget.ep_list); bep->halted = 0; bep->ep.maxpacket = BCM63XX_MAX_CTRL_PKT; bep->udc = udc; bep->ep.desc = NULL; INIT_LIST_HEAD(&bep->queue); } udc->gadget.ep0 = &udc->bep[0].ep; list_del(&udc->bep[0].ep.ep_list); udc->gadget.speed = USB_SPEED_UNKNOWN; udc->ep0state = EP0_SHUTDOWN; udc->usbh_clk = clk_get(udc->dev, "usbh"); if (IS_ERR(udc->usbh_clk)) return -EIO; udc->usbd_clk = clk_get(udc->dev, "usbd"); if (IS_ERR(udc->usbd_clk)) { clk_put(udc->usbh_clk); return -EIO; } set_clocks(udc, true); val = USBD_CONTROL_AUTO_CSRS_MASK | USBD_CONTROL_DONE_CSRS_MASK | (irq_coalesce ? USBD_CONTROL_RXZSCFG_MASK : 0); usbd_writel(udc, val, USBD_CONTROL_REG); val = USBD_STRAPS_APP_SELF_PWR_MASK | USBD_STRAPS_APP_RAM_IF_MASK | USBD_STRAPS_APP_CSRPRGSUP_MASK | USBD_STRAPS_APP_8BITPHY_MASK | USBD_STRAPS_APP_RMTWKUP_MASK; if (udc->gadget.max_speed == USB_SPEED_HIGH) val |= (BCM63XX_SPD_HIGH << USBD_STRAPS_SPEED_SHIFT); else val |= (BCM63XX_SPD_FULL << USBD_STRAPS_SPEED_SHIFT); usbd_writel(udc, val, USBD_STRAPS_REG); bcm63xx_set_ctrl_irqs(udc, false); usbd_writel(udc, 0, USBD_EVENT_IRQ_CFG_LO_REG); val = USBD_EVENT_IRQ_CFG_FALLING(USBD_EVENT_IRQ_ENUM_ON) | USBD_EVENT_IRQ_CFG_FALLING(USBD_EVENT_IRQ_SET_CSRS); usbd_writel(udc, val, USBD_EVENT_IRQ_CFG_HI_REG); rc = iudma_init(udc); set_clocks(udc, false); if (rc) bcm63xx_uninit_udc_hw(udc); return 0; } /*********************************************************************** * Standard EP gadget operations ***********************************************************************/ /** * bcm63xx_ep_enable - Enable one endpoint. * @ep: Endpoint to enable. * @desc: Contains max packet, direction, etc. * * Most of the endpoint parameters are fixed in this controller, so there * isn't much for this function to do. */ static int bcm63xx_ep_enable(struct usb_ep *ep, const struct usb_endpoint_descriptor *desc) { struct bcm63xx_ep *bep = our_ep(ep); struct bcm63xx_udc *udc = bep->udc; struct iudma_ch *iudma = bep->iudma; unsigned long flags; if (!ep || !desc || ep->name == bcm63xx_ep0name) return -EINVAL; if (!udc->driver) return -ESHUTDOWN; spin_lock_irqsave(&udc->lock, flags); if (iudma->enabled) { spin_unlock_irqrestore(&udc->lock, flags); return -EINVAL; } iudma->enabled = true; BUG_ON(!list_empty(&bep->queue)); iudma_reset_channel(udc, iudma); bep->halted = 0; bcm63xx_set_stall(udc, bep, false); clear_bit(bep->ep_num, &udc->wedgemap); ep->desc = desc; ep->maxpacket = usb_endpoint_maxp(desc); spin_unlock_irqrestore(&udc->lock, flags); return 0; } /** * bcm63xx_ep_disable - Disable one endpoint. * @ep: Endpoint to disable. */ static int bcm63xx_ep_disable(struct usb_ep *ep) { struct bcm63xx_ep *bep = our_ep(ep); struct bcm63xx_udc *udc = bep->udc; struct iudma_ch *iudma = bep->iudma; struct list_head *pos, *n; unsigned long flags; if (!ep || !ep->desc) return -EINVAL; spin_lock_irqsave(&udc->lock, flags); if (!iudma->enabled) { spin_unlock_irqrestore(&udc->lock, flags); return -EINVAL; } iudma->enabled = false; iudma_reset_channel(udc, iudma); if (!list_empty(&bep->queue)) { list_for_each_safe(pos, n, &bep->queue) { struct bcm63xx_req *breq = list_entry(pos, struct bcm63xx_req, queue); usb_gadget_unmap_request(&udc->gadget, &breq->req, iudma->is_tx); list_del(&breq->queue); breq->req.status = -ESHUTDOWN; spin_unlock_irqrestore(&udc->lock, flags); breq->req.complete(&iudma->bep->ep, &breq->req); spin_lock_irqsave(&udc->lock, flags); } } ep->desc = NULL; spin_unlock_irqrestore(&udc->lock, flags); return 0; } /** * bcm63xx_udc_alloc_request - Allocate a new request. * @ep: Endpoint associated with the request. * @mem_flags: Flags to pass to kzalloc(). */ static struct usb_request *bcm63xx_udc_alloc_request(struct usb_ep *ep, gfp_t mem_flags) { struct bcm63xx_req *breq; breq = kzalloc(sizeof(*breq), mem_flags); if (!breq) return NULL; return &breq->req; } /** * bcm63xx_udc_free_request - Free a request. * @ep: Endpoint associated with the request. * @req: Request to free. */ static void bcm63xx_udc_free_request(struct usb_ep *ep, struct usb_request *req) { struct bcm63xx_req *breq = our_req(req); kfree(breq); } /** * bcm63xx_udc_queue - Queue up a new request. * @ep: Endpoint associated with the request. * @req: Request to add. * @mem_flags: Unused. * * If the queue is empty, start this request immediately. Otherwise, add * it to the list. * * ep0 replies are sent through this function from the gadget driver, but * they are treated differently because they need to be handled by the ep0 * state machine. (Sometimes they are replies to control requests that * were spoofed by this driver, and so they shouldn't be transmitted at all.) */ static int bcm63xx_udc_queue(struct usb_ep *ep, struct usb_request *req, gfp_t mem_flags) { struct bcm63xx_ep *bep = our_ep(ep); struct bcm63xx_udc *udc = bep->udc; struct bcm63xx_req *breq = our_req(req); unsigned long flags; int rc = 0; if (unlikely(!req || !req->complete || !req->buf || !ep)) return -EINVAL; req->actual = 0; req->status = 0; breq->offset = 0; if (bep == &udc->bep[0]) { /* only one reply per request, please */ if (udc->ep0_reply) return -EINVAL; udc->ep0_reply = req; schedule_work(&udc->ep0_wq); return 0; } spin_lock_irqsave(&udc->lock, flags); if (!bep->iudma->enabled) { rc = -ESHUTDOWN; goto out; } rc = usb_gadget_map_request(&udc->gadget, req, bep->iudma->is_tx); if (rc == 0) { list_add_tail(&breq->queue, &bep->queue); if (list_is_singular(&bep->queue)) iudma_write(udc, bep->iudma, breq); } out: spin_unlock_irqrestore(&udc->lock, flags); return rc; } /** * bcm63xx_udc_dequeue - Remove a pending request from the queue. * @ep: Endpoint associated with the request. * @req: Request to remove. * * If the request is not at the head of the queue, this is easy - just nuke * it. If the request is at the head of the queue, we'll need to stop the * DMA transaction and then queue up the successor. */ static int bcm63xx_udc_dequeue(struct usb_ep *ep, struct usb_request *req) { struct bcm63xx_ep *bep = our_ep(ep); struct bcm63xx_udc *udc = bep->udc; struct bcm63xx_req *breq = our_req(req), *cur; unsigned long flags; int rc = 0; spin_lock_irqsave(&udc->lock, flags); if (list_empty(&bep->queue)) { rc = -EINVAL; goto out; } cur = list_first_entry(&bep->queue, struct bcm63xx_req, queue); usb_gadget_unmap_request(&udc->gadget, &breq->req, bep->iudma->is_tx); if (breq == cur) { iudma_reset_channel(udc, bep->iudma); list_del(&breq->queue); if (!list_empty(&bep->queue)) { struct bcm63xx_req *next; next = list_first_entry(&bep->queue, struct bcm63xx_req, queue); iudma_write(udc, bep->iudma, next); } } else { list_del(&breq->queue); } out: spin_unlock_irqrestore(&udc->lock, flags); req->status = -ESHUTDOWN; req->complete(ep, req); return rc; } /** * bcm63xx_udc_set_halt - Enable/disable STALL flag in the hardware. * @ep: Endpoint to halt. * @value: Zero to clear halt; nonzero to set halt. * * See comments in bcm63xx_update_wedge(). */ static int bcm63xx_udc_set_halt(struct usb_ep *ep, int value) { struct bcm63xx_ep *bep = our_ep(ep); struct bcm63xx_udc *udc = bep->udc; unsigned long flags; spin_lock_irqsave(&udc->lock, flags); bcm63xx_set_stall(udc, bep, !!value); bep->halted = value; spin_unlock_irqrestore(&udc->lock, flags); return 0; } /** * bcm63xx_udc_set_wedge - Stall the endpoint until the next reset. * @ep: Endpoint to wedge. * * See comments in bcm63xx_update_wedge(). */ static int bcm63xx_udc_set_wedge(struct usb_ep *ep) { struct bcm63xx_ep *bep = our_ep(ep); struct bcm63xx_udc *udc = bep->udc; unsigned long flags; spin_lock_irqsave(&udc->lock, flags); set_bit(bep->ep_num, &udc->wedgemap); bcm63xx_set_stall(udc, bep, true); spin_unlock_irqrestore(&udc->lock, flags); return 0; } static const struct usb_ep_ops bcm63xx_udc_ep_ops = { .enable = bcm63xx_ep_enable, .disable = bcm63xx_ep_disable, .alloc_request = bcm63xx_udc_alloc_request, .free_request = bcm63xx_udc_free_request, .queue = bcm63xx_udc_queue, .dequeue = bcm63xx_udc_dequeue, .set_halt = bcm63xx_udc_set_halt, .set_wedge = bcm63xx_udc_set_wedge, }; /*********************************************************************** * EP0 handling ***********************************************************************/ /** * bcm63xx_ep0_setup_callback - Drop spinlock to invoke ->setup callback. * @udc: Reference to the device controller. * @ctrl: 8-byte SETUP request. */ static int bcm63xx_ep0_setup_callback(struct bcm63xx_udc *udc, struct usb_ctrlrequest *ctrl) { int rc; spin_unlock_irq(&udc->lock); rc = udc->driver->setup(&udc->gadget, ctrl); spin_lock_irq(&udc->lock); return rc; } /** * bcm63xx_ep0_spoof_set_cfg - Synthesize a SET_CONFIGURATION request. * @udc: Reference to the device controller. * * Many standard requests are handled automatically in the hardware, but * we still need to pass them to the gadget driver so that it can * reconfigure the interfaces/endpoints if necessary. * * Unfortunately we are not able to send a STALL response if the host * requests an invalid configuration. If this happens, we'll have to be * content with printing a warning. */ static int bcm63xx_ep0_spoof_set_cfg(struct bcm63xx_udc *udc) { struct usb_ctrlrequest ctrl; int rc; ctrl.bRequestType = USB_DIR_OUT | USB_RECIP_DEVICE; ctrl.bRequest = USB_REQ_SET_CONFIGURATION; ctrl.wValue = cpu_to_le16(udc->cfg); ctrl.wIndex = 0; ctrl.wLength = 0; rc = bcm63xx_ep0_setup_callback(udc, &ctrl); if (rc < 0) { dev_warn_ratelimited(udc->dev, "hardware auto-acked bad SET_CONFIGURATION(%d) request\n", udc->cfg); } return rc; } /** * bcm63xx_ep0_spoof_set_iface - Synthesize a SET_INTERFACE request. * @udc: Reference to the device controller. */ static int bcm63xx_ep0_spoof_set_iface(struct bcm63xx_udc *udc) { struct usb_ctrlrequest ctrl; int rc; ctrl.bRequestType = USB_DIR_OUT | USB_RECIP_INTERFACE; ctrl.bRequest = USB_REQ_SET_INTERFACE; ctrl.wValue = cpu_to_le16(udc->alt_iface); ctrl.wIndex = cpu_to_le16(udc->iface); ctrl.wLength = 0; rc = bcm63xx_ep0_setup_callback(udc, &ctrl); if (rc < 0) { dev_warn_ratelimited(udc->dev, "hardware auto-acked bad SET_INTERFACE(%d,%d) request\n", udc->iface, udc->alt_iface); } return rc; } /** * bcm63xx_ep0_map_write - dma_map and iudma_write a single request. * @udc: Reference to the device controller. * @ch_idx: IUDMA channel number. * @req: USB gadget layer representation of the request. */ static void bcm63xx_ep0_map_write(struct bcm63xx_udc *udc, int ch_idx, struct usb_request *req) { struct bcm63xx_req *breq = our_req(req); struct iudma_ch *iudma = &udc->iudma[ch_idx]; BUG_ON(udc->ep0_request); udc->ep0_request = req; req->actual = 0; breq->offset = 0; usb_gadget_map_request(&udc->gadget, req, iudma->is_tx); iudma_write(udc, iudma, breq); } /** * bcm63xx_ep0_complete - Set completion status and "stage" the callback. * @udc: Reference to the device controller. * @req: USB gadget layer representation of the request. * @status: Status to return to the gadget driver. */ static void bcm63xx_ep0_complete(struct bcm63xx_udc *udc, struct usb_request *req, int status) { req->status = status; if (status) req->actual = 0; if (req->complete) { spin_unlock_irq(&udc->lock); req->complete(&udc->bep[0].ep, req); spin_lock_irq(&udc->lock); } } /** * bcm63xx_ep0_nuke_reply - Abort request from the gadget driver due to * reset/shutdown. * @udc: Reference to the device controller. * @is_tx: Nonzero for TX (IN), zero for RX (OUT). */ static void bcm63xx_ep0_nuke_reply(struct bcm63xx_udc *udc, int is_tx) { struct usb_request *req = udc->ep0_reply; udc->ep0_reply = NULL; usb_gadget_unmap_request(&udc->gadget, req, is_tx); if (udc->ep0_request == req) { udc->ep0_req_completed = 0; udc->ep0_request = NULL; } bcm63xx_ep0_complete(udc, req, -ESHUTDOWN); } /** * bcm63xx_ep0_read_complete - Close out the pending ep0 request; return * transfer len. * @udc: Reference to the device controller. */ static int bcm63xx_ep0_read_complete(struct bcm63xx_udc *udc) { struct usb_request *req = udc->ep0_request; udc->ep0_req_completed = 0; udc->ep0_request = NULL; return req->actual; } /** * bcm63xx_ep0_internal_request - Helper function to submit an ep0 request. * @udc: Reference to the device controller. * @ch_idx: IUDMA channel number. * @length: Number of bytes to TX/RX. * * Used for simple transfers performed by the ep0 worker. This will always * use ep0_ctrl_req / ep0_ctrl_buf. */ static void bcm63xx_ep0_internal_request(struct bcm63xx_udc *udc, int ch_idx, int length) { struct usb_request *req = &udc->ep0_ctrl_req.req; req->buf = udc->ep0_ctrl_buf; req->length = length; req->complete = NULL; bcm63xx_ep0_map_write(udc, ch_idx, req); } /** * bcm63xx_ep0_do_setup - Parse new SETUP packet and decide how to handle it. * @udc: Reference to the device controller. * * EP0_IDLE probably shouldn't ever happen. EP0_REQUEUE means we're ready * for the next packet. Anything else means the transaction requires multiple * stages of handling. */ static enum bcm63xx_ep0_state bcm63xx_ep0_do_setup(struct bcm63xx_udc *udc) { int rc; struct usb_ctrlrequest *ctrl = (void *)udc->ep0_ctrl_buf; rc = bcm63xx_ep0_read_complete(udc); if (rc < 0) { dev_err(udc->dev, "missing SETUP packet\n"); return EP0_IDLE; } /* * Handle 0-byte IN STATUS acknowledgement. The hardware doesn't * ALWAYS deliver these 100% of the time, so if we happen to see one, * just throw it away. */ if (rc == 0) return EP0_REQUEUE; /* Drop malformed SETUP packets */ if (rc != sizeof(*ctrl)) { dev_warn_ratelimited(udc->dev, "malformed SETUP packet (%d bytes)\n", rc); return EP0_REQUEUE; } /* Process new SETUP packet arriving on ep0 */ rc = bcm63xx_ep0_setup_callback(udc, ctrl); if (rc < 0) { bcm63xx_set_stall(udc, &udc->bep[0], true); return EP0_REQUEUE; } if (!ctrl->wLength) return EP0_REQUEUE; else if (ctrl->bRequestType & USB_DIR_IN) return EP0_IN_DATA_PHASE_SETUP; else return EP0_OUT_DATA_PHASE_SETUP; } /** * bcm63xx_ep0_do_idle - Check for outstanding requests if ep0 is idle. * @udc: Reference to the device controller. * * In state EP0_IDLE, the RX descriptor is either pending, or has been * filled with a SETUP packet from the host. This function handles new * SETUP packets, control IRQ events (which can generate fake SETUP packets), * and reset/shutdown events. * * Returns 0 if work was done; -EAGAIN if nothing to do. */ static int bcm63xx_ep0_do_idle(struct bcm63xx_udc *udc) { if (udc->ep0_req_reset) { udc->ep0_req_reset = 0; } else if (udc->ep0_req_set_cfg) { udc->ep0_req_set_cfg = 0; if (bcm63xx_ep0_spoof_set_cfg(udc) >= 0) udc->ep0state = EP0_IN_FAKE_STATUS_PHASE; } else if (udc->ep0_req_set_iface) { udc->ep0_req_set_iface = 0; if (bcm63xx_ep0_spoof_set_iface(udc) >= 0) udc->ep0state = EP0_IN_FAKE_STATUS_PHASE; } else if (udc->ep0_req_completed) { udc->ep0state = bcm63xx_ep0_do_setup(udc); return udc->ep0state == EP0_IDLE ? -EAGAIN : 0; } else if (udc->ep0_req_shutdown) { udc->ep0_req_shutdown = 0; udc->ep0_req_completed = 0; udc->ep0_request = NULL; iudma_reset_channel(udc, &udc->iudma[IUDMA_EP0_RXCHAN]); usb_gadget_unmap_request(&udc->gadget, &udc->ep0_ctrl_req.req, 0); /* bcm63xx_udc_pullup() is waiting for this */ mb(); udc->ep0state = EP0_SHUTDOWN; } else if (udc->ep0_reply) { /* * This could happen if a USB RESET shows up during an ep0 * transaction (especially if a laggy driver like gadgetfs * is in use). */ dev_warn(udc->dev, "nuking unexpected reply\n"); bcm63xx_ep0_nuke_reply(udc, 0); } else { return -EAGAIN; } return 0; } /** * bcm63xx_ep0_one_round - Handle the current ep0 state. * @udc: Reference to the device controller. * * Returns 0 if work was done; -EAGAIN if nothing to do. */ static int bcm63xx_ep0_one_round(struct bcm63xx_udc *udc) { enum bcm63xx_ep0_state ep0state = udc->ep0state; bool shutdown = udc->ep0_req_reset || udc->ep0_req_shutdown; switch (udc->ep0state) { case EP0_REQUEUE: /* set up descriptor to receive SETUP packet */ bcm63xx_ep0_internal_request(udc, IUDMA_EP0_RXCHAN, BCM63XX_MAX_CTRL_PKT); ep0state = EP0_IDLE; break; case EP0_IDLE: return bcm63xx_ep0_do_idle(udc); case EP0_IN_DATA_PHASE_SETUP: /* * Normal case: TX request is in ep0_reply (queued by the * callback), or will be queued shortly. When it's here, * send it to the HW and go to EP0_IN_DATA_PHASE_COMPLETE. * * Shutdown case: Stop waiting for the reply. Just * REQUEUE->IDLE. The gadget driver is NOT expected to * queue anything else now. */ if (udc->ep0_reply) { bcm63xx_ep0_map_write(udc, IUDMA_EP0_TXCHAN, udc->ep0_reply); ep0state = EP0_IN_DATA_PHASE_COMPLETE; } else if (shutdown) { ep0state = EP0_REQUEUE; } break; case EP0_IN_DATA_PHASE_COMPLETE: { /* * Normal case: TX packet (ep0_reply) is in flight; wait for * it to finish, then go back to REQUEUE->IDLE. * * Shutdown case: Reset the TX channel, send -ESHUTDOWN * completion to the gadget driver, then REQUEUE->IDLE. */ if (udc->ep0_req_completed) { udc->ep0_reply = NULL; bcm63xx_ep0_read_complete(udc); /* * the "ack" sometimes gets eaten (see * bcm63xx_ep0_do_idle) */ ep0state = EP0_REQUEUE; } else if (shutdown) { iudma_reset_channel(udc, &udc->iudma[IUDMA_EP0_TXCHAN]); bcm63xx_ep0_nuke_reply(udc, 1); ep0state = EP0_REQUEUE; } break; } case EP0_OUT_DATA_PHASE_SETUP: /* Similar behavior to EP0_IN_DATA_PHASE_SETUP */ if (udc->ep0_reply) { bcm63xx_ep0_map_write(udc, IUDMA_EP0_RXCHAN, udc->ep0_reply); ep0state = EP0_OUT_DATA_PHASE_COMPLETE; } else if (shutdown) { ep0state = EP0_REQUEUE; } break; case EP0_OUT_DATA_PHASE_COMPLETE: { /* Similar behavior to EP0_IN_DATA_PHASE_COMPLETE */ if (udc->ep0_req_completed) { udc->ep0_reply = NULL; bcm63xx_ep0_read_complete(udc); /* send 0-byte ack to host */ bcm63xx_ep0_internal_request(udc, IUDMA_EP0_TXCHAN, 0); ep0state = EP0_OUT_STATUS_PHASE; } else if (shutdown) { iudma_reset_channel(udc, &udc->iudma[IUDMA_EP0_RXCHAN]); bcm63xx_ep0_nuke_reply(udc, 0); ep0state = EP0_REQUEUE; } break; } case EP0_OUT_STATUS_PHASE: /* * Normal case: 0-byte OUT ack packet is in flight; wait * for it to finish, then go back to REQUEUE->IDLE. * * Shutdown case: just cancel the transmission. Don't bother * calling the completion, because it originated from this * function anyway. Then go back to REQUEUE->IDLE. */ if (udc->ep0_req_completed) { bcm63xx_ep0_read_complete(udc); ep0state = EP0_REQUEUE; } else if (shutdown) { iudma_reset_channel(udc, &udc->iudma[IUDMA_EP0_TXCHAN]); udc->ep0_request = NULL; ep0state = EP0_REQUEUE; } break; case EP0_IN_FAKE_STATUS_PHASE: { /* * Normal case: we spoofed a SETUP packet and are now * waiting for the gadget driver to send a 0-byte reply. * This doesn't actually get sent to the HW because the * HW has already sent its own reply. Once we get the * response, return to IDLE. * * Shutdown case: return to IDLE immediately. * * Note that the ep0 RX descriptor has remained queued * (and possibly unfilled) during this entire transaction. * The HW datapath (IUDMA) never even sees SET_CONFIGURATION * or SET_INTERFACE transactions. */ struct usb_request *r = udc->ep0_reply; if (!r) { if (shutdown) ep0state = EP0_IDLE; break; } bcm63xx_ep0_complete(udc, r, 0); udc->ep0_reply = NULL; ep0state = EP0_IDLE; break; } case EP0_SHUTDOWN: break; } if (udc->ep0state == ep0state) return -EAGAIN; udc->ep0state = ep0state; return 0; } /** * bcm63xx_ep0_process - ep0 worker thread / state machine. * @w: Workqueue struct. * * bcm63xx_ep0_process is triggered any time an event occurs on ep0. It * is used to synchronize ep0 events and ensure that both HW and SW events * occur in a well-defined order. When the ep0 IUDMA queues are idle, it may * synthesize SET_CONFIGURATION / SET_INTERFACE requests that were consumed * by the USBD hardware. * * The worker function will continue iterating around the state machine * until there is nothing left to do. Usually "nothing left to do" means * that we're waiting for a new event from the hardware. */ static void bcm63xx_ep0_process(struct work_struct *w) { struct bcm63xx_udc *udc = container_of(w, struct bcm63xx_udc, ep0_wq); spin_lock_irq(&udc->lock); while (bcm63xx_ep0_one_round(udc) == 0) ; spin_unlock_irq(&udc->lock); } /*********************************************************************** * Standard UDC gadget operations ***********************************************************************/ /** * bcm63xx_udc_get_frame - Read current SOF frame number from the HW. * @gadget: USB slave device. */ static int bcm63xx_udc_get_frame(struct usb_gadget *gadget) { struct bcm63xx_udc *udc = gadget_to_udc(gadget); return (usbd_readl(udc, USBD_STATUS_REG) & USBD_STATUS_SOF_MASK) >> USBD_STATUS_SOF_SHIFT; } /** * bcm63xx_udc_pullup - Enable/disable pullup on D+ line. * @gadget: USB slave device. * @is_on: 0 to disable pullup, 1 to enable. * * See notes in bcm63xx_select_pullup(). */ static int bcm63xx_udc_pullup(struct usb_gadget *gadget, int is_on) { struct bcm63xx_udc *udc = gadget_to_udc(gadget); unsigned long flags; int i, rc = -EINVAL; spin_lock_irqsave(&udc->lock, flags); if (is_on && udc->ep0state == EP0_SHUTDOWN) { udc->gadget.speed = USB_SPEED_UNKNOWN; udc->ep0state = EP0_REQUEUE; bcm63xx_fifo_setup(udc); bcm63xx_fifo_reset(udc); bcm63xx_ep_setup(udc); bitmap_zero(&udc->wedgemap, BCM63XX_NUM_EP); for (i = 0; i < BCM63XX_NUM_EP; i++) bcm63xx_set_stall(udc, &udc->bep[i], false); bcm63xx_set_ctrl_irqs(udc, true); bcm63xx_select_pullup(gadget_to_udc(gadget), true); rc = 0; } else if (!is_on && udc->ep0state != EP0_SHUTDOWN) { bcm63xx_select_pullup(gadget_to_udc(gadget), false); udc->ep0_req_shutdown = 1; spin_unlock_irqrestore(&udc->lock, flags); while (1) { schedule_work(&udc->ep0_wq); if (udc->ep0state == EP0_SHUTDOWN) break; msleep(50); } bcm63xx_set_ctrl_irqs(udc, false); cancel_work_sync(&udc->ep0_wq); return 0; } spin_unlock_irqrestore(&udc->lock, flags); return rc; } /** * bcm63xx_udc_start - Start the controller. * @gadget: USB slave device. * @driver: Driver for USB slave devices. */ static int bcm63xx_udc_start(struct usb_gadget *gadget, struct usb_gadget_driver *driver) { struct bcm63xx_udc *udc = gadget_to_udc(gadget); unsigned long flags; if (!driver || driver->max_speed < USB_SPEED_HIGH || !driver->setup) return -EINVAL; if (!udc) return -ENODEV; if (udc->driver) return -EBUSY; spin_lock_irqsave(&udc->lock, flags); set_clocks(udc, true); bcm63xx_fifo_setup(udc); bcm63xx_ep_init(udc); bcm63xx_ep_setup(udc); bcm63xx_fifo_reset(udc); bcm63xx_select_phy_mode(udc, true); udc->driver = driver; driver->driver.bus = NULL; udc->gadget.dev.of_node = udc->dev->of_node; spin_unlock_irqrestore(&udc->lock, flags); return 0; } /** * bcm63xx_udc_stop - Shut down the controller. * @gadget: USB slave device. * @driver: Driver for USB slave devices. */ static int bcm63xx_udc_stop(struct usb_gadget *gadget, struct usb_gadget_driver *driver) { struct bcm63xx_udc *udc = gadget_to_udc(gadget); unsigned long flags; spin_lock_irqsave(&udc->lock, flags); udc->driver = NULL; /* * If we switch the PHY too abruptly after dropping D+, the host * will often complain: * * hub 1-0:1.0: port 1 disabled by hub (EMI?), re-enabling... */ msleep(100); bcm63xx_select_phy_mode(udc, false); set_clocks(udc, false); spin_unlock_irqrestore(&udc->lock, flags); return 0; } static const struct usb_gadget_ops bcm63xx_udc_ops = { .get_frame = bcm63xx_udc_get_frame, .pullup = bcm63xx_udc_pullup, .udc_start = bcm63xx_udc_start, .udc_stop = bcm63xx_udc_stop, }; /*********************************************************************** * IRQ handling ***********************************************************************/ /** * bcm63xx_update_cfg_iface - Read current configuration/interface settings. * @udc: Reference to the device controller. * * This controller intercepts SET_CONFIGURATION and SET_INTERFACE messages. * The driver never sees the raw control packets coming in on the ep0 * IUDMA channel, but at least we get an interrupt event to tell us that * new values are waiting in the USBD_STATUS register. */ static void bcm63xx_update_cfg_iface(struct bcm63xx_udc *udc) { u32 reg = usbd_readl(udc, USBD_STATUS_REG); udc->cfg = (reg & USBD_STATUS_CFG_MASK) >> USBD_STATUS_CFG_SHIFT; udc->iface = (reg & USBD_STATUS_INTF_MASK) >> USBD_STATUS_INTF_SHIFT; udc->alt_iface = (reg & USBD_STATUS_ALTINTF_MASK) >> USBD_STATUS_ALTINTF_SHIFT; bcm63xx_ep_setup(udc); } /** * bcm63xx_update_link_speed - Check to see if the link speed has changed. * @udc: Reference to the device controller. * * The link speed update coincides with a SETUP IRQ. Returns 1 if the * speed has changed, so that the caller can update the endpoint settings. */ static int bcm63xx_update_link_speed(struct bcm63xx_udc *udc) { u32 reg = usbd_readl(udc, USBD_STATUS_REG); enum usb_device_speed oldspeed = udc->gadget.speed; switch ((reg & USBD_STATUS_SPD_MASK) >> USBD_STATUS_SPD_SHIFT) { case BCM63XX_SPD_HIGH: udc->gadget.speed = USB_SPEED_HIGH; break; case BCM63XX_SPD_FULL: udc->gadget.speed = USB_SPEED_FULL; break; default: /* this should never happen */ udc->gadget.speed = USB_SPEED_UNKNOWN; dev_err(udc->dev, "received SETUP packet with invalid link speed\n"); return 0; } if (udc->gadget.speed != oldspeed) { dev_info(udc->dev, "link up, %s-speed mode\n", udc->gadget.speed == USB_SPEED_HIGH ? "high" : "full"); return 1; } else { return 0; } } /** * bcm63xx_update_wedge - Iterate through wedged endpoints. * @udc: Reference to the device controller. * @new_status: true to "refresh" wedge status; false to clear it. * * On a SETUP interrupt, we need to manually "refresh" the wedge status * because the controller hardware is designed to automatically clear * stalls in response to a CLEAR_FEATURE request from the host. * * On a RESET interrupt, we do want to restore all wedged endpoints. */ static void bcm63xx_update_wedge(struct bcm63xx_udc *udc, bool new_status) { int i; for_each_set_bit(i, &udc->wedgemap, BCM63XX_NUM_EP) { bcm63xx_set_stall(udc, &udc->bep[i], new_status); if (!new_status) clear_bit(i, &udc->wedgemap); } } /** * bcm63xx_udc_ctrl_isr - ISR for control path events (USBD). * @irq: IRQ number (unused). * @dev_id: Reference to the device controller. * * This is where we handle link (VBUS) down, USB reset, speed changes, * SET_CONFIGURATION, and SET_INTERFACE events. */ static irqreturn_t bcm63xx_udc_ctrl_isr(int irq, void *dev_id) { struct bcm63xx_udc *udc = dev_id; u32 stat; bool disconnected = false; stat = usbd_readl(udc, USBD_EVENT_IRQ_STATUS_REG) & usbd_readl(udc, USBD_EVENT_IRQ_MASK_REG); usbd_writel(udc, stat, USBD_EVENT_IRQ_STATUS_REG); spin_lock(&udc->lock); if (stat & BIT(USBD_EVENT_IRQ_USB_LINK)) { /* VBUS toggled */ if (!(usbd_readl(udc, USBD_EVENTS_REG) & USBD_EVENTS_USB_LINK_MASK) && udc->gadget.speed != USB_SPEED_UNKNOWN) dev_info(udc->dev, "link down\n"); udc->gadget.speed = USB_SPEED_UNKNOWN; disconnected = true; } if (stat & BIT(USBD_EVENT_IRQ_USB_RESET)) { bcm63xx_fifo_setup(udc); bcm63xx_fifo_reset(udc); bcm63xx_ep_setup(udc); bcm63xx_update_wedge(udc, false); udc->ep0_req_reset = 1; schedule_work(&udc->ep0_wq); disconnected = true; } if (stat & BIT(USBD_EVENT_IRQ_SETUP)) { if (bcm63xx_update_link_speed(udc)) { bcm63xx_fifo_setup(udc); bcm63xx_ep_setup(udc); } bcm63xx_update_wedge(udc, true); } if (stat & BIT(USBD_EVENT_IRQ_SETCFG)) { bcm63xx_update_cfg_iface(udc); udc->ep0_req_set_cfg = 1; schedule_work(&udc->ep0_wq); } if (stat & BIT(USBD_EVENT_IRQ_SETINTF)) { bcm63xx_update_cfg_iface(udc); udc->ep0_req_set_iface = 1; schedule_work(&udc->ep0_wq); } spin_unlock(&udc->lock); if (disconnected && udc->driver) udc->driver->disconnect(&udc->gadget); return IRQ_HANDLED; } /** * bcm63xx_udc_data_isr - ISR for data path events (IUDMA). * @irq: IRQ number (unused). * @dev_id: Reference to the IUDMA channel that generated the interrupt. * * For the two ep0 channels, we have special handling that triggers the * ep0 worker thread. For normal bulk/intr channels, either queue up * the next buffer descriptor for the transaction (incomplete transaction), * or invoke the completion callback (complete transactions). */ static irqreturn_t bcm63xx_udc_data_isr(int irq, void *dev_id) { struct iudma_ch *iudma = dev_id; struct bcm63xx_udc *udc = iudma->udc; struct bcm63xx_ep *bep; struct usb_request *req = NULL; struct bcm63xx_req *breq = NULL; int rc; bool is_done = false; spin_lock(&udc->lock); usb_dmac_writel(udc, ENETDMAC_IR_BUFDONE_MASK, ENETDMAC_IR_REG(iudma->ch_idx)); bep = iudma->bep; rc = iudma_read(udc, iudma); /* special handling for EP0 RX (0) and TX (1) */ if (iudma->ch_idx == IUDMA_EP0_RXCHAN || iudma->ch_idx == IUDMA_EP0_TXCHAN) { req = udc->ep0_request; breq = our_req(req); /* a single request could require multiple submissions */ if (rc >= 0) { req->actual += rc; if (req->actual >= req->length || breq->bd_bytes > rc) { udc->ep0_req_completed = 1; is_done = true; schedule_work(&udc->ep0_wq); /* "actual" on a ZLP is 1 byte */ req->actual = min(req->actual, req->length); } else { /* queue up the next BD (same request) */ iudma_write(udc, iudma, breq); } } } else if (!list_empty(&bep->queue)) { breq = list_first_entry(&bep->queue, struct bcm63xx_req, queue); req = &breq->req; if (rc >= 0) { req->actual += rc; if (req->actual >= req->length || breq->bd_bytes > rc) { is_done = true; list_del(&breq->queue); req->actual = min(req->actual, req->length); if (!list_empty(&bep->queue)) { struct bcm63xx_req *next; next = list_first_entry(&bep->queue, struct bcm63xx_req, queue); iudma_write(udc, iudma, next); } } else { iudma_write(udc, iudma, breq); } } } spin_unlock(&udc->lock); if (is_done) { usb_gadget_unmap_request(&udc->gadget, req, iudma->is_tx); if (req->complete) req->complete(&bep->ep, req); } return IRQ_HANDLED; } /*********************************************************************** * Debug filesystem ***********************************************************************/ /* * bcm63xx_usbd_dbg_show - Show USBD controller state. * @s: seq_file to which the information will be written. * @p: Unused. * * This file nominally shows up as /sys/kernel/debug/bcm63xx_udc/usbd */ static int bcm63xx_usbd_dbg_show(struct seq_file *s, void *p) { struct bcm63xx_udc *udc = s->private; if (!udc->driver) return -ENODEV; seq_printf(s, "ep0 state: %s\n", bcm63xx_ep0_state_names[udc->ep0state]); seq_printf(s, " pending requests: %s%s%s%s%s%s%s\n", udc->ep0_req_reset ? "reset " : "", udc->ep0_req_set_cfg ? "set_cfg " : "", udc->ep0_req_set_iface ? "set_iface " : "", udc->ep0_req_shutdown ? "shutdown " : "", udc->ep0_request ? "pending " : "", udc->ep0_req_completed ? "completed " : "", udc->ep0_reply ? "reply " : ""); seq_printf(s, "cfg: %d; iface: %d; alt_iface: %d\n", udc->cfg, udc->iface, udc->alt_iface); seq_printf(s, "regs:\n"); seq_printf(s, " control: %08x; straps: %08x; status: %08x\n", usbd_readl(udc, USBD_CONTROL_REG), usbd_readl(udc, USBD_STRAPS_REG), usbd_readl(udc, USBD_STATUS_REG)); seq_printf(s, " events: %08x; stall: %08x\n", usbd_readl(udc, USBD_EVENTS_REG), usbd_readl(udc, USBD_STALL_REG)); return 0; } /* * bcm63xx_iudma_dbg_show - Show IUDMA status and descriptors. * @s: seq_file to which the information will be written. * @p: Unused. * * This file nominally shows up as /sys/kernel/debug/bcm63xx_udc/iudma */ static int bcm63xx_iudma_dbg_show(struct seq_file *s, void *p) { struct bcm63xx_udc *udc = s->private; int ch_idx, i; u32 sram2, sram3; if (!udc->driver) return -ENODEV; for (ch_idx = 0; ch_idx < BCM63XX_NUM_IUDMA; ch_idx++) { struct iudma_ch *iudma = &udc->iudma[ch_idx]; struct list_head *pos; seq_printf(s, "IUDMA channel %d -- ", ch_idx); switch (iudma_defaults[ch_idx].ep_type) { case BCMEP_CTRL: seq_printf(s, "control"); break; case BCMEP_BULK: seq_printf(s, "bulk"); break; case BCMEP_INTR: seq_printf(s, "interrupt"); break; } seq_printf(s, ch_idx & 0x01 ? " tx" : " rx"); seq_printf(s, " [ep%d]:\n", max_t(int, iudma_defaults[ch_idx].ep_num, 0)); seq_printf(s, " cfg: %08x; irqstat: %08x; irqmask: %08x; maxburst: %08x\n", usb_dmac_readl(udc, ENETDMAC_CHANCFG_REG(ch_idx)), usb_dmac_readl(udc, ENETDMAC_IR_REG(ch_idx)), usb_dmac_readl(udc, ENETDMAC_IRMASK_REG(ch_idx)), usb_dmac_readl(udc, ENETDMAC_MAXBURST_REG(ch_idx))); sram2 = usb_dmas_readl(udc, ENETDMAS_SRAM2_REG(ch_idx)); sram3 = usb_dmas_readl(udc, ENETDMAS_SRAM3_REG(ch_idx)); seq_printf(s, " base: %08x; index: %04x_%04x; desc: %04x_%04x %08x\n", usb_dmas_readl(udc, ENETDMAS_RSTART_REG(ch_idx)), sram2 >> 16, sram2 & 0xffff, sram3 >> 16, sram3 & 0xffff, usb_dmas_readl(udc, ENETDMAS_SRAM4_REG(ch_idx))); seq_printf(s, " desc: %d/%d used", iudma->n_bds_used, iudma->n_bds); if (iudma->bep) { i = 0; list_for_each(pos, &iudma->bep->queue) i++; seq_printf(s, "; %d queued\n", i); } else { seq_printf(s, "\n"); } for (i = 0; i < iudma->n_bds; i++) { struct bcm_enet_desc *d = &iudma->bd_ring[i]; seq_printf(s, " %03x (%02x): len_stat: %04x_%04x; pa %08x", i * sizeof(*d), i, d->len_stat >> 16, d->len_stat & 0xffff, d->address); if (d == iudma->read_bd) seq_printf(s, " <write_bd) seq_printf(s, " <i_private); } static int bcm63xx_iudma_dbg_open(struct inode *inode, struct file *file) { return single_open(file, bcm63xx_iudma_dbg_show, inode->i_private); } static const struct file_operations usbd_dbg_fops = { .owner = THIS_MODULE, .open = bcm63xx_usbd_dbg_open, .llseek = seq_lseek, .read = seq_read, .release = single_release, }; static const struct file_operations iudma_dbg_fops = { .owner = THIS_MODULE, .open = bcm63xx_iudma_dbg_open, .llseek = seq_lseek, .read = seq_read, .release = single_release, }; /** * bcm63xx_udc_init_debugfs - Create debugfs entries. * @udc: Reference to the device controller. */ static void bcm63xx_udc_init_debugfs(struct bcm63xx_udc *udc) { struct dentry *root, *usbd, *iudma; if (!IS_ENABLED(CONFIG_USB_GADGET_DEBUG_FS)) return; root = debugfs_create_dir(udc->gadget.name, NULL); if (IS_ERR(root) || !root) goto err_root; usbd = debugfs_create_file("usbd", 0400, root, udc, &usbd_dbg_fops); if (!usbd) goto err_usbd; iudma = debugfs_create_file("iudma", 0400, root, udc, &iudma_dbg_fops); if (!iudma) goto err_iudma; udc->debugfs_root = root; udc->debugfs_usbd = usbd; udc->debugfs_iudma = iudma; return; err_iudma: debugfs_remove(usbd); err_usbd: debugfs_remove(root); err_root: dev_err(udc->dev, "debugfs is not available\n"); } /** * bcm63xx_udc_cleanup_debugfs - Remove debugfs entries. * @udc: Reference to the device controller. * * debugfs_remove() is safe to call with a NULL argument. */ static void bcm63xx_udc_cleanup_debugfs(struct bcm63xx_udc *udc) { debugfs_remove(udc->debugfs_iudma); debugfs_remove(udc->debugfs_usbd); debugfs_remove(udc->debugfs_root); udc->debugfs_iudma = NULL; udc->debugfs_usbd = NULL; udc->debugfs_root = NULL; } /*********************************************************************** * Driver init/exit ***********************************************************************/ /** * bcm63xx_udc_probe - Initialize a new instance of the UDC. * @pdev: Platform device struct from the bcm63xx BSP code. * * Note that platform data is required, because pd.port_no varies from chip * to chip and is used to switch the correct USB port to device mode. */ static int bcm63xx_udc_probe(struct platform_device *pdev) { struct device *dev = &pdev->dev; struct bcm63xx_usbd_platform_data *pd = dev->platform_data; struct bcm63xx_udc *udc; struct resource *res; int rc = -ENOMEM, i, irq; udc = devm_kzalloc(dev, sizeof(*udc), GFP_KERNEL); if (!udc) { dev_err(dev, "cannot allocate memory\n"); return -ENOMEM; } platform_set_drvdata(pdev, udc); udc->dev = dev; udc->pd = pd; if (!pd) { dev_err(dev, "missing platform data\n"); return -EINVAL; } res = platform_get_resource(pdev, IORESOURCE_MEM, 0); udc->usbd_regs = devm_ioremap_resource(dev, res); if (IS_ERR(udc->usbd_regs)) return PTR_ERR(udc->usbd_regs); res = platform_get_resource(pdev, IORESOURCE_MEM, 1); udc->iudma_regs = devm_ioremap_resource(dev, res); if (IS_ERR(udc->iudma_regs)) return PTR_ERR(udc->iudma_regs); spin_lock_init(&udc->lock); INIT_WORK(&udc->ep0_wq, bcm63xx_ep0_process); udc->gadget.ops = &bcm63xx_udc_ops; udc->gadget.name = dev_name(dev); if (!pd->use_fullspeed && !use_fullspeed) udc->gadget.max_speed = USB_SPEED_HIGH; else udc->gadget.max_speed = USB_SPEED_FULL; /* request clocks, allocate buffers, and clear any pending IRQs */ rc = bcm63xx_init_udc_hw(udc); if (rc) return rc; rc = -ENXIO; /* IRQ resource #0: control interrupt (VBUS, speed, etc.) */ irq = platform_get_irq(pdev, 0); if (irq < 0) { dev_err(dev, "missing IRQ resource #0\n"); goto out_uninit; } if (devm_request_irq(dev, irq, &bcm63xx_udc_ctrl_isr, 0, dev_name(dev), udc) < 0) { dev_err(dev, "error requesting IRQ #%d\n", irq); goto out_uninit; } /* IRQ resources #1-6: data interrupts for IUDMA channels 0-5 */ for (i = 0; i < BCM63XX_NUM_IUDMA; i++) { irq = platform_get_irq(pdev, i + 1); if (irq < 0) { dev_err(dev, "missing IRQ resource #%d\n", i + 1); goto out_uninit; } if (devm_request_irq(dev, irq, &bcm63xx_udc_data_isr, 0, dev_name(dev), &udc->iudma[i]) < 0) { dev_err(dev, "error requesting IRQ #%d\n", irq); goto out_uninit; } } bcm63xx_udc_init_debugfs(udc); rc = usb_add_gadget_udc(dev, &udc->gadget); if (!rc) return 0; bcm63xx_udc_cleanup_debugfs(udc); out_uninit: bcm63xx_uninit_udc_hw(udc); return rc; } /** * bcm63xx_udc_remove - Remove the device from the system. * @pdev: Platform device struct from the bcm63xx BSP code. */ static int bcm63xx_udc_remove(struct platform_device *pdev) { struct bcm63xx_udc *udc = platform_get_drvdata(pdev); bcm63xx_udc_cleanup_debugfs(udc); usb_del_gadget_udc(&udc->gadget); BUG_ON(udc->driver); bcm63xx_uninit_udc_hw(udc); return 0; } static struct platform_driver bcm63xx_udc_driver = { .probe = bcm63xx_udc_probe, .remove = bcm63xx_udc_remove, .driver = { .name = DRV_MODULE_NAME, .owner = THIS_MODULE, }, }; module_platform_driver(bcm63xx_udc_driver); MODULE_DESCRIPTION("BCM63xx USB Peripheral Controller"); MODULE_AUTHOR("Kevin Cernekee "); MODULE_LICENSE("GPL"); MODULE_ALIAS("platform:" DRV_MODULE_NAME);