/* * OHCI HCD (Host Controller Driver) for USB. * * (C) Copyright 1999 Roman Weissgaerber * (C) Copyright 2000-2002 David Brownell * * This file is licenced under the GPL. */ /* * __hc32 and __hc16 are "Host Controller" types, they may be equivalent to * __leXX (normally) or __beXX (given OHCI_BIG_ENDIAN), depending on the * host controller implementation. */ typedef __u32 __bitwise __hc32; typedef __u16 __bitwise __hc16; /* * OHCI Endpoint Descriptor (ED) ... holds TD queue * See OHCI spec, section 4.2 * * This is a "Queue Head" for those transfers, which is why * both EHCI and UHCI call similar structures a "QH". */ struct ed { /* first fields are hardware-specified */ __hc32 hwINFO; /* endpoint config bitmap */ /* info bits defined by hcd */ #define ED_DEQUEUE (1 << 27) /* info bits defined by the hardware */ #define ED_ISO (1 << 15) #define ED_SKIP (1 << 14) #define ED_LOWSPEED (1 << 13) #define ED_OUT (0x01 << 11) #define ED_IN (0x02 << 11) __hc32 hwTailP; /* tail of TD list */ __hc32 hwHeadP; /* head of TD list (hc r/w) */ #define ED_C (0x02) /* toggle carry */ #define ED_H (0x01) /* halted */ __hc32 hwNextED; /* next ED in list */ /* rest are purely for the driver's use */ dma_addr_t dma; /* addr of ED */ struct td *dummy; /* next TD to activate */ /* host's view of schedule */ struct ed *ed_next; /* on schedule or rm_list */ struct ed *ed_prev; /* for non-interrupt EDs */ struct list_head td_list; /* "shadow list" of our TDs */ /* create --> IDLE --> OPER --> ... --> IDLE --> destroy * usually: OPER --> UNLINK --> (IDLE | OPER) --> ... */ u8 state; /* ED_{IDLE,UNLINK,OPER} */ #define ED_IDLE 0x00 /* NOT linked to HC */ #define ED_UNLINK 0x01 /* being unlinked from hc */ #define ED_OPER 0x02 /* IS linked to hc */ u8 type; /* PIPE_{BULK,...} */ /* periodic scheduling params (for intr and iso) */ u8 branch; u16 interval; u16 load; u16 last_iso; /* iso only */ /* HC may see EDs on rm_list until next frame (frame_no == tick) */ u16 tick; } __attribute__ ((aligned(16))); #define ED_MASK ((u32)~0x0f) /* strip hw status in low addr bits */ /* * OHCI Transfer Descriptor (TD) ... one per transfer segment * See OHCI spec, sections 4.3.1 (general = control/bulk/interrupt) * and 4.3.2 (iso) */ struct td { /* first fields are hardware-specified */ __hc32 hwINFO; /* transfer info bitmask */ /* hwINFO bits for both general and iso tds: */ #define TD_CC 0xf0000000 /* condition code */ #define TD_CC_GET(td_p) ((td_p >>28) & 0x0f) //#define TD_CC_SET(td_p, cc) (td_p) = ((td_p) & 0x0fffffff) | (((cc) & 0x0f) << 28) #define TD_DI 0x00E00000 /* frames before interrupt */ #define TD_DI_SET(X) (((X) & 0x07)<< 21) /* these two bits are available for definition/use by HCDs in both * general and iso tds ... others are available for only one type */ #define TD_DONE 0x00020000 /* retired to donelist */ #define TD_ISO 0x00010000 /* copy of ED_ISO */ /* hwINFO bits for general tds: */ #define TD_EC 0x0C000000 /* error count */ #define TD_T 0x03000000 /* data toggle state */ #define TD_T_DATA0 0x02000000 /* DATA0 */ #define TD_T_DATA1 0x03000000 /* DATA1 */ #define TD_T_TOGGLE 0x00000000 /* uses ED_C */ #define TD_DP 0x00180000 /* direction/pid */ #define TD_DP_SETUP 0x00000000 /* SETUP pid */ #define TD_DP_IN 0x00100000 /* IN pid */ #define TD_DP_OUT 0x00080000 /* OUT pid */ /* 0x00180000 rsvd */ #define TD_R 0x00040000 /* round: short packets OK? */ /* (no hwINFO #defines yet for iso tds) */ __hc32 hwCBP; /* Current Buffer Pointer (or 0) */ __hc32 hwNextTD; /* Next TD Pointer */ __hc32 hwBE; /* Memory Buffer End Pointer */ /* PSW is only for ISO. Only 1 PSW entry is used, but on * big-endian PPC hardware that's the second entry. */ #define MAXPSW 2 __hc16 hwPSW [MAXPSW]; /* rest are purely for the driver's use */ __u8 index; struct ed *ed; struct td *td_hash; /* dma-->td hashtable */ struct td *next_dl_td; struct urb *urb; dma_addr_t td_dma; /* addr of this TD */ dma_addr_t data_dma; /* addr of data it points to */ struct list_head td_list; /* "shadow list", TDs on same ED */ } __attribute__ ((aligned(32))); /* c/b/i need 16; only iso needs 32 */ #define TD_MASK ((u32)~0x1f) /* strip hw status in low addr bits */ /* * Hardware transfer status codes -- CC from td->hwINFO or td->hwPSW */ #define TD_CC_NOERROR 0x00 #define TD_CC_CRC 0x01 #define TD_CC_BITSTUFFING 0x02 #define TD_CC_DATATOGGLEM 0x03 #define TD_CC_STALL 0x04 #define TD_DEVNOTRESP 0x05 #define TD_PIDCHECKFAIL 0x06 #define TD_UNEXPECTEDPID 0x07 #define TD_DATAOVERRUN 0x08 #define TD_DATAUNDERRUN 0x09 /* 0x0A, 0x0B reserved for hardware */ #define TD_BUFFEROVERRUN 0x0C #define TD_BUFFERUNDERRUN 0x0D /* 0x0E, 0x0F reserved for HCD */ #define TD_NOTACCESSED 0x0F /* map OHCI TD status codes (CC) to errno values */ static const int cc_to_error [16] = { /* No Error */ 0, /* CRC Error */ -EILSEQ, /* Bit Stuff */ -EPROTO, /* Data Togg */ -EILSEQ, /* Stall */ -EPIPE, /* DevNotResp */ -ETIME, /* PIDCheck */ -EPROTO, /* UnExpPID */ -EPROTO, /* DataOver */ -EOVERFLOW, /* DataUnder */ -EREMOTEIO, /* (for hw) */ -EIO, /* (for hw) */ -EIO, /* BufferOver */ -ECOMM, /* BuffUnder */ -ENOSR, /* (for HCD) */ -EALREADY, /* (for HCD) */ -EALREADY }; /* * The HCCA (Host Controller Communications Area) is a 256 byte * structure defined section 4.4.1 of the OHCI spec. The HC is * told the base address of it. It must be 256-byte aligned. */ struct ohci_hcca { #define NUM_INTS 32 __hc32 int_table [NUM_INTS]; /* periodic schedule */ /* * OHCI defines u16 frame_no, followed by u16 zero pad. * Since some processors can't do 16 bit bus accesses, * portable access must be a 32 bits wide. */ __hc32 frame_no; /* current frame number */ __hc32 done_head; /* info returned for an interrupt */ u8 reserved_for_hc [116]; u8 what [4]; /* spec only identifies 252 bytes :) */ } __attribute__ ((aligned(256))); /* * This is the structure of the OHCI controller's memory mapped I/O region. * You must use readl() and writel() (in ) to access these fields!! * Layout is in section 7 (and appendix B) of the spec. */ struct ohci_regs { /* control and status registers (section 7.1) */ __hc32 revision; __hc32 control; __hc32 cmdstatus; __hc32 intrstatus; __hc32 intrenable; __hc32 intrdisable; /* memory pointers (section 7.2) */ __hc32 hcca; __hc32 ed_periodcurrent; __hc32 ed_controlhead; __hc32 ed_controlcurrent; __hc32 ed_bulkhead; __hc32 ed_bulkcurrent; __hc32 donehead; /* frame counters (section 7.3) */ __hc32 fminterval; __hc32 fmremaining; __hc32 fmnumber; __hc32 periodicstart; __hc32 lsthresh; /* Root hub ports (section 7.4) */ struct ohci_roothub_regs { __hc32 a; __hc32 b; __hc32 status; #define MAX_ROOT_PORTS 15 /* maximum OHCI root hub ports (RH_A_NDP) */ __hc32 portstatus [MAX_ROOT_PORTS]; } roothub; /* and optional "legacy support" registers (appendix B) at 0x0100 */ } __attribute__ ((aligned(32))); /* OHCI CONTROL AND STATUS REGISTER MASKS */ /* * HcControl (control) register masks */ #define OHCI_CTRL_CBSR (3 << 0) /* control/bulk service ratio */ #define OHCI_CTRL_PLE (1 << 2) /* periodic list enable */ #define OHCI_CTRL_IE (1 << 3) /* isochronous enable */ #define OHCI_CTRL_CLE (1 << 4) /* control list enable */ #define OHCI_CTRL_BLE (1 << 5) /* bulk list enable */ #define OHCI_CTRL_HCFS (3 << 6) /* host controller functional state */ #define OHCI_CTRL_IR (1 << 8) /* interrupt routing */ #define OHCI_CTRL_RWC (1 << 9) /* remote wakeup connected */ #define OHCI_CTRL_RWE (1 << 10) /* remote wakeup enable */ /* pre-shifted values for HCFS */ # define OHCI_USB_RESET (0 << 6) # define OHCI_USB_RESUME (1 << 6) # define OHCI_USB_OPER (2 << 6) # define OHCI_USB_SUSPEND (3 << 6) /* * HcCommandStatus (cmdstatus) register masks */ #define OHCI_HCR (1 << 0) /* host controller reset */ #define OHCI_CLF (1 << 1) /* control list filled */ #define OHCI_BLF (1 << 2) /* bulk list filled */ #define OHCI_OCR (1 << 3) /* ownership change request */ #define OHCI_SOC (3 << 16) /* scheduling overrun count */ /* * masks used with interrupt registers: * HcInterruptStatus (intrstatus) * HcInterruptEnable (intrenable) * HcInterruptDisable (intrdisable) */ #define OHCI_INTR_SO (1 << 0) /* scheduling overrun */ #define OHCI_INTR_WDH (1 << 1) /* writeback of done_head */ #define OHCI_INTR_SF (1 << 2) /* start frame */ #define OHCI_INTR_RD (1 << 3) /* resume detect */ #define OHCI_INTR_UE (1 << 4) /* unrecoverable error */ #define OHCI_INTR_FNO (1 << 5) /* frame number overflow */ #define OHCI_INTR_RHSC (1 << 6) /* root hub status change */ #define OHCI_INTR_OC (1 << 30) /* ownership change */ #define OHCI_INTR_MIE (1 << 31) /* master interrupt enable */ /* OHCI ROOT HUB REGISTER MASKS */ /* roothub.portstatus [i] bits */ #define RH_PS_CCS 0x00000001 /* current connect status */ #define RH_PS_PES 0x00000002 /* port enable status*/ #define RH_PS_PSS 0x00000004 /* port suspend status */ #define RH_PS_POCI 0x00000008 /* port over current indicator */ #define RH_PS_PRS 0x00000010 /* port reset status */ #define RH_PS_PPS 0x00000100 /* port power status */ #define RH_PS_LSDA 0x00000200 /* low speed device attached */ #define RH_PS_CSC 0x00010000 /* connect status change */ #define RH_PS_PESC 0x00020000 /* port enable status change */ #define RH_PS_PSSC 0x00040000 /* port suspend status change */ #define RH_PS_OCIC 0x00080000 /* over current indicator change */ #define RH_PS_PRSC 0x00100000 /* port reset status change */ /* roothub.status bits */ #define RH_HS_LPS 0x00000001 /* local power status */ #define RH_HS_OCI 0x00000002 /* over current indicator */ #define RH_HS_DRWE 0x00008000 /* device remote wakeup enable */ #define RH_HS_LPSC 0x00010000 /* local power status change */ #define RH_HS_OCIC 0x00020000 /* over current indicator change */ #define RH_HS_CRWE 0x80000000 /* clear remote wakeup enable */ /* roothub.b masks */ #define RH_B_DR 0x0000ffff /* device removable flags */ #define RH_B_PPCM 0xffff0000 /* port power control mask */ /* roothub.a masks */ #define RH_A_NDP (0xff << 0) /* number of downstream ports */ #define RH_A_PSM (1 << 8) /* power switching mode */ #define RH_A_NPS (1 << 9) /* no power switching */ #define RH_A_DT (1 << 10) /* device type (mbz) */ #define RH_A_OCPM (1 << 11) /* over current protection mode */ #define RH_A_NOCP (1 << 12) /* no over current protection */ #define RH_A_POTPGT (0xff << 24) /* power on to power good time */ /* hcd-private per-urb state */ typedef struct urb_priv { struct ed *ed; u16 length; // # tds in this request u16 td_cnt; // tds already serviced struct list_head pending; struct td *td [0]; // all TDs in this request } urb_priv_t; #define TD_HASH_SIZE 64 /* power'o'two */ // sizeof (struct td) ~= 64 == 2^6 ... #define TD_HASH_FUNC(td_dma) ((td_dma ^ (td_dma >> 6)) % TD_HASH_SIZE) /* * This is the full ohci controller description * * Note how the "proper" USB information is just * a subset of what the full implementation needs. (Linus) */ enum ohci_rh_state { OHCI_RH_HALTED, OHCI_RH_SUSPENDED, OHCI_RH_RUNNING }; struct ohci_hcd { spinlock_t lock; /* * I/O memory used to communicate with the HC (dma-consistent) */ struct ohci_regs __iomem *regs; /* * main memory used to communicate with the HC (dma-consistent). * hcd adds to schedule for a live hc any time, but removals finish * only at the start of the next frame. */ struct ohci_hcca *hcca; dma_addr_t hcca_dma; struct ed *ed_rm_list; /* to be removed */ struct ed *ed_bulktail; /* last in bulk list */ struct ed *ed_controltail; /* last in ctrl list */ struct ed *periodic [NUM_INTS]; /* shadow int_table */ /* * OTG controllers and transceivers need software interaction; * other external transceivers should be software-transparent */ struct otg_transceiver *transceiver; void (*start_hnp)(struct ohci_hcd *ohci); /* * memory management for queue data structures */ struct dma_pool *td_cache; struct dma_pool *ed_cache; struct td *td_hash [TD_HASH_SIZE]; struct list_head pending; /* * driver state */ enum ohci_rh_state rh_state; int num_ports; int load [NUM_INTS]; u32 hc_control; /* copy of hc control reg */ unsigned long next_statechange; /* suspend/resume */ u32 fminterval; /* saved register */ unsigned autostop:1; /* rh auto stopping/stopped */ unsigned long flags; /* for HC bugs */ #define OHCI_QUIRK_AMD756 0x01 /* erratum #4 */ #define OHCI_QUIRK_SUPERIO 0x02 /* natsemi */ #define OHCI_QUIRK_INITRESET 0x04 /* SiS, OPTi, ... */ #define OHCI_QUIRK_BE_DESC 0x08 /* BE descriptors */ #define OHCI_QUIRK_BE_MMIO 0x10 /* BE registers */ #define OHCI_QUIRK_ZFMICRO 0x20 /* Compaq ZFMicro chipset*/ #define OHCI_QUIRK_NEC 0x40 /* lost interrupts */ #define OHCI_QUIRK_FRAME_NO 0x80 /* no big endian frame_no shift */ #define OHCI_QUIRK_HUB_POWER 0x100 /* distrust firmware power/oc setup */ #define OHCI_QUIRK_AMD_PLL 0x200 /* AMD PLL quirk*/ #define OHCI_QUIRK_AMD_PREFETCH 0x400 /* pre-fetch for ISO transfer */ // there are also chip quirks/bugs in init logic struct work_struct nec_work; /* Worker for NEC quirk */ /* Needed for ZF Micro quirk */ struct timer_list unlink_watchdog; unsigned eds_scheduled; struct ed *ed_to_check; unsigned zf_delay; #ifdef DEBUG struct dentry *debug_dir; struct dentry *debug_async; struct dentry *debug_periodic; struct dentry *debug_registers; #endif }; #ifdef CONFIG_PCI static inline int quirk_nec(struct ohci_hcd *ohci) { return ohci->flags & OHCI_QUIRK_NEC; } static inline int quirk_zfmicro(struct ohci_hcd *ohci) { return ohci->flags & OHCI_QUIRK_ZFMICRO; } static inline int quirk_amdiso(struct ohci_hcd *ohci) { return ohci->flags & OHCI_QUIRK_AMD_PLL; } static inline int quirk_amdprefetch(struct ohci_hcd *ohci) { return ohci->flags & OHCI_QUIRK_AMD_PREFETCH; } #else static inline int quirk_nec(struct ohci_hcd *ohci) { return 0; } static inline int quirk_zfmicro(struct ohci_hcd *ohci) { return 0; } static inline int quirk_amdiso(struct ohci_hcd *ohci) { return 0; } static inline int quirk_amdprefetch(struct ohci_hcd *ohci) { return 0; } #endif /* convert between an hcd pointer and the corresponding ohci_hcd */ static inline struct ohci_hcd *hcd_to_ohci (struct usb_hcd *hcd) { return (struct ohci_hcd *) (hcd->hcd_priv); } static inline struct usb_hcd *ohci_to_hcd (const struct ohci_hcd *ohci) { return container_of ((void *) ohci, struct usb_hcd, hcd_priv); } /*-------------------------------------------------------------------------*/ #ifndef DEBUG #define STUB_DEBUG_FILES #endif /* DEBUG */ #define ohci_dbg(ohci, fmt, args...) \ dev_dbg (ohci_to_hcd(ohci)->self.controller , fmt , ## args ) #define ohci_err(ohci, fmt, args...) \ dev_err (ohci_to_hcd(ohci)->self.controller , fmt , ## args ) #define ohci_info(ohci, fmt, args...) \ dev_info (ohci_to_hcd(ohci)->self.controller , fmt , ## args ) #define ohci_warn(ohci, fmt, args...) \ dev_warn (ohci_to_hcd(ohci)->self.controller , fmt , ## args ) #ifdef OHCI_VERBOSE_DEBUG # define ohci_vdbg ohci_dbg #else # define ohci_vdbg(ohci, fmt, args...) do { } while (0) #endif /*-------------------------------------------------------------------------*/ /* * While most USB host controllers implement their registers and * in-memory communication descriptors in little-endian format, * a minority (notably the IBM STB04XXX and the Motorola MPC5200 * processors) implement them in big endian format. * * In addition some more exotic implementations like the Toshiba * Spider (aka SCC) cell southbridge are "mixed" endian, that is, * they have a different endianness for registers vs. in-memory * descriptors. * * This attempts to support either format at compile time without a * runtime penalty, or both formats with the additional overhead * of checking a flag bit. * * That leads to some tricky Kconfig rules howevber. There are * different defaults based on some arch/ppc platforms, though * the basic rules are: * * Controller type Kconfig options needed * --------------- ---------------------- * little endian CONFIG_USB_OHCI_LITTLE_ENDIAN * * fully big endian CONFIG_USB_OHCI_BIG_ENDIAN_DESC _and_ * CONFIG_USB_OHCI_BIG_ENDIAN_MMIO * * mixed endian CONFIG_USB_OHCI_LITTLE_ENDIAN _and_ * CONFIG_USB_OHCI_BIG_ENDIAN_{MMIO,DESC} * * (If you have a mixed endian controller, you -must- also define * CONFIG_USB_OHCI_LITTLE_ENDIAN or things will not work when building * both your mixed endian and a fully big endian controller support in * the same kernel image). */ #ifdef CONFIG_USB_OHCI_BIG_ENDIAN_DESC #ifdef CONFIG_USB_OHCI_LITTLE_ENDIAN #define big_endian_desc(ohci) (ohci->flags & OHCI_QUIRK_BE_DESC) #else #define big_endian_desc(ohci) 1 /* only big endian */ #endif #else #define big_endian_desc(ohci) 0 /* only little endian */ #endif #ifdef CONFIG_USB_OHCI_BIG_ENDIAN_MMIO #ifdef CONFIG_USB_OHCI_LITTLE_ENDIAN #define big_endian_mmio(ohci) (ohci->flags & OHCI_QUIRK_BE_MMIO) #else #define big_endian_mmio(ohci) 1 /* only big endian */ #endif #else #define big_endian_mmio(ohci) 0 /* only little endian */ #endif /* * Big-endian read/write functions are arch-specific. * Other arches can be added if/when they're needed. * */ static inline unsigned int _ohci_readl (const struct ohci_hcd *ohci, __hc32 __iomem * regs) { #ifdef CONFIG_USB_OHCI_BIG_ENDIAN_MMIO return big_endian_mmio(ohci) ? readl_be (regs) : readl (regs); #else return readl (regs); #endif } static inline void _ohci_writel (const struct ohci_hcd *ohci, const unsigned int val, __hc32 __iomem *regs) { #ifdef CONFIG_USB_OHCI_BIG_ENDIAN_MMIO big_endian_mmio(ohci) ? writel_be (val, regs) : writel (val, regs); #else writel (val, regs); #endif } #define ohci_readl(o,r) _ohci_readl(o,r) #define ohci_writel(o,v,r) _ohci_writel(o,v,r) /*-------------------------------------------------------------------------*/ /* cpu to ohci */ static inline __hc16 cpu_to_hc16 (const struct ohci_hcd *ohci, const u16 x) { return big_endian_desc(ohci) ? (__force __hc16)cpu_to_be16(x) : (__force __hc16)cpu_to_le16(x); } static inline __hc16 cpu_to_hc16p (const struct ohci_hcd *ohci, const u16 *x) { return big_endian_desc(ohci) ? cpu_to_be16p(x) : cpu_to_le16p(x); } static inline __hc32 cpu_to_hc32 (const struct ohci_hcd *ohci, const u32 x) { return big_endian_desc(ohci) ? (__force __hc32)cpu_to_be32(x) : (__force __hc32)cpu_to_le32(x); } static inline __hc32 cpu_to_hc32p (const struct ohci_hcd *ohci, const u32 *x) { return big_endian_desc(ohci) ? cpu_to_be32p(x) : cpu_to_le32p(x); } /* ohci to cpu */ static inline u16 hc16_to_cpu (const struct ohci_hcd *ohci, const __hc16 x) { return big_endian_desc(ohci) ? be16_to_cpu((__force __be16)x) : le16_to_cpu((__force __le16)x); } static inline u16 hc16_to_cpup (const struct ohci_hcd *ohci, const __hc16 *x) { return big_endian_desc(ohci) ? be16_to_cpup((__force __be16 *)x) : le16_to_cpup((__force __le16 *)x); } static inline u32 hc32_to_cpu (const struct ohci_hcd *ohci, const __hc32 x) { return big_endian_desc(ohci) ? be32_to_cpu((__force __be32)x) : le32_to_cpu((__force __le32)x); } static inline u32 hc32_to_cpup (const struct ohci_hcd *ohci, const __hc32 *x) { return big_endian_desc(ohci) ? be32_to_cpup((__force __be32 *)x) : le32_to_cpup((__force __le32 *)x); } /*-------------------------------------------------------------------------*/ /* HCCA frame number is 16 bits, but is accessed as 32 bits since not all * hardware handles 16 bit reads. That creates a different confusion on * some big-endian SOC implementations. Same thing happens with PSW access. */ #ifdef CONFIG_PPC_MPC52xx #define big_endian_frame_no_quirk(ohci) (ohci->flags & OHCI_QUIRK_FRAME_NO) #else #define big_endian_frame_no_quirk(ohci) 0 #endif static inline u16 ohci_frame_no(const struct ohci_hcd *ohci) { u32 tmp; if (big_endian_desc(ohci)) { tmp = be32_to_cpup((__force __be32 *)&ohci->hcca->frame_no); if (!big_endian_frame_no_quirk(ohci)) tmp >>= 16; } else tmp = le32_to_cpup((__force __le32 *)&ohci->hcca->frame_no); return (u16)tmp; } static inline __hc16 *ohci_hwPSWp(const struct ohci_hcd *ohci, const struct td *td, int index) { return (__hc16 *)(big_endian_desc(ohci) ? &td->hwPSW[index ^ 1] : &td->hwPSW[index]); } static inline u16 ohci_hwPSW(const struct ohci_hcd *ohci, const struct td *td, int index) { return hc16_to_cpup(ohci, ohci_hwPSWp(ohci, td, index)); } /*-------------------------------------------------------------------------*/ #define FI 0x2edf /* 12000 bits per frame (-1) */ #define FSMP(fi) (0x7fff & ((6 * ((fi) - 210)) / 7)) #define FIT (1 << 31) #define LSTHRESH 0x628 /* lowspeed bit threshold */ static inline void periodic_reinit (struct ohci_hcd *ohci) { u32 fi = ohci->fminterval & 0x03fff; u32 fit = ohci_readl(ohci, &ohci->regs->fminterval) & FIT; ohci_writel (ohci, (fit ^ FIT) | ohci->fminterval, &ohci->regs->fminterval); ohci_writel (ohci, ((9 * fi) / 10) & 0x3fff, &ohci->regs->periodicstart); } /* AMD-756 (D2 rev) reports corrupt register contents in some cases. * The erratum (#4) description is incorrect. AMD's workaround waits * till some bits (mostly reserved) are clear; ok for all revs. */ #define read_roothub(hc, register, mask) ({ \ u32 temp = ohci_readl (hc, &hc->regs->roothub.register); \ if (temp == -1) \ hc->rh_state = OHCI_RH_HALTED; \ else if (hc->flags & OHCI_QUIRK_AMD756) \ while (temp & mask) \ temp = ohci_readl (hc, &hc->regs->roothub.register); \ temp; }) static inline u32 roothub_a (struct ohci_hcd *hc) { return read_roothub (hc, a, 0xfc0fe000); } static inline u32 roothub_b (struct ohci_hcd *hc) { return ohci_readl (hc, &hc->regs->roothub.b); } static inline u32 roothub_status (struct ohci_hcd *hc) { return ohci_readl (hc, &hc->regs->roothub.status); } static inline u32 roothub_portstatus (struct ohci_hcd *hc, int i) { return read_roothub (hc, portstatus [i], 0xffe0fce0); }