/* * adutux - driver for ADU devices from Ontrak Control Systems * This is an experimental driver. Use at your own risk. * This driver is not supported by Ontrak Control Systems. * * Copyright (c) 2003 John Homppi (SCO, leave this notice here) * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License as * published by the Free Software Foundation; either version 2 of * the License, or (at your option) any later version. * * derived from the Lego USB Tower driver 0.56: * Copyright (c) 2003 David Glance * 2001 Juergen Stuber * that was derived from USB Skeleton driver - 0.5 * Copyright (c) 2001 Greg Kroah-Hartman (greg@kroah.com) * */ #include #include #include #include #include #include #include #include #ifdef CONFIG_USB_DEBUG static int debug = 5; #else static int debug = 1; #endif /* Use our own dbg macro */ #undef dbg #define dbg(lvl, format, arg...) \ do { \ if (debug >= lvl) \ printk(KERN_DEBUG "%s: " format "\n", __FILE__, ##arg); \ } while (0) /* Version Information */ #define DRIVER_VERSION "v0.0.13" #define DRIVER_AUTHOR "John Homppi" #define DRIVER_DESC "adutux (see www.ontrak.net)" /* Module parameters */ module_param(debug, int, S_IRUGO | S_IWUSR); MODULE_PARM_DESC(debug, "Debug enabled or not"); /* Define these values to match your device */ #define ADU_VENDOR_ID 0x0a07 #define ADU_PRODUCT_ID 0x0064 /* table of devices that work with this driver */ static const struct usb_device_id device_table[] = { { USB_DEVICE(ADU_VENDOR_ID, ADU_PRODUCT_ID) }, /* ADU100 */ { USB_DEVICE(ADU_VENDOR_ID, ADU_PRODUCT_ID+20) }, /* ADU120 */ { USB_DEVICE(ADU_VENDOR_ID, ADU_PRODUCT_ID+30) }, /* ADU130 */ { USB_DEVICE(ADU_VENDOR_ID, ADU_PRODUCT_ID+100) }, /* ADU200 */ { USB_DEVICE(ADU_VENDOR_ID, ADU_PRODUCT_ID+108) }, /* ADU208 */ { USB_DEVICE(ADU_VENDOR_ID, ADU_PRODUCT_ID+118) }, /* ADU218 */ { }/* Terminating entry */ }; MODULE_DEVICE_TABLE(usb, device_table); #ifdef CONFIG_USB_DYNAMIC_MINORS #define ADU_MINOR_BASE 0 #else #define ADU_MINOR_BASE 67 #endif /* we can have up to this number of device plugged in at once */ #define MAX_DEVICES 16 #define COMMAND_TIMEOUT (2*HZ) /* 60 second timeout for a command */ /* * The locking scheme is a vanilla 3-lock: * adu_device.buflock: A spinlock, covers what IRQs touch. * adutux_mutex: A Static lock to cover open_count. It would also cover * any globals, but we don't have them in 2.6. * adu_device.mtx: A mutex to hold across sleepers like copy_from_user. * It covers all of adu_device, except the open_count * and what .buflock covers. */ /* Structure to hold all of our device specific stuff */ struct adu_device { struct mutex mtx; struct usb_device* udev; /* save off the usb device pointer */ struct usb_interface* interface; unsigned int minor; /* the starting minor number for this device */ char serial_number[8]; int open_count; /* number of times this port has been opened */ char* read_buffer_primary; int read_buffer_length; char* read_buffer_secondary; int secondary_head; int secondary_tail; spinlock_t buflock; wait_queue_head_t read_wait; wait_queue_head_t write_wait; char* interrupt_in_buffer; struct usb_endpoint_descriptor* interrupt_in_endpoint; struct urb* interrupt_in_urb; int read_urb_finished; char* interrupt_out_buffer; struct usb_endpoint_descriptor* interrupt_out_endpoint; struct urb* interrupt_out_urb; int out_urb_finished; }; static DEFINE_MUTEX(adutux_mutex); static struct usb_driver adu_driver; static void adu_debug_data(int level, const char *function, int size, const unsigned char *data) { int i; if (debug < level) return; printk(KERN_DEBUG "%s: %s - length = %d, data = ", __FILE__, function, size); for (i = 0; i < size; ++i) printk("%.2x ", data[i]); printk("\n"); } /** * adu_abort_transfers * aborts transfers and frees associated data structures */ static void adu_abort_transfers(struct adu_device *dev) { unsigned long flags; dbg(2," %s : enter", __func__); if (dev->udev == NULL) { dbg(1," %s : udev is null", __func__); goto exit; } /* shutdown transfer */ /* XXX Anchor these instead */ spin_lock_irqsave(&dev->buflock, flags); if (!dev->read_urb_finished) { spin_unlock_irqrestore(&dev->buflock, flags); usb_kill_urb(dev->interrupt_in_urb); } else spin_unlock_irqrestore(&dev->buflock, flags); spin_lock_irqsave(&dev->buflock, flags); if (!dev->out_urb_finished) { spin_unlock_irqrestore(&dev->buflock, flags); usb_kill_urb(dev->interrupt_out_urb); } else spin_unlock_irqrestore(&dev->buflock, flags); exit: dbg(2," %s : leave", __func__); } static void adu_delete(struct adu_device *dev) { dbg(2, "%s enter", __func__); /* free data structures */ usb_free_urb(dev->interrupt_in_urb); usb_free_urb(dev->interrupt_out_urb); kfree(dev->read_buffer_primary); kfree(dev->read_buffer_secondary); kfree(dev->interrupt_in_buffer); kfree(dev->interrupt_out_buffer); kfree(dev); dbg(2, "%s : leave", __func__); } static void adu_interrupt_in_callback(struct urb *urb) { struct adu_device *dev = urb->context; int status = urb->status; dbg(4," %s : enter, status %d", __func__, status); adu_debug_data(5, __func__, urb->actual_length, urb->transfer_buffer); spin_lock(&dev->buflock); if (status != 0) { if ((status != -ENOENT) && (status != -ECONNRESET) && (status != -ESHUTDOWN)) { dbg(1," %s : nonzero status received: %d", __func__, status); } goto exit; } if (urb->actual_length > 0 && dev->interrupt_in_buffer[0] != 0x00) { if (dev->read_buffer_length < (4 * usb_endpoint_maxp(dev->interrupt_in_endpoint)) - (urb->actual_length)) { memcpy (dev->read_buffer_primary + dev->read_buffer_length, dev->interrupt_in_buffer, urb->actual_length); dev->read_buffer_length += urb->actual_length; dbg(2," %s reading %d ", __func__, urb->actual_length); } else { dbg(1," %s : read_buffer overflow", __func__); } } exit: dev->read_urb_finished = 1; spin_unlock(&dev->buflock); /* always wake up so we recover from errors */ wake_up_interruptible(&dev->read_wait); adu_debug_data(5, __func__, urb->actual_length, urb->transfer_buffer); dbg(4," %s : leave, status %d", __func__, status); } static void adu_interrupt_out_callback(struct urb *urb) { struct adu_device *dev = urb->context; int status = urb->status; dbg(4," %s : enter, status %d", __func__, status); adu_debug_data(5,__func__, urb->actual_length, urb->transfer_buffer); if (status != 0) { if ((status != -ENOENT) && (status != -ECONNRESET)) { dbg(1, " %s :nonzero status received: %d", __func__, status); } goto exit; } spin_lock(&dev->buflock); dev->out_urb_finished = 1; wake_up(&dev->write_wait); spin_unlock(&dev->buflock); exit: adu_debug_data(5, __func__, urb->actual_length, urb->transfer_buffer); dbg(4," %s : leave, status %d", __func__, status); } static int adu_open(struct inode *inode, struct file *file) { struct adu_device *dev = NULL; struct usb_interface *interface; int subminor; int retval; dbg(2,"%s : enter", __func__); subminor = iminor(inode); if ((retval = mutex_lock_interruptible(&adutux_mutex))) { dbg(2, "%s : mutex lock failed", __func__); goto exit_no_lock; } interface = usb_find_interface(&adu_driver, subminor); if (!interface) { printk(KERN_ERR "adutux: %s - error, can't find device for " "minor %d\n", __func__, subminor); retval = -ENODEV; goto exit_no_device; } dev = usb_get_intfdata(interface); if (!dev || !dev->udev) { retval = -ENODEV; goto exit_no_device; } /* check that nobody else is using the device */ if (dev->open_count) { retval = -EBUSY; goto exit_no_device; } ++dev->open_count; dbg(2,"%s : open count %d", __func__, dev->open_count); /* save device in the file's private structure */ file->private_data = dev; /* initialize in direction */ dev->read_buffer_length = 0; /* fixup first read by having urb waiting for it */ usb_fill_int_urb(dev->interrupt_in_urb,dev->udev, usb_rcvintpipe(dev->udev, dev->interrupt_in_endpoint->bEndpointAddress), dev->interrupt_in_buffer, usb_endpoint_maxp(dev->interrupt_in_endpoint), adu_interrupt_in_callback, dev, dev->interrupt_in_endpoint->bInterval); dev->read_urb_finished = 0; if (usb_submit_urb(dev->interrupt_in_urb, GFP_KERNEL)) dev->read_urb_finished = 1; /* we ignore failure */ /* end of fixup for first read */ /* initialize out direction */ dev->out_urb_finished = 1; retval = 0; exit_no_device: mutex_unlock(&adutux_mutex); exit_no_lock: dbg(2,"%s : leave, return value %d ", __func__, retval); return retval; } static void adu_release_internal(struct adu_device *dev) { dbg(2," %s : enter", __func__); /* decrement our usage count for the device */ --dev->open_count; dbg(2," %s : open count %d", __func__, dev->open_count); if (dev->open_count <= 0) { adu_abort_transfers(dev); dev->open_count = 0; } dbg(2," %s : leave", __func__); } static int adu_release(struct inode *inode, struct file *file) { struct adu_device *dev; int retval = 0; dbg(2," %s : enter", __func__); if (file == NULL) { dbg(1," %s : file is NULL", __func__); retval = -ENODEV; goto exit; } dev = file->private_data; if (dev == NULL) { dbg(1," %s : object is NULL", __func__); retval = -ENODEV; goto exit; } mutex_lock(&adutux_mutex); /* not interruptible */ if (dev->open_count <= 0) { dbg(1," %s : device not opened", __func__); retval = -ENODEV; goto unlock; } adu_release_internal(dev); if (dev->udev == NULL) { /* the device was unplugged before the file was released */ if (!dev->open_count) /* ... and we're the last user */ adu_delete(dev); } unlock: mutex_unlock(&adutux_mutex); exit: dbg(2," %s : leave, return value %d", __func__, retval); return retval; } static ssize_t adu_read(struct file *file, __user char *buffer, size_t count, loff_t *ppos) { struct adu_device *dev; size_t bytes_read = 0; size_t bytes_to_read = count; int i; int retval = 0; int timeout = 0; int should_submit = 0; unsigned long flags; DECLARE_WAITQUEUE(wait, current); dbg(2," %s : enter, count = %Zd, file=%p", __func__, count, file); dev = file->private_data; dbg(2," %s : dev=%p", __func__, dev); if (mutex_lock_interruptible(&dev->mtx)) return -ERESTARTSYS; /* verify that the device wasn't unplugged */ if (dev->udev == NULL) { retval = -ENODEV; printk(KERN_ERR "adutux: No device or device unplugged %d\n", retval); goto exit; } /* verify that some data was requested */ if (count == 0) { dbg(1," %s : read request of 0 bytes", __func__); goto exit; } timeout = COMMAND_TIMEOUT; dbg(2," %s : about to start looping", __func__); while (bytes_to_read) { int data_in_secondary = dev->secondary_tail - dev->secondary_head; dbg(2," %s : while, data_in_secondary=%d, status=%d", __func__, data_in_secondary, dev->interrupt_in_urb->status); if (data_in_secondary) { /* drain secondary buffer */ int amount = bytes_to_read < data_in_secondary ? bytes_to_read : data_in_secondary; i = copy_to_user(buffer, dev->read_buffer_secondary+dev->secondary_head, amount); if (i) { retval = -EFAULT; goto exit; } dev->secondary_head += (amount - i); bytes_read += (amount - i); bytes_to_read -= (amount - i); if (i) { retval = bytes_read ? bytes_read : -EFAULT; goto exit; } } else { /* we check the primary buffer */ spin_lock_irqsave (&dev->buflock, flags); if (dev->read_buffer_length) { /* we secure access to the primary */ char *tmp; dbg(2," %s : swap, read_buffer_length = %d", __func__, dev->read_buffer_length); tmp = dev->read_buffer_secondary; dev->read_buffer_secondary = dev->read_buffer_primary; dev->read_buffer_primary = tmp; dev->secondary_head = 0; dev->secondary_tail = dev->read_buffer_length; dev->read_buffer_length = 0; spin_unlock_irqrestore(&dev->buflock, flags); /* we have a free buffer so use it */ should_submit = 1; } else { /* even the primary was empty - we may need to do IO */ if (!dev->read_urb_finished) { /* somebody is doing IO */ spin_unlock_irqrestore(&dev->buflock, flags); dbg(2," %s : submitted already", __func__); } else { /* we must initiate input */ dbg(2," %s : initiate input", __func__); dev->read_urb_finished = 0; spin_unlock_irqrestore(&dev->buflock, flags); usb_fill_int_urb(dev->interrupt_in_urb,dev->udev, usb_rcvintpipe(dev->udev, dev->interrupt_in_endpoint->bEndpointAddress), dev->interrupt_in_buffer, usb_endpoint_maxp(dev->interrupt_in_endpoint), adu_interrupt_in_callback, dev, dev->interrupt_in_endpoint->bInterval); retval = usb_submit_urb(dev->interrupt_in_urb, GFP_KERNEL); if (retval) { dev->read_urb_finished = 1; if (retval == -ENOMEM) { retval = bytes_read ? bytes_read : -ENOMEM; } dbg(2," %s : submit failed", __func__); goto exit; } } /* we wait for I/O to complete */ set_current_state(TASK_INTERRUPTIBLE); add_wait_queue(&dev->read_wait, &wait); spin_lock_irqsave(&dev->buflock, flags); if (!dev->read_urb_finished) { spin_unlock_irqrestore(&dev->buflock, flags); timeout = schedule_timeout(COMMAND_TIMEOUT); } else { spin_unlock_irqrestore(&dev->buflock, flags); set_current_state(TASK_RUNNING); } remove_wait_queue(&dev->read_wait, &wait); if (timeout <= 0) { dbg(2," %s : timeout", __func__); retval = bytes_read ? bytes_read : -ETIMEDOUT; goto exit; } if (signal_pending(current)) { dbg(2," %s : signal pending", __func__); retval = bytes_read ? bytes_read : -EINTR; goto exit; } } } } retval = bytes_read; /* if the primary buffer is empty then use it */ spin_lock_irqsave(&dev->buflock, flags); if (should_submit && dev->read_urb_finished) { dev->read_urb_finished = 0; spin_unlock_irqrestore(&dev->buflock, flags); usb_fill_int_urb(dev->interrupt_in_urb,dev->udev, usb_rcvintpipe(dev->udev, dev->interrupt_in_endpoint->bEndpointAddress), dev->interrupt_in_buffer, usb_endpoint_maxp(dev->interrupt_in_endpoint), adu_interrupt_in_callback, dev, dev->interrupt_in_endpoint->bInterval); if (usb_submit_urb(dev->interrupt_in_urb, GFP_KERNEL) != 0) dev->read_urb_finished = 1; /* we ignore failure */ } else { spin_unlock_irqrestore(&dev->buflock, flags); } exit: /* unlock the device */ mutex_unlock(&dev->mtx); dbg(2," %s : leave, return value %d", __func__, retval); return retval; } static ssize_t adu_write(struct file *file, const __user char *buffer, size_t count, loff_t *ppos) { DECLARE_WAITQUEUE(waita, current); struct adu_device *dev; size_t bytes_written = 0; size_t bytes_to_write; size_t buffer_size; unsigned long flags; int retval; dbg(2," %s : enter, count = %Zd", __func__, count); dev = file->private_data; retval = mutex_lock_interruptible(&dev->mtx); if (retval) goto exit_nolock; /* verify that the device wasn't unplugged */ if (dev->udev == NULL) { retval = -ENODEV; printk(KERN_ERR "adutux: No device or device unplugged %d\n", retval); goto exit; } /* verify that we actually have some data to write */ if (count == 0) { dbg(1," %s : write request of 0 bytes", __func__); goto exit; } while (count > 0) { add_wait_queue(&dev->write_wait, &waita); set_current_state(TASK_INTERRUPTIBLE); spin_lock_irqsave(&dev->buflock, flags); if (!dev->out_urb_finished) { spin_unlock_irqrestore(&dev->buflock, flags); mutex_unlock(&dev->mtx); if (signal_pending(current)) { dbg(1," %s : interrupted", __func__); set_current_state(TASK_RUNNING); retval = -EINTR; goto exit_onqueue; } if (schedule_timeout(COMMAND_TIMEOUT) == 0) { dbg(1, "%s - command timed out.", __func__); retval = -ETIMEDOUT; goto exit_onqueue; } remove_wait_queue(&dev->write_wait, &waita); retval = mutex_lock_interruptible(&dev->mtx); if (retval) { retval = bytes_written ? bytes_written : retval; goto exit_nolock; } dbg(4," %s : in progress, count = %Zd", __func__, count); } else { spin_unlock_irqrestore(&dev->buflock, flags); set_current_state(TASK_RUNNING); remove_wait_queue(&dev->write_wait, &waita); dbg(4," %s : sending, count = %Zd", __func__, count); /* write the data into interrupt_out_buffer from userspace */ buffer_size = usb_endpoint_maxp(dev->interrupt_out_endpoint); bytes_to_write = count > buffer_size ? buffer_size : count; dbg(4," %s : buffer_size = %Zd, count = %Zd, bytes_to_write = %Zd", __func__, buffer_size, count, bytes_to_write); if (copy_from_user(dev->interrupt_out_buffer, buffer, bytes_to_write) != 0) { retval = -EFAULT; goto exit; } /* send off the urb */ usb_fill_int_urb( dev->interrupt_out_urb, dev->udev, usb_sndintpipe(dev->udev, dev->interrupt_out_endpoint->bEndpointAddress), dev->interrupt_out_buffer, bytes_to_write, adu_interrupt_out_callback, dev, dev->interrupt_out_endpoint->bInterval); dev->interrupt_out_urb->actual_length = bytes_to_write; dev->out_urb_finished = 0; retval = usb_submit_urb(dev->interrupt_out_urb, GFP_KERNEL); if (retval < 0) { dev->out_urb_finished = 1; dev_err(&dev->udev->dev, "Couldn't submit " "interrupt_out_urb %d\n", retval); goto exit; } buffer += bytes_to_write; count -= bytes_to_write; bytes_written += bytes_to_write; } } mutex_unlock(&dev->mtx); return bytes_written; exit: mutex_unlock(&dev->mtx); exit_nolock: dbg(2," %s : leave, return value %d", __func__, retval); return retval; exit_onqueue: remove_wait_queue(&dev->write_wait, &waita); return retval; } /* file operations needed when we register this driver */ static const struct file_operations adu_fops = { .owner = THIS_MODULE, .read = adu_read, .write = adu_write, .open = adu_open, .release = adu_release, .llseek = noop_llseek, }; /* * usb class driver info in order to get a minor number from the usb core, * and to have the device registered with devfs and the driver core */ static struct usb_class_driver adu_class = { .name = "usb/adutux%d", .fops = &adu_fops, .minor_base = ADU_MINOR_BASE, }; /** * adu_probe * * Called by the usb core when a new device is connected that it thinks * this driver might be interested in. */ static int adu_probe(struct usb_interface *interface, const struct usb_device_id *id) { struct usb_device *udev = interface_to_usbdev(interface); struct adu_device *dev = NULL; struct usb_host_interface *iface_desc; struct usb_endpoint_descriptor *endpoint; int retval = -ENODEV; int in_end_size; int out_end_size; int i; dbg(2," %s : enter", __func__); if (udev == NULL) { dev_err(&interface->dev, "udev is NULL.\n"); goto exit; } /* allocate memory for our device state and initialize it */ dev = kzalloc(sizeof(struct adu_device), GFP_KERNEL); if (dev == NULL) { dev_err(&interface->dev, "Out of memory\n"); retval = -ENOMEM; goto exit; } mutex_init(&dev->mtx); spin_lock_init(&dev->buflock); dev->udev = udev; init_waitqueue_head(&dev->read_wait); init_waitqueue_head(&dev->write_wait); iface_desc = &interface->altsetting[0]; /* set up the endpoint information */ for (i = 0; i < iface_desc->desc.bNumEndpoints; ++i) { endpoint = &iface_desc->endpoint[i].desc; if (usb_endpoint_is_int_in(endpoint)) dev->interrupt_in_endpoint = endpoint; if (usb_endpoint_is_int_out(endpoint)) dev->interrupt_out_endpoint = endpoint; } if (dev->interrupt_in_endpoint == NULL) { dev_err(&interface->dev, "interrupt in endpoint not found\n"); goto error; } if (dev->interrupt_out_endpoint == NULL) { dev_err(&interface->dev, "interrupt out endpoint not found\n"); goto error; } in_end_size = usb_endpoint_maxp(dev->interrupt_in_endpoint); out_end_size = usb_endpoint_maxp(dev->interrupt_out_endpoint); dev->read_buffer_primary = kmalloc((4 * in_end_size), GFP_KERNEL); if (!dev->read_buffer_primary) { dev_err(&interface->dev, "Couldn't allocate read_buffer_primary\n"); retval = -ENOMEM; goto error; } /* debug code prime the buffer */ memset(dev->read_buffer_primary, 'a', in_end_size); memset(dev->read_buffer_primary + in_end_size, 'b', in_end_size); memset(dev->read_buffer_primary + (2 * in_end_size), 'c', in_end_size); memset(dev->read_buffer_primary + (3 * in_end_size), 'd', in_end_size); dev->read_buffer_secondary = kmalloc((4 * in_end_size), GFP_KERNEL); if (!dev->read_buffer_secondary) { dev_err(&interface->dev, "Couldn't allocate read_buffer_secondary\n"); retval = -ENOMEM; goto error; } /* debug code prime the buffer */ memset(dev->read_buffer_secondary, 'e', in_end_size); memset(dev->read_buffer_secondary + in_end_size, 'f', in_end_size); memset(dev->read_buffer_secondary + (2 * in_end_size), 'g', in_end_size); memset(dev->read_buffer_secondary + (3 * in_end_size), 'h', in_end_size); dev->interrupt_in_buffer = kmalloc(in_end_size, GFP_KERNEL); if (!dev->interrupt_in_buffer) { dev_err(&interface->dev, "Couldn't allocate interrupt_in_buffer\n"); goto error; } /* debug code prime the buffer */ memset(dev->interrupt_in_buffer, 'i', in_end_size); dev->interrupt_in_urb = usb_alloc_urb(0, GFP_KERNEL); if (!dev->interrupt_in_urb) { dev_err(&interface->dev, "Couldn't allocate interrupt_in_urb\n"); goto error; } dev->interrupt_out_buffer = kmalloc(out_end_size, GFP_KERNEL); if (!dev->interrupt_out_buffer) { dev_err(&interface->dev, "Couldn't allocate interrupt_out_buffer\n"); goto error; } dev->interrupt_out_urb = usb_alloc_urb(0, GFP_KERNEL); if (!dev->interrupt_out_urb) { dev_err(&interface->dev, "Couldn't allocate interrupt_out_urb\n"); goto error; } if (!usb_string(udev, udev->descriptor.iSerialNumber, dev->serial_number, sizeof(dev->serial_number))) { dev_err(&interface->dev, "Could not retrieve serial number\n"); goto error; } dbg(2," %s : serial_number=%s", __func__, dev->serial_number); /* we can register the device now, as it is ready */ usb_set_intfdata(interface, dev); retval = usb_register_dev(interface, &adu_class); if (retval) { /* something prevented us from registering this driver */ dev_err(&interface->dev, "Not able to get a minor for this device.\n"); usb_set_intfdata(interface, NULL); goto error; } dev->minor = interface->minor; /* let the user know what node this device is now attached to */ dev_info(&interface->dev, "ADU%d %s now attached to /dev/usb/adutux%d\n", udev->descriptor.idProduct, dev->serial_number, (dev->minor - ADU_MINOR_BASE)); exit: dbg(2," %s : leave, return value %p (dev)", __func__, dev); return retval; error: adu_delete(dev); return retval; } /** * adu_disconnect * * Called by the usb core when the device is removed from the system. */ static void adu_disconnect(struct usb_interface *interface) { struct adu_device *dev; int minor; dbg(2," %s : enter", __func__); dev = usb_get_intfdata(interface); mutex_lock(&dev->mtx); /* not interruptible */ dev->udev = NULL; /* poison */ minor = dev->minor; usb_deregister_dev(interface, &adu_class); mutex_unlock(&dev->mtx); mutex_lock(&adutux_mutex); usb_set_intfdata(interface, NULL); /* if the device is not opened, then we clean up right now */ dbg(2," %s : open count %d", __func__, dev->open_count); if (!dev->open_count) adu_delete(dev); mutex_unlock(&adutux_mutex); dev_info(&interface->dev, "ADU device adutux%d now disconnected\n", (minor - ADU_MINOR_BASE)); dbg(2," %s : leave", __func__); } /* usb specific object needed to register this driver with the usb subsystem */ static struct usb_driver adu_driver = { .name = "adutux", .probe = adu_probe, .disconnect = adu_disconnect, .id_table = device_table, }; static int __init adu_init(void) { int result; dbg(2," %s : enter", __func__); /* register this driver with the USB subsystem */ result = usb_register(&adu_driver); if (result < 0) { printk(KERN_ERR "usb_register failed for the "__FILE__ " driver. Error number %d\n", result); goto exit; } printk(KERN_INFO "adutux " DRIVER_DESC " " DRIVER_VERSION "\n"); printk(KERN_INFO "adutux is an experimental driver. " "Use at your own risk\n"); exit: dbg(2," %s : leave, return value %d", __func__, result); return result; } static void __exit adu_exit(void) { dbg(2," %s : enter", __func__); /* deregister this driver with the USB subsystem */ usb_deregister(&adu_driver); dbg(2," %s : leave", __func__); } module_init(adu_init); module_exit(adu_exit); MODULE_AUTHOR(DRIVER_AUTHOR); MODULE_DESCRIPTION(DRIVER_DESC); MODULE_LICENSE("GPL");