/* * * Hardware accelerated Matrox Millennium I, II, Mystique, G100, G200 and G400 * * (c) 1998-2002 Petr Vandrovec * * Portions Copyright (c) 2001 Matrox Graphics Inc. * * Version: 1.65 2002/08/14 * * MTRR stuff: 1998 Tom Rini * * Contributors: "menion?" * Betatesting, fixes, ideas * * "Kurt Garloff" * Betatesting, fixes, ideas, videomodes, videomodes timmings * * "Tom Rini" * MTRR stuff, PPC cleanups, betatesting, fixes, ideas * * "Bibek Sahu" * Access device through readb|w|l and write b|w|l * Extensive debugging stuff * * "Daniel Haun" * Testing, hardware cursor fixes * * "Scott Wood" * Fixes * * "Gerd Knorr" * Betatesting * * "Kelly French" * "Fernando Herrera" * Betatesting, bug reporting * * "Pablo Bianucci" * Fixes, ideas, betatesting * * "Inaky Perez Gonzalez" * Fixes, enhandcements, ideas, betatesting * * "Ryuichi Oikawa" * PPC betatesting, PPC support, backward compatibility * * "Paul Womar" * "Owen Waller" * PPC betatesting * * "Thomas Pornin" * Alpha betatesting * * "Pieter van Leuven" * "Ulf Jaenicke-Roessler" * G100 testing * * "H. Peter Arvin" * Ideas * * "Cort Dougan" * CHRP fixes and PReP cleanup * * "Mark Vojkovich" * G400 support * * "David C. Hansen" * Fixes * * "Ian Romanick" * Find PInS data in BIOS on PowerPC systems. * * (following author is not in any relation with this code, but his code * is included in this driver) * * Based on framebuffer driver for VBE 2.0 compliant graphic boards * (c) 1998 Gerd Knorr * * (following author is not in any relation with this code, but his ideas * were used when writing this driver) * * FreeVBE/AF (Matrox), "Shawn Hargreaves" * */ #include "matroxfb_misc.h" #include #include void matroxfb_DAC_out(const struct matrox_fb_info *minfo, int reg, int val) { DBG_REG(__func__) mga_outb(M_RAMDAC_BASE+M_X_INDEX, reg); mga_outb(M_RAMDAC_BASE+M_X_DATAREG, val); } int matroxfb_DAC_in(const struct matrox_fb_info *minfo, int reg) { DBG_REG(__func__) mga_outb(M_RAMDAC_BASE+M_X_INDEX, reg); return mga_inb(M_RAMDAC_BASE+M_X_DATAREG); } void matroxfb_var2my(struct fb_var_screeninfo* var, struct my_timming* mt) { unsigned int pixclock = var->pixclock; DBG(__func__) if (!pixclock) pixclock = 10000; /* 10ns = 100MHz */ mt->pixclock = 1000000000 / pixclock; if (mt->pixclock < 1) mt->pixclock = 1; mt->mnp = -1; mt->dblscan = var->vmode & FB_VMODE_DOUBLE; mt->interlaced = var->vmode & FB_VMODE_INTERLACED; mt->HDisplay = var->xres; mt->HSyncStart = mt->HDisplay + var->right_margin; mt->HSyncEnd = mt->HSyncStart + var->hsync_len; mt->HTotal = mt->HSyncEnd + var->left_margin; mt->VDisplay = var->yres; mt->VSyncStart = mt->VDisplay + var->lower_margin; mt->VSyncEnd = mt->VSyncStart + var->vsync_len; mt->VTotal = mt->VSyncEnd + var->upper_margin; mt->sync = var->sync; } int matroxfb_PLL_calcclock(const struct matrox_pll_features* pll, unsigned int freq, unsigned int fmax, unsigned int* in, unsigned int* feed, unsigned int* post) { unsigned int bestdiff = ~0; unsigned int bestvco = 0; unsigned int fxtal = pll->ref_freq; unsigned int fwant; unsigned int p; DBG(__func__) fwant = freq; #ifdef DEBUG printk(KERN_ERR "post_shift_max: %d\n", pll->post_shift_max); printk(KERN_ERR "ref_freq: %d\n", pll->ref_freq); printk(KERN_ERR "freq: %d\n", freq); printk(KERN_ERR "vco_freq_min: %d\n", pll->vco_freq_min); printk(KERN_ERR "in_div_min: %d\n", pll->in_div_min); printk(KERN_ERR "in_div_max: %d\n", pll->in_div_max); printk(KERN_ERR "feed_div_min: %d\n", pll->feed_div_min); printk(KERN_ERR "feed_div_max: %d\n", pll->feed_div_max); printk(KERN_ERR "fmax: %d\n", fmax); #endif for (p = 1; p <= pll->post_shift_max; p++) { if (fwant * 2 > fmax) break; fwant *= 2; } if (fwant < pll->vco_freq_min) fwant = pll->vco_freq_min; if (fwant > fmax) fwant = fmax; for (; p-- > 0; fwant >>= 1, bestdiff >>= 1) { unsigned int m; if (fwant < pll->vco_freq_min) break; for (m = pll->in_div_min; m <= pll->in_div_max; m++) { unsigned int diff, fvco; unsigned int n; n = (fwant * (m + 1) + (fxtal >> 1)) / fxtal - 1; if (n > pll->feed_div_max) break; if (n < pll->feed_div_min) n = pll->feed_div_min; fvco = (fxtal * (n + 1)) / (m + 1); if (fvco < fwant) diff = fwant - fvco; else diff = fvco - fwant; if (diff < bestdiff) { bestdiff = diff; *post = p; *in = m; *feed = n; bestvco = fvco; } } } dprintk(KERN_ERR "clk: %02X %02X %02X %d %d %d\n", *in, *feed, *post, fxtal, bestvco, fwant); return bestvco; } int matroxfb_vgaHWinit(struct matrox_fb_info *minfo, struct my_timming *m) { unsigned int hd, hs, he, hbe, ht; unsigned int vd, vs, ve, vt, lc; unsigned int wd; unsigned int divider; int i; struct matrox_hw_state * const hw = &minfo->hw; DBG(__func__) hw->SEQ[0] = 0x00; hw->SEQ[1] = 0x01; /* or 0x09 */ hw->SEQ[2] = 0x0F; /* bitplanes */ hw->SEQ[3] = 0x00; hw->SEQ[4] = 0x0E; /* CRTC 0..7, 9, 16..19, 21, 22 are reprogrammed by Matrox Millennium code... Hope that by MGA1064 too */ if (m->dblscan) { m->VTotal <<= 1; m->VDisplay <<= 1; m->VSyncStart <<= 1; m->VSyncEnd <<= 1; } if (m->interlaced) { m->VTotal >>= 1; m->VDisplay >>= 1; m->VSyncStart >>= 1; m->VSyncEnd >>= 1; } /* GCTL is ignored when not using 0xA0000 aperture */ hw->GCTL[0] = 0x00; hw->GCTL[1] = 0x00; hw->GCTL[2] = 0x00; hw->GCTL[3] = 0x00; hw->GCTL[4] = 0x00; hw->GCTL[5] = 0x40; hw->GCTL[6] = 0x05; hw->GCTL[7] = 0x0F; hw->GCTL[8] = 0xFF; /* Whole ATTR is ignored in PowerGraphics mode */ for (i = 0; i < 16; i++) hw->ATTR[i] = i; hw->ATTR[16] = 0x41; hw->ATTR[17] = 0xFF; hw->ATTR[18] = 0x0F; hw->ATTR[19] = 0x00; hw->ATTR[20] = 0x00; hd = m->HDisplay >> 3; hs = m->HSyncStart >> 3; he = m->HSyncEnd >> 3; ht = m->HTotal >> 3; /* standard timmings are in 8pixels, but for interleaved we cannot */ /* do it for 4bpp (because of (4bpp >> 1(interleaved))/4 == 0) */ /* using 16 or more pixels per unit can save us */ divider = minfo->curr.final_bppShift; while (divider & 3) { hd >>= 1; hs >>= 1; he >>= 1; ht >>= 1; divider <<= 1; } divider = divider / 4; /* divider can be from 1 to 8 */ while (divider > 8) { hd <<= 1; hs <<= 1; he <<= 1; ht <<= 1; divider >>= 1; } hd = hd - 1; hs = hs - 1; he = he - 1; ht = ht - 1; vd = m->VDisplay - 1; vs = m->VSyncStart - 1; ve = m->VSyncEnd - 1; vt = m->VTotal - 2; lc = vd; /* G200 cannot work with (ht & 7) == 6 */ if (((ht & 0x07) == 0x06) || ((ht & 0x0F) == 0x04)) ht++; hbe = ht; wd = minfo->fbcon.var.xres_virtual * minfo->curr.final_bppShift / 64; hw->CRTCEXT[0] = 0; hw->CRTCEXT[5] = 0; if (m->interlaced) { hw->CRTCEXT[0] = 0x80; hw->CRTCEXT[5] = (hs + he - ht) >> 1; if (!m->dblscan) wd <<= 1; vt &= ~1; } hw->CRTCEXT[0] |= (wd & 0x300) >> 4; hw->CRTCEXT[1] = (((ht - 4) & 0x100) >> 8) | ((hd & 0x100) >> 7) | /* blanking */ ((hs & 0x100) >> 6) | /* sync start */ (hbe & 0x040); /* end hor. blanking */ /* FIXME: Enable vidrst only on G400, and only if TV-out is used */ if (minfo->outputs[1].src == MATROXFB_SRC_CRTC1) hw->CRTCEXT[1] |= 0x88; /* enable horizontal and vertical vidrst */ hw->CRTCEXT[2] = ((vt & 0xC00) >> 10) | ((vd & 0x400) >> 8) | /* disp end */ ((vd & 0xC00) >> 7) | /* vblanking start */ ((vs & 0xC00) >> 5) | ((lc & 0x400) >> 3); hw->CRTCEXT[3] = (divider - 1) | 0x80; hw->CRTCEXT[4] = 0; hw->CRTC[0] = ht-4; hw->CRTC[1] = hd; hw->CRTC[2] = hd; hw->CRTC[3] = (hbe & 0x1F) | 0x80; hw->CRTC[4] = hs; hw->CRTC[5] = ((hbe & 0x20) << 2) | (he & 0x1F); hw->CRTC[6] = vt & 0xFF; hw->CRTC[7] = ((vt & 0x100) >> 8) | ((vd & 0x100) >> 7) | ((vs & 0x100) >> 6) | ((vd & 0x100) >> 5) | ((lc & 0x100) >> 4) | ((vt & 0x200) >> 4) | ((vd & 0x200) >> 3) | ((vs & 0x200) >> 2); hw->CRTC[8] = 0x00; hw->CRTC[9] = ((vd & 0x200) >> 4) | ((lc & 0x200) >> 3); if (m->dblscan && !m->interlaced) hw->CRTC[9] |= 0x80; for (i = 10; i < 16; i++) hw->CRTC[i] = 0x00; hw->CRTC[16] = vs /* & 0xFF */; hw->CRTC[17] = (ve & 0x0F) | 0x20; hw->CRTC[18] = vd /* & 0xFF */; hw->CRTC[19] = wd /* & 0xFF */; hw->CRTC[20] = 0x00; hw->CRTC[21] = vd /* & 0xFF */; hw->CRTC[22] = (vt + 1) /* & 0xFF */; hw->CRTC[23] = 0xC3; hw->CRTC[24] = lc; return 0; }; void matroxfb_vgaHWrestore(struct matrox_fb_info *minfo) { int i; struct matrox_hw_state * const hw = &minfo->hw; CRITFLAGS DBG(__func__) dprintk(KERN_INFO "MiscOutReg: %02X\n", hw->MiscOutReg); dprintk(KERN_INFO "SEQ regs: "); for (i = 0; i < 5; i++) dprintk("%02X:", hw->SEQ[i]); dprintk("\n"); dprintk(KERN_INFO "GDC regs: "); for (i = 0; i < 9; i++) dprintk("%02X:", hw->GCTL[i]); dprintk("\n"); dprintk(KERN_INFO "CRTC regs: "); for (i = 0; i < 25; i++) dprintk("%02X:", hw->CRTC[i]); dprintk("\n"); dprintk(KERN_INFO "ATTR regs: "); for (i = 0; i < 21; i++) dprintk("%02X:", hw->ATTR[i]); dprintk("\n"); CRITBEGIN mga_inb(M_ATTR_RESET); mga_outb(M_ATTR_INDEX, 0); mga_outb(M_MISC_REG, hw->MiscOutReg); for (i = 1; i < 5; i++) mga_setr(M_SEQ_INDEX, i, hw->SEQ[i]); mga_setr(M_CRTC_INDEX, 17, hw->CRTC[17] & 0x7F); for (i = 0; i < 25; i++) mga_setr(M_CRTC_INDEX, i, hw->CRTC[i]); for (i = 0; i < 9; i++) mga_setr(M_GRAPHICS_INDEX, i, hw->GCTL[i]); for (i = 0; i < 21; i++) { mga_inb(M_ATTR_RESET); mga_outb(M_ATTR_INDEX, i); mga_outb(M_ATTR_INDEX, hw->ATTR[i]); } mga_outb(M_PALETTE_MASK, 0xFF); mga_outb(M_DAC_REG, 0x00); for (i = 0; i < 768; i++) mga_outb(M_DAC_VAL, hw->DACpal[i]); mga_inb(M_ATTR_RESET); mga_outb(M_ATTR_INDEX, 0x20); CRITEND } static void get_pins(unsigned char __iomem* pins, struct matrox_bios* bd) { unsigned int b0 = readb(pins); if (b0 == 0x2E && readb(pins+1) == 0x41) { unsigned int pins_len = readb(pins+2); unsigned int i; unsigned char cksum; unsigned char* dst = bd->pins; if (pins_len < 3 || pins_len > 128) { return; } *dst++ = 0x2E; *dst++ = 0x41; *dst++ = pins_len; cksum = 0x2E + 0x41 + pins_len; for (i = 3; i < pins_len; i++) { cksum += *dst++ = readb(pins+i); } if (cksum) { return; } bd->pins_len = pins_len; } else if (b0 == 0x40 && readb(pins+1) == 0x00) { unsigned int i; unsigned char* dst = bd->pins; *dst++ = 0x40; *dst++ = 0; for (i = 2; i < 0x40; i++) { *dst++ = readb(pins+i); } bd->pins_len = 0x40; } } static void get_bios_version(unsigned char __iomem * vbios, struct matrox_bios* bd) { unsigned int pcir_offset; pcir_offset = readb(vbios + 24) | (readb(vbios + 25) << 8); if (pcir_offset >= 26 && pcir_offset < 0xFFE0 && readb(vbios + pcir_offset ) == 'P' && readb(vbios + pcir_offset + 1) == 'C' && readb(vbios + pcir_offset + 2) == 'I' && readb(vbios + pcir_offset + 3) == 'R') { unsigned char h; h = readb(vbios + pcir_offset + 0x12); bd->version.vMaj = (h >> 4) & 0xF; bd->version.vMin = h & 0xF; bd->version.vRev = readb(vbios + pcir_offset + 0x13); } else { unsigned char h; h = readb(vbios + 5); bd->version.vMaj = (h >> 4) & 0xF; bd->version.vMin = h & 0xF; bd->version.vRev = 0; } } static void get_bios_output(unsigned char __iomem* vbios, struct matrox_bios* bd) { unsigned char b; b = readb(vbios + 0x7FF1); if (b == 0xFF) { b = 0; } bd->output.state = b; } static void get_bios_tvout(unsigned char __iomem* vbios, struct matrox_bios* bd) { unsigned int i; /* Check for 'IBM .*(V....TVO' string - it means TVO BIOS */ bd->output.tvout = 0; if (readb(vbios + 0x1D) != 'I' || readb(vbios + 0x1E) != 'B' || readb(vbios + 0x1F) != 'M' || readb(vbios + 0x20) != ' ') { return; } for (i = 0x2D; i < 0x2D + 128; i++) { unsigned char b = readb(vbios + i); if (b == '(' && readb(vbios + i + 1) == 'V') { if (readb(vbios + i + 6) == 'T' && readb(vbios + i + 7) == 'V' && readb(vbios + i + 8) == 'O') { bd->output.tvout = 1; } return; } if (b == 0) break; } } static void parse_bios(unsigned char __iomem* vbios, struct matrox_bios* bd) { unsigned int pins_offset; if (readb(vbios) != 0x55 || readb(vbios + 1) != 0xAA) { return; } bd->bios_valid = 1; get_bios_version(vbios, bd); get_bios_output(vbios, bd); get_bios_tvout(vbios, bd); #if defined(__powerpc__) /* On PowerPC cards, the PInS offset isn't stored at the end of the * BIOS image. Instead, you must search the entire BIOS image for * the magic PInS signature. * * This actually applies to all OpenFirmware base cards. Since these * cards could be put in a MIPS or SPARC system, should the condition * be something different? */ for ( pins_offset = 0 ; pins_offset <= 0xFF80 ; pins_offset++ ) { unsigned char header[3]; header[0] = readb(vbios + pins_offset); header[1] = readb(vbios + pins_offset + 1); header[2] = readb(vbios + pins_offset + 2); if ( (header[0] == 0x2E) && (header[1] == 0x41) && ((header[2] == 0x40) || (header[2] == 0x80)) ) { printk(KERN_INFO "PInS data found at offset %u\n", pins_offset); get_pins(vbios + pins_offset, bd); break; } } #else pins_offset = readb(vbios + 0x7FFC) | (readb(vbios + 0x7FFD) << 8); if (pins_offset <= 0xFF80) { get_pins(vbios + pins_offset, bd); } #endif } static int parse_pins1(struct matrox_fb_info *minfo, const struct matrox_bios *bd) { unsigned int maxdac; switch (bd->pins[22]) { case 0: maxdac = 175000; break; case 1: maxdac = 220000; break; default: maxdac = 240000; break; } if (get_unaligned_le16(bd->pins + 24)) { maxdac = get_unaligned_le16(bd->pins + 24) * 10; } minfo->limits.pixel.vcomax = maxdac; minfo->values.pll.system = get_unaligned_le16(bd->pins + 28) ? get_unaligned_le16(bd->pins + 28) * 10 : 50000; /* ignore 4MB, 8MB, module clocks */ minfo->features.pll.ref_freq = 14318; minfo->values.reg.mctlwtst = 0x00030101; return 0; } static void default_pins1(struct matrox_fb_info *minfo) { /* Millennium */ minfo->limits.pixel.vcomax = 220000; minfo->values.pll.system = 50000; minfo->features.pll.ref_freq = 14318; minfo->values.reg.mctlwtst = 0x00030101; } static int parse_pins2(struct matrox_fb_info *minfo, const struct matrox_bios *bd) { minfo->limits.pixel.vcomax = minfo->limits.system.vcomax = (bd->pins[41] == 0xFF) ? 230000 : ((bd->pins[41] + 100) * 1000); minfo->values.reg.mctlwtst = ((bd->pins[51] & 0x01) ? 0x00000001 : 0) | ((bd->pins[51] & 0x02) ? 0x00000100 : 0) | ((bd->pins[51] & 0x04) ? 0x00010000 : 0) | ((bd->pins[51] & 0x08) ? 0x00020000 : 0); minfo->values.pll.system = (bd->pins[43] == 0xFF) ? 50000 : ((bd->pins[43] + 100) * 1000); minfo->features.pll.ref_freq = 14318; return 0; } static void default_pins2(struct matrox_fb_info *minfo) { /* Millennium II, Mystique */ minfo->limits.pixel.vcomax = minfo->limits.system.vcomax = 230000; minfo->values.reg.mctlwtst = 0x00030101; minfo->values.pll.system = 50000; minfo->features.pll.ref_freq = 14318; } static int parse_pins3(struct matrox_fb_info *minfo, const struct matrox_bios *bd) { minfo->limits.pixel.vcomax = minfo->limits.system.vcomax = (bd->pins[36] == 0xFF) ? 230000 : ((bd->pins[36] + 100) * 1000); minfo->values.reg.mctlwtst = get_unaligned_le32(bd->pins + 48) == 0xFFFFFFFF ? 0x01250A21 : get_unaligned_le32(bd->pins + 48); /* memory config */ minfo->values.reg.memrdbk = ((bd->pins[57] << 21) & 0x1E000000) | ((bd->pins[57] << 22) & 0x00C00000) | ((bd->pins[56] << 1) & 0x000001E0) | ( bd->pins[56] & 0x0000000F); minfo->values.reg.opt = (bd->pins[54] & 7) << 10; minfo->values.reg.opt2 = bd->pins[58] << 12; minfo->features.pll.ref_freq = (bd->pins[52] & 0x20) ? 14318 : 27000; return 0; } static void default_pins3(struct matrox_fb_info *minfo) { /* G100, G200 */ minfo->limits.pixel.vcomax = minfo->limits.system.vcomax = 230000; minfo->values.reg.mctlwtst = 0x01250A21; minfo->values.reg.memrdbk = 0x00000000; minfo->values.reg.opt = 0x00000C00; minfo->values.reg.opt2 = 0x00000000; minfo->features.pll.ref_freq = 27000; } static int parse_pins4(struct matrox_fb_info *minfo, const struct matrox_bios *bd) { minfo->limits.pixel.vcomax = (bd->pins[ 39] == 0xFF) ? 230000 : bd->pins[ 39] * 4000; minfo->limits.system.vcomax = (bd->pins[ 38] == 0xFF) ? minfo->limits.pixel.vcomax : bd->pins[ 38] * 4000; minfo->values.reg.mctlwtst = get_unaligned_le32(bd->pins + 71); minfo->values.reg.memrdbk = ((bd->pins[87] << 21) & 0x1E000000) | ((bd->pins[87] << 22) & 0x00C00000) | ((bd->pins[86] << 1) & 0x000001E0) | ( bd->pins[86] & 0x0000000F); minfo->values.reg.opt = ((bd->pins[53] << 15) & 0x00400000) | ((bd->pins[53] << 22) & 0x10000000) | ((bd->pins[53] << 7) & 0x00001C00); minfo->values.reg.opt3 = get_unaligned_le32(bd->pins + 67); minfo->values.pll.system = (bd->pins[ 65] == 0xFF) ? 200000 : bd->pins[ 65] * 4000; minfo->features.pll.ref_freq = (bd->pins[ 92] & 0x01) ? 14318 : 27000; return 0; } static void default_pins4(struct matrox_fb_info *minfo) { /* G400 */ minfo->limits.pixel.vcomax = minfo->limits.system.vcomax = 252000; minfo->values.reg.mctlwtst = 0x04A450A1; minfo->values.reg.memrdbk = 0x000000E7; minfo->values.reg.opt = 0x10000400; minfo->values.reg.opt3 = 0x0190A419; minfo->values.pll.system = 200000; minfo->features.pll.ref_freq = 27000; } static int parse_pins5(struct matrox_fb_info *minfo, const struct matrox_bios *bd) { unsigned int mult; mult = bd->pins[4]?8000:6000; minfo->limits.pixel.vcomax = (bd->pins[ 38] == 0xFF) ? 600000 : bd->pins[ 38] * mult; minfo->limits.system.vcomax = (bd->pins[ 36] == 0xFF) ? minfo->limits.pixel.vcomax : bd->pins[ 36] * mult; minfo->limits.video.vcomax = (bd->pins[ 37] == 0xFF) ? minfo->limits.system.vcomax : bd->pins[ 37] * mult; minfo->limits.pixel.vcomin = (bd->pins[123] == 0xFF) ? 256000 : bd->pins[123] * mult; minfo->limits.system.vcomin = (bd->pins[121] == 0xFF) ? minfo->limits.pixel.vcomin : bd->pins[121] * mult; minfo->limits.video.vcomin = (bd->pins[122] == 0xFF) ? minfo->limits.system.vcomin : bd->pins[122] * mult; minfo->values.pll.system = minfo->values.pll.video = (bd->pins[ 92] == 0xFF) ? 284000 : bd->pins[ 92] * 4000; minfo->values.reg.opt = get_unaligned_le32(bd->pins + 48); minfo->values.reg.opt2 = get_unaligned_le32(bd->pins + 52); minfo->values.reg.opt3 = get_unaligned_le32(bd->pins + 94); minfo->values.reg.mctlwtst = get_unaligned_le32(bd->pins + 98); minfo->values.reg.memmisc = get_unaligned_le32(bd->pins + 102); minfo->values.reg.memrdbk = get_unaligned_le32(bd->pins + 106); minfo->features.pll.ref_freq = (bd->pins[110] & 0x01) ? 14318 : 27000; minfo->values.memory.ddr = (bd->pins[114] & 0x60) == 0x20; minfo->values.memory.dll = (bd->pins[115] & 0x02) != 0; minfo->values.memory.emrswen = (bd->pins[115] & 0x01) != 0; minfo->values.reg.maccess = minfo->values.memory.emrswen ? 0x00004000 : 0x00000000; if (bd->pins[115] & 4) { minfo->values.reg.mctlwtst_core = minfo->values.reg.mctlwtst; } else { u_int32_t wtst_xlat[] = { 0, 1, 5, 6, 7, 5, 2, 3 }; minfo->values.reg.mctlwtst_core = (minfo->values.reg.mctlwtst & ~7) | wtst_xlat[minfo->values.reg.mctlwtst & 7]; } minfo->max_pixel_clock_panellink = bd->pins[47] * 4000; return 0; } static void default_pins5(struct matrox_fb_info *minfo) { /* Mine 16MB G450 with SDRAM DDR */ minfo->limits.pixel.vcomax = minfo->limits.system.vcomax = minfo->limits.video.vcomax = 600000; minfo->limits.pixel.vcomin = minfo->limits.system.vcomin = minfo->limits.video.vcomin = 256000; minfo->values.pll.system = minfo->values.pll.video = 284000; minfo->values.reg.opt = 0x404A1160; minfo->values.reg.opt2 = 0x0000AC00; minfo->values.reg.opt3 = 0x0090A409; minfo->values.reg.mctlwtst_core = minfo->values.reg.mctlwtst = 0x0C81462B; minfo->values.reg.memmisc = 0x80000004; minfo->values.reg.memrdbk = 0x01001103; minfo->features.pll.ref_freq = 27000; minfo->values.memory.ddr = 1; minfo->values.memory.dll = 1; minfo->values.memory.emrswen = 1; minfo->values.reg.maccess = 0x00004000; } static int matroxfb_set_limits(struct matrox_fb_info *minfo, const struct matrox_bios *bd) { unsigned int pins_version; static const unsigned int pinslen[] = { 64, 64, 64, 128, 128 }; switch (minfo->chip) { case MGA_2064: default_pins1(minfo); break; case MGA_2164: case MGA_1064: case MGA_1164: default_pins2(minfo); break; case MGA_G100: case MGA_G200: default_pins3(minfo); break; case MGA_G400: default_pins4(minfo); break; case MGA_G450: case MGA_G550: default_pins5(minfo); break; } if (!bd->bios_valid) { printk(KERN_INFO "matroxfb: Your Matrox device does not have BIOS\n"); return -1; } if (bd->pins_len < 64) { printk(KERN_INFO "matroxfb: BIOS on your Matrox device does not contain powerup info\n"); return -1; } if (bd->pins[0] == 0x2E && bd->pins[1] == 0x41) { pins_version = bd->pins[5]; if (pins_version < 2 || pins_version > 5) { printk(KERN_INFO "matroxfb: Unknown version (%u) of powerup info\n", pins_version); return -1; } } else { pins_version = 1; } if (bd->pins_len != pinslen[pins_version - 1]) { printk(KERN_INFO "matroxfb: Invalid powerup info\n"); return -1; } switch (pins_version) { case 1: return parse_pins1(minfo, bd); case 2: return parse_pins2(minfo, bd); case 3: return parse_pins3(minfo, bd); case 4: return parse_pins4(minfo, bd); case 5: return parse_pins5(minfo, bd); default: printk(KERN_DEBUG "matroxfb: Powerup info version %u is not yet supported\n", pins_version); return -1; } } void matroxfb_read_pins(struct matrox_fb_info *minfo) { u32 opt; u32 biosbase; u32 fbbase; struct pci_dev *pdev = minfo->pcidev; memset(&minfo->bios, 0, sizeof(minfo->bios)); pci_read_config_dword(pdev, PCI_OPTION_REG, &opt); pci_write_config_dword(pdev, PCI_OPTION_REG, opt | PCI_OPTION_ENABLE_ROM); pci_read_config_dword(pdev, PCI_ROM_ADDRESS, &biosbase); pci_read_config_dword(pdev, minfo->devflags.fbResource, &fbbase); pci_write_config_dword(pdev, PCI_ROM_ADDRESS, (fbbase & PCI_ROM_ADDRESS_MASK) | PCI_ROM_ADDRESS_ENABLE); parse_bios(vaddr_va(minfo->video.vbase), &minfo->bios); pci_write_config_dword(pdev, PCI_ROM_ADDRESS, biosbase); pci_write_config_dword(pdev, PCI_OPTION_REG, opt); #ifdef CONFIG_X86 if (!minfo->bios.bios_valid) { unsigned char __iomem* b; b = ioremap(0x000C0000, 65536); if (!b) { printk(KERN_INFO "matroxfb: Unable to map legacy BIOS\n"); } else { unsigned int ven = readb(b+0x64+0) | (readb(b+0x64+1) << 8); unsigned int dev = readb(b+0x64+2) | (readb(b+0x64+3) << 8); if (ven != pdev->vendor || dev != pdev->device) { printk(KERN_INFO "matroxfb: Legacy BIOS is for %04X:%04X, while this device is %04X:%04X\n", ven, dev, pdev->vendor, pdev->device); } else { parse_bios(b, &minfo->bios); } iounmap(b); } } #endif matroxfb_set_limits(minfo, &minfo->bios); printk(KERN_INFO "PInS memtype = %u\n", (minfo->values.reg.opt & 0x1C00) >> 10); } EXPORT_SYMBOL(matroxfb_DAC_in); EXPORT_SYMBOL(matroxfb_DAC_out); EXPORT_SYMBOL(matroxfb_var2my); EXPORT_SYMBOL(matroxfb_PLL_calcclock); EXPORT_SYMBOL(matroxfb_vgaHWinit); /* DAC1064, Ti3026 */ EXPORT_SYMBOL(matroxfb_vgaHWrestore); /* DAC1064, Ti3026 */ EXPORT_SYMBOL(matroxfb_read_pins); MODULE_AUTHOR("(c) 1999-2002 Petr Vandrovec "); MODULE_DESCRIPTION("Miscellaneous support for Matrox video cards"); MODULE_LICENSE("GPL");