/* * Freescale Hypervisor Management Driver * Copyright (C) 2008-2011 Freescale Semiconductor, Inc. * Author: Timur Tabi * * This file is licensed under the terms of the GNU General Public License * version 2. This program is licensed "as is" without any warranty of any * kind, whether express or implied. * * The Freescale hypervisor management driver provides several services to * drivers and applications related to the Freescale hypervisor: * * 1. An ioctl interface for querying and managing partitions. * * 2. A file interface to reading incoming doorbells. * * 3. An interrupt handler for shutting down the partition upon receiving the * shutdown doorbell from a manager partition. * * 4. A kernel interface for receiving callbacks when a managed partition * shuts down. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include static BLOCKING_NOTIFIER_HEAD(failover_subscribers); /* * Ioctl interface for FSL_HV_IOCTL_PARTITION_RESTART * * Restart a running partition */ static long ioctl_restart(struct fsl_hv_ioctl_restart __user *p) { struct fsl_hv_ioctl_restart param; /* Get the parameters from the user */ if (copy_from_user(¶m, p, sizeof(struct fsl_hv_ioctl_restart))) return -EFAULT; param.ret = fh_partition_restart(param.partition); if (copy_to_user(&p->ret, ¶m.ret, sizeof(__u32))) return -EFAULT; return 0; } /* * Ioctl interface for FSL_HV_IOCTL_PARTITION_STATUS * * Query the status of a partition */ static long ioctl_status(struct fsl_hv_ioctl_status __user *p) { struct fsl_hv_ioctl_status param; u32 status; /* Get the parameters from the user */ if (copy_from_user(¶m, p, sizeof(struct fsl_hv_ioctl_status))) return -EFAULT; param.ret = fh_partition_get_status(param.partition, &status); if (!param.ret) param.status = status; if (copy_to_user(p, ¶m, sizeof(struct fsl_hv_ioctl_status))) return -EFAULT; return 0; } /* * Ioctl interface for FSL_HV_IOCTL_PARTITION_START * * Start a stopped partition. */ static long ioctl_start(struct fsl_hv_ioctl_start __user *p) { struct fsl_hv_ioctl_start param; /* Get the parameters from the user */ if (copy_from_user(¶m, p, sizeof(struct fsl_hv_ioctl_start))) return -EFAULT; param.ret = fh_partition_start(param.partition, param.entry_point, param.load); if (copy_to_user(&p->ret, ¶m.ret, sizeof(__u32))) return -EFAULT; return 0; } /* * Ioctl interface for FSL_HV_IOCTL_PARTITION_STOP * * Stop a running partition */ static long ioctl_stop(struct fsl_hv_ioctl_stop __user *p) { struct fsl_hv_ioctl_stop param; /* Get the parameters from the user */ if (copy_from_user(¶m, p, sizeof(struct fsl_hv_ioctl_stop))) return -EFAULT; param.ret = fh_partition_stop(param.partition); if (copy_to_user(&p->ret, ¶m.ret, sizeof(__u32))) return -EFAULT; return 0; } /* * Ioctl interface for FSL_HV_IOCTL_MEMCPY * * The FH_MEMCPY hypercall takes an array of address/address/size structures * to represent the data being copied. As a convenience to the user, this * ioctl takes a user-create buffer and a pointer to a guest physically * contiguous buffer in the remote partition, and creates the * address/address/size array for the hypercall. */ static long ioctl_memcpy(struct fsl_hv_ioctl_memcpy __user *p) { struct fsl_hv_ioctl_memcpy param; struct page **pages = NULL; void *sg_list_unaligned = NULL; struct fh_sg_list *sg_list = NULL; unsigned int num_pages; unsigned long lb_offset; /* Offset within a page of the local buffer */ unsigned int i; long ret = 0; int num_pinned; /* return value from get_user_pages() */ phys_addr_t remote_paddr; /* The next address in the remote buffer */ uint32_t count; /* The number of bytes left to copy */ /* Get the parameters from the user */ if (copy_from_user(¶m, p, sizeof(struct fsl_hv_ioctl_memcpy))) return -EFAULT; /* * One partition must be local, the other must be remote. In other * words, if source and target are both -1, or are both not -1, then * return an error. */ if ((param.source == -1) == (param.target == -1)) return -EINVAL; /* * The array of pages returned by get_user_pages() covers only * page-aligned memory. Since the user buffer is probably not * page-aligned, we need to handle the discrepancy. * * We calculate the offset within a page of the S/G list, and make * adjustments accordingly. This will result in a page list that looks * like this: * * ---- <-- first page starts before the buffer * | | * |////|-> ---- * |////| | | * ---- | | * | | * ---- | | * |////| | | * |////| | | * |////| | | * ---- | | * | | * ---- | | * |////| | | * |////| | | * |////| | | * ---- | | * | | * ---- | | * |////| | | * |////|-> ---- * | | <-- last page ends after the buffer * ---- * * The distance between the start of the first page and the start of the * buffer is lb_offset. The hashed (///) areas are the parts of the * page list that contain the actual buffer. * * The advantage of this approach is that the number of pages is * equal to the number of entries in the S/G list that we give to the * hypervisor. */ lb_offset = param.local_vaddr & (PAGE_SIZE - 1); num_pages = (param.count + lb_offset + PAGE_SIZE - 1) >> PAGE_SHIFT; /* Allocate the buffers we need */ /* * 'pages' is an array of struct page pointers that's initialized by * get_user_pages(). */ pages = kzalloc(num_pages * sizeof(struct page *), GFP_KERNEL); if (!pages) { pr_debug("fsl-hv: could not allocate page list\n"); return -ENOMEM; } /* * sg_list is the list of fh_sg_list objects that we pass to the * hypervisor. */ sg_list_unaligned = kmalloc(num_pages * sizeof(struct fh_sg_list) + sizeof(struct fh_sg_list) - 1, GFP_KERNEL); if (!sg_list_unaligned) { pr_debug("fsl-hv: could not allocate S/G list\n"); ret = -ENOMEM; goto exit; } sg_list = PTR_ALIGN(sg_list_unaligned, sizeof(struct fh_sg_list)); /* Get the physical addresses of the source buffer */ down_read(¤t->mm->mmap_sem); num_pinned = get_user_pages(current, current->mm, param.local_vaddr - lb_offset, num_pages, (param.source == -1) ? READ : WRITE, 0, pages, NULL); up_read(¤t->mm->mmap_sem); if (num_pinned != num_pages) { /* get_user_pages() failed */ pr_debug("fsl-hv: could not lock source buffer\n"); ret = (num_pinned < 0) ? num_pinned : -EFAULT; goto exit; } /* * Build the fh_sg_list[] array. The first page is special * because it's misaligned. */ if (param.source == -1) { sg_list[0].source = page_to_phys(pages[0]) + lb_offset; sg_list[0].target = param.remote_paddr; } else { sg_list[0].source = param.remote_paddr; sg_list[0].target = page_to_phys(pages[0]) + lb_offset; } sg_list[0].size = min_t(uint64_t, param.count, PAGE_SIZE - lb_offset); remote_paddr = param.remote_paddr + sg_list[0].size; count = param.count - sg_list[0].size; for (i = 1; i < num_pages; i++) { if (param.source == -1) { /* local to remote */ sg_list[i].source = page_to_phys(pages[i]); sg_list[i].target = remote_paddr; } else { /* remote to local */ sg_list[i].source = remote_paddr; sg_list[i].target = page_to_phys(pages[i]); } sg_list[i].size = min_t(uint64_t, count, PAGE_SIZE); remote_paddr += sg_list[i].size; count -= sg_list[i].size; } param.ret = fh_partition_memcpy(param.source, param.target, virt_to_phys(sg_list), num_pages); exit: if (pages) { for (i = 0; i < num_pages; i++) if (pages[i]) put_page(pages[i]); } kfree(sg_list_unaligned); kfree(pages); if (!ret) if (copy_to_user(&p->ret, ¶m.ret, sizeof(__u32))) return -EFAULT; return ret; } /* * Ioctl interface for FSL_HV_IOCTL_DOORBELL * * Ring a doorbell */ static long ioctl_doorbell(struct fsl_hv_ioctl_doorbell __user *p) { struct fsl_hv_ioctl_doorbell param; /* Get the parameters from the user. */ if (copy_from_user(¶m, p, sizeof(struct fsl_hv_ioctl_doorbell))) return -EFAULT; param.ret = ev_doorbell_send(param.doorbell); if (copy_to_user(&p->ret, ¶m.ret, sizeof(__u32))) return -EFAULT; return 0; } static long ioctl_dtprop(struct fsl_hv_ioctl_prop __user *p, int set) { struct fsl_hv_ioctl_prop param; char __user *upath, *upropname; void __user *upropval; char *path = NULL, *propname = NULL; void *propval = NULL; int ret = 0; /* Get the parameters from the user. */ if (copy_from_user(¶m, p, sizeof(struct fsl_hv_ioctl_prop))) return -EFAULT; upath = (char __user *)(uintptr_t)param.path; upropname = (char __user *)(uintptr_t)param.propname; upropval = (void __user *)(uintptr_t)param.propval; path = strndup_user(upath, FH_DTPROP_MAX_PATHLEN); if (IS_ERR(path)) { ret = PTR_ERR(path); goto out; } propname = strndup_user(upropname, FH_DTPROP_MAX_PATHLEN); if (IS_ERR(propname)) { ret = PTR_ERR(propname); goto out; } if (param.proplen > FH_DTPROP_MAX_PROPLEN) { ret = -EINVAL; goto out; } propval = kmalloc(param.proplen, GFP_KERNEL); if (!propval) { ret = -ENOMEM; goto out; } if (set) { if (copy_from_user(propval, upropval, param.proplen)) { ret = -EFAULT; goto out; } param.ret = fh_partition_set_dtprop(param.handle, virt_to_phys(path), virt_to_phys(propname), virt_to_phys(propval), param.proplen); } else { param.ret = fh_partition_get_dtprop(param.handle, virt_to_phys(path), virt_to_phys(propname), virt_to_phys(propval), ¶m.proplen); if (param.ret == 0) { if (copy_to_user(upropval, propval, param.proplen) || put_user(param.proplen, &p->proplen)) { ret = -EFAULT; goto out; } } } if (put_user(param.ret, &p->ret)) ret = -EFAULT; out: kfree(path); kfree(propval); kfree(propname); return ret; } /* * Ioctl main entry point */ static long fsl_hv_ioctl(struct file *file, unsigned int cmd, unsigned long argaddr) { void __user *arg = (void __user *)argaddr; long ret; switch (cmd) { case FSL_HV_IOCTL_PARTITION_RESTART: ret = ioctl_restart(arg); break; case FSL_HV_IOCTL_PARTITION_GET_STATUS: ret = ioctl_status(arg); break; case FSL_HV_IOCTL_PARTITION_START: ret = ioctl_start(arg); break; case FSL_HV_IOCTL_PARTITION_STOP: ret = ioctl_stop(arg); break; case FSL_HV_IOCTL_MEMCPY: ret = ioctl_memcpy(arg); break; case FSL_HV_IOCTL_DOORBELL: ret = ioctl_doorbell(arg); break; case FSL_HV_IOCTL_GETPROP: ret = ioctl_dtprop(arg, 0); break; case FSL_HV_IOCTL_SETPROP: ret = ioctl_dtprop(arg, 1); break; default: pr_debug("fsl-hv: bad ioctl dir=%u type=%u cmd=%u size=%u\n", _IOC_DIR(cmd), _IOC_TYPE(cmd), _IOC_NR(cmd), _IOC_SIZE(cmd)); return -ENOTTY; } return ret; } /* Linked list of processes that have us open */ static struct list_head db_list; /* spinlock for db_list */ static DEFINE_SPINLOCK(db_list_lock); /* The size of the doorbell event queue. This must be a power of two. */ #define QSIZE 16 /* Returns the next head/tail pointer, wrapping around the queue if necessary */ #define nextp(x) (((x) + 1) & (QSIZE - 1)) /* Per-open data structure */ struct doorbell_queue { struct list_head list; spinlock_t lock; wait_queue_head_t wait; unsigned int head; unsigned int tail; uint32_t q[QSIZE]; }; /* Linked list of ISRs that we registered */ struct list_head isr_list; /* Per-ISR data structure */ struct doorbell_isr { struct list_head list; unsigned int irq; uint32_t doorbell; /* The doorbell handle */ uint32_t partition; /* The partition handle, if used */ }; /* * Add a doorbell to all of the doorbell queues */ static void fsl_hv_queue_doorbell(uint32_t doorbell) { struct doorbell_queue *dbq; unsigned long flags; /* Prevent another core from modifying db_list */ spin_lock_irqsave(&db_list_lock, flags); list_for_each_entry(dbq, &db_list, list) { if (dbq->head != nextp(dbq->tail)) { dbq->q[dbq->tail] = doorbell; /* * This memory barrier eliminates the need to grab * the spinlock for dbq. */ smp_wmb(); dbq->tail = nextp(dbq->tail); wake_up_interruptible(&dbq->wait); } } spin_unlock_irqrestore(&db_list_lock, flags); } /* * Interrupt handler for all doorbells * * We use the same interrupt handler for all doorbells. Whenever a doorbell * is rung, and we receive an interrupt, we just put the handle for that * doorbell (passed to us as *data) into all of the queues. */ static irqreturn_t fsl_hv_isr(int irq, void *data) { fsl_hv_queue_doorbell((uintptr_t) data); return IRQ_HANDLED; } /* * State change thread function * * The state change notification arrives in an interrupt, but we can't call * blocking_notifier_call_chain() in an interrupt handler. We could call * atomic_notifier_call_chain(), but that would require the clients' call-back * function to run in interrupt context. Since we don't want to impose that * restriction on the clients, we use a threaded IRQ to process the * notification in kernel context. */ static irqreturn_t fsl_hv_state_change_thread(int irq, void *data) { struct doorbell_isr *dbisr = data; blocking_notifier_call_chain(&failover_subscribers, dbisr->partition, NULL); return IRQ_HANDLED; } /* * Interrupt handler for state-change doorbells */ static irqreturn_t fsl_hv_state_change_isr(int irq, void *data) { unsigned int status; struct doorbell_isr *dbisr = data; int ret; /* It's still a doorbell, so add it to all the queues. */ fsl_hv_queue_doorbell(dbisr->doorbell); /* Determine the new state, and if it's stopped, notify the clients. */ ret = fh_partition_get_status(dbisr->partition, &status); if (!ret && (status == FH_PARTITION_STOPPED)) return IRQ_WAKE_THREAD; return IRQ_HANDLED; } /* * Returns a bitmask indicating whether a read will block */ static unsigned int fsl_hv_poll(struct file *filp, struct poll_table_struct *p) { struct doorbell_queue *dbq = filp->private_data; unsigned long flags; unsigned int mask; spin_lock_irqsave(&dbq->lock, flags); poll_wait(filp, &dbq->wait, p); mask = (dbq->head == dbq->tail) ? 0 : (POLLIN | POLLRDNORM); spin_unlock_irqrestore(&dbq->lock, flags); return mask; } /* * Return the handles for any incoming doorbells * * If there are doorbell handles in the queue for this open instance, then * return them to the caller as an array of 32-bit integers. Otherwise, * block until there is at least one handle to return. */ static ssize_t fsl_hv_read(struct file *filp, char __user *buf, size_t len, loff_t *off) { struct doorbell_queue *dbq = filp->private_data; uint32_t __user *p = (uint32_t __user *) buf; /* for put_user() */ unsigned long flags; ssize_t count = 0; /* Make sure we stop when the user buffer is full. */ while (len >= sizeof(uint32_t)) { uint32_t dbell; /* Local copy of doorbell queue data */ spin_lock_irqsave(&dbq->lock, flags); /* * If the queue is empty, then either we're done or we need * to block. If the application specified O_NONBLOCK, then * we return the appropriate error code. */ if (dbq->head == dbq->tail) { spin_unlock_irqrestore(&dbq->lock, flags); if (count) break; if (filp->f_flags & O_NONBLOCK) return -EAGAIN; if (wait_event_interruptible(dbq->wait, dbq->head != dbq->tail)) return -ERESTARTSYS; continue; } /* * Even though we have an smp_wmb() in the ISR, the core * might speculatively execute the "dbell = ..." below while * it's evaluating the if-statement above. In that case, the * value put into dbell could be stale if the core accepts the * speculation. To prevent that, we need a read memory barrier * here as well. */ smp_rmb(); /* Copy the data to a temporary local buffer, because * we can't call copy_to_user() from inside a spinlock */ dbell = dbq->q[dbq->head]; dbq->head = nextp(dbq->head); spin_unlock_irqrestore(&dbq->lock, flags); if (put_user(dbell, p)) return -EFAULT; p++; count += sizeof(uint32_t); len -= sizeof(uint32_t); } return count; } /* * Open the driver and prepare for reading doorbells. * * Every time an application opens the driver, we create a doorbell queue * for that file handle. This queue is used for any incoming doorbells. */ static int fsl_hv_open(struct inode *inode, struct file *filp) { struct doorbell_queue *dbq; unsigned long flags; int ret = 0; dbq = kzalloc(sizeof(struct doorbell_queue), GFP_KERNEL); if (!dbq) { pr_err("fsl-hv: out of memory\n"); return -ENOMEM; } spin_lock_init(&dbq->lock); init_waitqueue_head(&dbq->wait); spin_lock_irqsave(&db_list_lock, flags); list_add(&dbq->list, &db_list); spin_unlock_irqrestore(&db_list_lock, flags); filp->private_data = dbq; return ret; } /* * Close the driver */ static int fsl_hv_close(struct inode *inode, struct file *filp) { struct doorbell_queue *dbq = filp->private_data; unsigned long flags; int ret = 0; spin_lock_irqsave(&db_list_lock, flags); list_del(&dbq->list); spin_unlock_irqrestore(&db_list_lock, flags); kfree(dbq); return ret; } static const struct file_operations fsl_hv_fops = { .owner = THIS_MODULE, .open = fsl_hv_open, .release = fsl_hv_close, .poll = fsl_hv_poll, .read = fsl_hv_read, .unlocked_ioctl = fsl_hv_ioctl, .compat_ioctl = fsl_hv_ioctl, }; static struct miscdevice fsl_hv_misc_dev = { MISC_DYNAMIC_MINOR, "fsl-hv", &fsl_hv_fops }; static irqreturn_t fsl_hv_shutdown_isr(int irq, void *data) { orderly_poweroff(false); return IRQ_HANDLED; } /* * Returns the handle of the parent of the given node * * The handle is the value of the 'hv-handle' property */ static int get_parent_handle(struct device_node *np) { struct device_node *parent; const uint32_t *prop; uint32_t handle; int len; parent = of_get_parent(np); if (!parent) /* It's not really possible for this to fail */ return -ENODEV; /* * The proper name for the handle property is "hv-handle", but some * older versions of the hypervisor used "reg". */ prop = of_get_property(parent, "hv-handle", &len); if (!prop) prop = of_get_property(parent, "reg", &len); if (!prop || (len != sizeof(uint32_t))) { /* This can happen only if the node is malformed */ of_node_put(parent); return -ENODEV; } handle = be32_to_cpup(prop); of_node_put(parent); return handle; } /* * Register a callback for failover events * * This function is called by device drivers to register their callback * functions for fail-over events. */ int fsl_hv_failover_register(struct notifier_block *nb) { return blocking_notifier_chain_register(&failover_subscribers, nb); } EXPORT_SYMBOL(fsl_hv_failover_register); /* * Unregister a callback for failover events */ int fsl_hv_failover_unregister(struct notifier_block *nb) { return blocking_notifier_chain_unregister(&failover_subscribers, nb); } EXPORT_SYMBOL(fsl_hv_failover_unregister); /* * Return TRUE if we're running under FSL hypervisor * * This function checks to see if we're running under the Freescale * hypervisor, and returns zero if we're not, or non-zero if we are. * * First, it checks if MSR[GS]==1, which means we're running under some * hypervisor. Then it checks if there is a hypervisor node in the device * tree. Currently, that means there needs to be a node in the root called * "hypervisor" and which has a property named "fsl,hv-version". */ static int has_fsl_hypervisor(void) { struct device_node *node; int ret; if (!(mfmsr() & MSR_GS)) return 0; node = of_find_node_by_path("/hypervisor"); if (!node) return 0; ret = of_find_property(node, "fsl,hv-version", NULL) != NULL; of_node_put(node); return ret; } /* * Freescale hypervisor management driver init * * This function is called when this module is loaded. * * Register ourselves as a miscellaneous driver. This will register the * fops structure and create the right sysfs entries for udev. */ static int __init fsl_hypervisor_init(void) { struct device_node *np; struct doorbell_isr *dbisr, *n; int ret; pr_info("Freescale hypervisor management driver\n"); if (!has_fsl_hypervisor()) { pr_info("fsl-hv: no hypervisor found\n"); return -ENODEV; } ret = misc_register(&fsl_hv_misc_dev); if (ret) { pr_err("fsl-hv: cannot register device\n"); return ret; } INIT_LIST_HEAD(&db_list); INIT_LIST_HEAD(&isr_list); for_each_compatible_node(np, NULL, "epapr,hv-receive-doorbell") { unsigned int irq; const uint32_t *handle; handle = of_get_property(np, "interrupts", NULL); irq = irq_of_parse_and_map(np, 0); if (!handle || (irq == NO_IRQ)) { pr_err("fsl-hv: no 'interrupts' property in %s node\n", np->full_name); continue; } dbisr = kzalloc(sizeof(*dbisr), GFP_KERNEL); if (!dbisr) goto out_of_memory; dbisr->irq = irq; dbisr->doorbell = be32_to_cpup(handle); if (of_device_is_compatible(np, "fsl,hv-shutdown-doorbell")) { /* The shutdown doorbell gets its own ISR */ ret = request_irq(irq, fsl_hv_shutdown_isr, 0, np->name, NULL); } else if (of_device_is_compatible(np, "fsl,hv-state-change-doorbell")) { /* * The state change doorbell triggers a notification if * the state of the managed partition changes to * "stopped". We need a separate interrupt handler for * that, and we also need to know the handle of the * target partition, not just the handle of the * doorbell. */ dbisr->partition = ret = get_parent_handle(np); if (ret < 0) { pr_err("fsl-hv: node %s has missing or " "malformed parent\n", np->full_name); kfree(dbisr); continue; } ret = request_threaded_irq(irq, fsl_hv_state_change_isr, fsl_hv_state_change_thread, 0, np->name, dbisr); } else ret = request_irq(irq, fsl_hv_isr, 0, np->name, dbisr); if (ret < 0) { pr_err("fsl-hv: could not request irq %u for node %s\n", irq, np->full_name); kfree(dbisr); continue; } list_add(&dbisr->list, &isr_list); pr_info("fsl-hv: registered handler for doorbell %u\n", dbisr->doorbell); } return 0; out_of_memory: list_for_each_entry_safe(dbisr, n, &isr_list, list) { free_irq(dbisr->irq, dbisr); list_del(&dbisr->list); kfree(dbisr); } misc_deregister(&fsl_hv_misc_dev); return -ENOMEM; } /* * Freescale hypervisor management driver termination * * This function is called when this driver is unloaded. */ static void __exit fsl_hypervisor_exit(void) { struct doorbell_isr *dbisr, *n; list_for_each_entry_safe(dbisr, n, &isr_list, list) { free_irq(dbisr->irq, dbisr); list_del(&dbisr->list); kfree(dbisr); } misc_deregister(&fsl_hv_misc_dev); } module_init(fsl_hypervisor_init); module_exit(fsl_hypervisor_exit); MODULE_AUTHOR("Timur Tabi "); MODULE_DESCRIPTION("Freescale hypervisor management driver"); MODULE_LICENSE("GPL v2");