/* * linux/fs/affs/inode.c * * (c) 1996 Hans-Joachim Widmaier - Rewritten * * (C) 1993 Ray Burr - Modified for Amiga FFS filesystem. * * (C) 1992 Eric Youngdale Modified for ISO 9660 filesystem. * * (C) 1991 Linus Torvalds - minix filesystem */ #include #include #include #include #include #include #include #include #include "affs.h" extern struct timezone sys_tz; static int affs_statfs(struct dentry *dentry, struct kstatfs *buf); static int affs_remount (struct super_block *sb, int *flags, char *data); static void affs_commit_super(struct super_block *sb, int wait) { struct affs_sb_info *sbi = AFFS_SB(sb); struct buffer_head *bh = sbi->s_root_bh; struct affs_root_tail *tail = AFFS_ROOT_TAIL(sb, bh); lock_buffer(bh); secs_to_datestamp(get_seconds(), &tail->disk_change); affs_fix_checksum(sb, bh); unlock_buffer(bh); mark_buffer_dirty(bh); if (wait) sync_dirty_buffer(bh); } static void affs_put_super(struct super_block *sb) { struct affs_sb_info *sbi = AFFS_SB(sb); pr_debug("AFFS: put_super()\n"); cancel_delayed_work_sync(&sbi->sb_work); kfree(sbi->s_prefix); affs_free_bitmap(sb); affs_brelse(sbi->s_root_bh); kfree(sbi); sb->s_fs_info = NULL; } static int affs_sync_fs(struct super_block *sb, int wait) { affs_commit_super(sb, wait); return 0; } static void flush_superblock(struct work_struct *work) { struct affs_sb_info *sbi; struct super_block *sb; sbi = container_of(work, struct affs_sb_info, sb_work.work); sb = sbi->sb; spin_lock(&sbi->work_lock); sbi->work_queued = 0; spin_unlock(&sbi->work_lock); affs_commit_super(sb, 1); } void affs_mark_sb_dirty(struct super_block *sb) { struct affs_sb_info *sbi = AFFS_SB(sb); unsigned long delay; if (sb->s_flags & MS_RDONLY) return; spin_lock(&sbi->work_lock); if (!sbi->work_queued) { delay = msecs_to_jiffies(dirty_writeback_interval * 10); queue_delayed_work(system_long_wq, &sbi->sb_work, delay); sbi->work_queued = 1; } spin_unlock(&sbi->work_lock); } static struct kmem_cache * affs_inode_cachep; static struct inode *affs_alloc_inode(struct super_block *sb) { struct affs_inode_info *i; i = kmem_cache_alloc(affs_inode_cachep, GFP_KERNEL); if (!i) return NULL; i->vfs_inode.i_version = 1; i->i_lc = NULL; i->i_ext_bh = NULL; i->i_pa_cnt = 0; return &i->vfs_inode; } static void affs_i_callback(struct rcu_head *head) { struct inode *inode = container_of(head, struct inode, i_rcu); kmem_cache_free(affs_inode_cachep, AFFS_I(inode)); } static void affs_destroy_inode(struct inode *inode) { call_rcu(&inode->i_rcu, affs_i_callback); } static void init_once(void *foo) { struct affs_inode_info *ei = (struct affs_inode_info *) foo; sema_init(&ei->i_link_lock, 1); sema_init(&ei->i_ext_lock, 1); inode_init_once(&ei->vfs_inode); } static int init_inodecache(void) { affs_inode_cachep = kmem_cache_create("affs_inode_cache", sizeof(struct affs_inode_info), 0, (SLAB_RECLAIM_ACCOUNT| SLAB_MEM_SPREAD), init_once); if (affs_inode_cachep == NULL) return -ENOMEM; return 0; } static void destroy_inodecache(void) { /* * Make sure all delayed rcu free inodes are flushed before we * destroy cache. */ rcu_barrier(); kmem_cache_destroy(affs_inode_cachep); } static const struct super_operations affs_sops = { .alloc_inode = affs_alloc_inode, .destroy_inode = affs_destroy_inode, .write_inode = affs_write_inode, .evict_inode = affs_evict_inode, .put_super = affs_put_super, .sync_fs = affs_sync_fs, .statfs = affs_statfs, .remount_fs = affs_remount, .show_options = generic_show_options, }; enum { Opt_bs, Opt_mode, Opt_mufs, Opt_prefix, Opt_protect, Opt_reserved, Opt_root, Opt_setgid, Opt_setuid, Opt_verbose, Opt_volume, Opt_ignore, Opt_err, }; static const match_table_t tokens = { {Opt_bs, "bs=%u"}, {Opt_mode, "mode=%o"}, {Opt_mufs, "mufs"}, {Opt_prefix, "prefix=%s"}, {Opt_protect, "protect"}, {Opt_reserved, "reserved=%u"}, {Opt_root, "root=%u"}, {Opt_setgid, "setgid=%u"}, {Opt_setuid, "setuid=%u"}, {Opt_verbose, "verbose"}, {Opt_volume, "volume=%s"}, {Opt_ignore, "grpquota"}, {Opt_ignore, "noquota"}, {Opt_ignore, "quota"}, {Opt_ignore, "usrquota"}, {Opt_err, NULL}, }; static int parse_options(char *options, kuid_t *uid, kgid_t *gid, int *mode, int *reserved, s32 *root, int *blocksize, char **prefix, char *volume, unsigned long *mount_opts) { char *p; substring_t args[MAX_OPT_ARGS]; /* Fill in defaults */ *uid = current_uid(); *gid = current_gid(); *reserved = 2; *root = -1; *blocksize = -1; volume[0] = ':'; volume[1] = 0; *mount_opts = 0; if (!options) return 1; while ((p = strsep(&options, ",")) != NULL) { int token, n, option; if (!*p) continue; token = match_token(p, tokens, args); switch (token) { case Opt_bs: if (match_int(&args[0], &n)) return 0; if (n != 512 && n != 1024 && n != 2048 && n != 4096) { printk ("AFFS: Invalid blocksize (512, 1024, 2048, 4096 allowed)\n"); return 0; } *blocksize = n; break; case Opt_mode: if (match_octal(&args[0], &option)) return 0; *mode = option & 0777; *mount_opts |= SF_SETMODE; break; case Opt_mufs: *mount_opts |= SF_MUFS; break; case Opt_prefix: *prefix = match_strdup(&args[0]); if (!*prefix) return 0; *mount_opts |= SF_PREFIX; break; case Opt_protect: *mount_opts |= SF_IMMUTABLE; break; case Opt_reserved: if (match_int(&args[0], reserved)) return 0; break; case Opt_root: if (match_int(&args[0], root)) return 0; break; case Opt_setgid: if (match_int(&args[0], &option)) return 0; *gid = make_kgid(current_user_ns(), option); if (!gid_valid(*gid)) return 0; *mount_opts |= SF_SETGID; break; case Opt_setuid: if (match_int(&args[0], &option)) return 0; *uid = make_kuid(current_user_ns(), option); if (!uid_valid(*uid)) return 0; *mount_opts |= SF_SETUID; break; case Opt_verbose: *mount_opts |= SF_VERBOSE; break; case Opt_volume: { char *vol = match_strdup(&args[0]); if (!vol) return 0; strlcpy(volume, vol, 32); kfree(vol); break; } case Opt_ignore: /* Silently ignore the quota options */ break; default: printk("AFFS: Unrecognized mount option \"%s\" " "or missing value\n", p); return 0; } } return 1; } /* This function definitely needs to be split up. Some fine day I'll * hopefully have the guts to do so. Until then: sorry for the mess. */ static int affs_fill_super(struct super_block *sb, void *data, int silent) { struct affs_sb_info *sbi; struct buffer_head *root_bh = NULL; struct buffer_head *boot_bh; struct inode *root_inode = NULL; s32 root_block; int size, blocksize; u32 chksum; int num_bm; int i, j; s32 key; kuid_t uid; kgid_t gid; int reserved; unsigned long mount_flags; int tmp_flags; /* fix remount prototype... */ u8 sig[4]; int ret = -EINVAL; save_mount_options(sb, data); pr_debug("AFFS: read_super(%s)\n",data ? (const char *)data : "no options"); sb->s_magic = AFFS_SUPER_MAGIC; sb->s_op = &affs_sops; sb->s_flags |= MS_NODIRATIME; sbi = kzalloc(sizeof(struct affs_sb_info), GFP_KERNEL); if (!sbi) return -ENOMEM; sb->s_fs_info = sbi; sbi->sb = sb; mutex_init(&sbi->s_bmlock); spin_lock_init(&sbi->symlink_lock); spin_lock_init(&sbi->work_lock); INIT_DELAYED_WORK(&sbi->sb_work, flush_superblock); if (!parse_options(data,&uid,&gid,&i,&reserved,&root_block, &blocksize,&sbi->s_prefix, sbi->s_volume, &mount_flags)) { printk(KERN_ERR "AFFS: Error parsing options\n"); kfree(sbi->s_prefix); kfree(sbi); return -EINVAL; } /* N.B. after this point s_prefix must be released */ sbi->s_flags = mount_flags; sbi->s_mode = i; sbi->s_uid = uid; sbi->s_gid = gid; sbi->s_reserved= reserved; /* Get the size of the device in 512-byte blocks. * If we later see that the partition uses bigger * blocks, we will have to change it. */ size = sb->s_bdev->bd_inode->i_size >> 9; pr_debug("AFFS: initial blocksize=%d, #blocks=%d\n", 512, size); affs_set_blocksize(sb, PAGE_SIZE); /* Try to find root block. Its location depends on the block size. */ i = 512; j = 4096; if (blocksize > 0) { i = j = blocksize; size = size / (blocksize / 512); } for (blocksize = i, key = 0; blocksize <= j; blocksize <<= 1, size >>= 1) { sbi->s_root_block = root_block; if (root_block < 0) sbi->s_root_block = (reserved + size - 1) / 2; pr_debug("AFFS: setting blocksize to %d\n", blocksize); affs_set_blocksize(sb, blocksize); sbi->s_partition_size = size; /* The root block location that was calculated above is not * correct if the partition size is an odd number of 512- * byte blocks, which will be rounded down to a number of * 1024-byte blocks, and if there were an even number of * reserved blocks. Ideally, all partition checkers should * report the real number of blocks of the real blocksize, * but since this just cannot be done, we have to try to * find the root block anyways. In the above case, it is one * block behind the calculated one. So we check this one, too. */ for (num_bm = 0; num_bm < 2; num_bm++) { pr_debug("AFFS: Dev %s, trying root=%u, bs=%d, " "size=%d, reserved=%d\n", sb->s_id, sbi->s_root_block + num_bm, blocksize, size, reserved); root_bh = affs_bread(sb, sbi->s_root_block + num_bm); if (!root_bh) continue; if (!affs_checksum_block(sb, root_bh) && be32_to_cpu(AFFS_ROOT_HEAD(root_bh)->ptype) == T_SHORT && be32_to_cpu(AFFS_ROOT_TAIL(sb, root_bh)->stype) == ST_ROOT) { sbi->s_hashsize = blocksize / 4 - 56; sbi->s_root_block += num_bm; key = 1; goto got_root; } affs_brelse(root_bh); root_bh = NULL; } } if (!silent) printk(KERN_ERR "AFFS: No valid root block on device %s\n", sb->s_id); goto out_error; /* N.B. after this point bh must be released */ got_root: root_block = sbi->s_root_block; /* Find out which kind of FS we have */ boot_bh = sb_bread(sb, 0); if (!boot_bh) { printk(KERN_ERR "AFFS: Cannot read boot block\n"); goto out_error; } memcpy(sig, boot_bh->b_data, 4); brelse(boot_bh); chksum = be32_to_cpu(*(__be32 *)sig); /* Dircache filesystems are compatible with non-dircache ones * when reading. As long as they aren't supported, writing is * not recommended. */ if ((chksum == FS_DCFFS || chksum == MUFS_DCFFS || chksum == FS_DCOFS || chksum == MUFS_DCOFS) && !(sb->s_flags & MS_RDONLY)) { printk(KERN_NOTICE "AFFS: Dircache FS - mounting %s read only\n", sb->s_id); sb->s_flags |= MS_RDONLY; } switch (chksum) { case MUFS_FS: case MUFS_INTLFFS: case MUFS_DCFFS: sbi->s_flags |= SF_MUFS; /* fall thru */ case FS_INTLFFS: case FS_DCFFS: sbi->s_flags |= SF_INTL; break; case MUFS_FFS: sbi->s_flags |= SF_MUFS; break; case FS_FFS: break; case MUFS_OFS: sbi->s_flags |= SF_MUFS; /* fall thru */ case FS_OFS: sbi->s_flags |= SF_OFS; sb->s_flags |= MS_NOEXEC; break; case MUFS_DCOFS: case MUFS_INTLOFS: sbi->s_flags |= SF_MUFS; case FS_DCOFS: case FS_INTLOFS: sbi->s_flags |= SF_INTL | SF_OFS; sb->s_flags |= MS_NOEXEC; break; default: printk(KERN_ERR "AFFS: Unknown filesystem on device %s: %08X\n", sb->s_id, chksum); goto out_error; } if (mount_flags & SF_VERBOSE) { u8 len = AFFS_ROOT_TAIL(sb, root_bh)->disk_name[0]; printk(KERN_NOTICE "AFFS: Mounting volume \"%.*s\": Type=%.3s\\%c, Blocksize=%d\n", len > 31 ? 31 : len, AFFS_ROOT_TAIL(sb, root_bh)->disk_name + 1, sig, sig[3] + '0', blocksize); } sb->s_flags |= MS_NODEV | MS_NOSUID; sbi->s_data_blksize = sb->s_blocksize; if (sbi->s_flags & SF_OFS) sbi->s_data_blksize -= 24; /* Keep super block in cache */ sbi->s_root_bh = root_bh; /* N.B. after this point s_root_bh must be released */ tmp_flags = sb->s_flags; if (affs_init_bitmap(sb, &tmp_flags)) goto out_error; sb->s_flags = tmp_flags; /* set up enough so that it can read an inode */ root_inode = affs_iget(sb, root_block); if (IS_ERR(root_inode)) { ret = PTR_ERR(root_inode); goto out_error; } if (AFFS_SB(sb)->s_flags & SF_INTL) sb->s_d_op = &affs_intl_dentry_operations; else sb->s_d_op = &affs_dentry_operations; sb->s_root = d_make_root(root_inode); if (!sb->s_root) { printk(KERN_ERR "AFFS: Get root inode failed\n"); goto out_error; } pr_debug("AFFS: s_flags=%lX\n",sb->s_flags); return 0; /* * Begin the cascaded cleanup ... */ out_error: kfree(sbi->s_bitmap); affs_brelse(root_bh); kfree(sbi->s_prefix); kfree(sbi); sb->s_fs_info = NULL; return ret; } static int affs_remount(struct super_block *sb, int *flags, char *data) { struct affs_sb_info *sbi = AFFS_SB(sb); int blocksize; kuid_t uid; kgid_t gid; int mode; int reserved; int root_block; unsigned long mount_flags; int res = 0; char *new_opts = kstrdup(data, GFP_KERNEL); char volume[32]; char *prefix = NULL; pr_debug("AFFS: remount(flags=0x%x,opts=\"%s\")\n",*flags,data); *flags |= MS_NODIRATIME; memcpy(volume, sbi->s_volume, 32); if (!parse_options(data, &uid, &gid, &mode, &reserved, &root_block, &blocksize, &prefix, volume, &mount_flags)) { kfree(prefix); kfree(new_opts); return -EINVAL; } flush_delayed_work(&sbi->sb_work); replace_mount_options(sb, new_opts); sbi->s_flags = mount_flags; sbi->s_mode = mode; sbi->s_uid = uid; sbi->s_gid = gid; /* protect against readers */ spin_lock(&sbi->symlink_lock); if (prefix) { kfree(sbi->s_prefix); sbi->s_prefix = prefix; } memcpy(sbi->s_volume, volume, 32); spin_unlock(&sbi->symlink_lock); if ((*flags & MS_RDONLY) == (sb->s_flags & MS_RDONLY)) return 0; if (*flags & MS_RDONLY) affs_free_bitmap(sb); else res = affs_init_bitmap(sb, flags); return res; } static int affs_statfs(struct dentry *dentry, struct kstatfs *buf) { struct super_block *sb = dentry->d_sb; int free; u64 id = huge_encode_dev(sb->s_bdev->bd_dev); pr_debug("AFFS: statfs() partsize=%d, reserved=%d\n",AFFS_SB(sb)->s_partition_size, AFFS_SB(sb)->s_reserved); free = affs_count_free_blocks(sb); buf->f_type = AFFS_SUPER_MAGIC; buf->f_bsize = sb->s_blocksize; buf->f_blocks = AFFS_SB(sb)->s_partition_size - AFFS_SB(sb)->s_reserved; buf->f_bfree = free; buf->f_bavail = free; buf->f_fsid.val[0] = (u32)id; buf->f_fsid.val[1] = (u32)(id >> 32); buf->f_namelen = 30; return 0; } static struct dentry *affs_mount(struct file_system_type *fs_type, int flags, const char *dev_name, void *data) { return mount_bdev(fs_type, flags, dev_name, data, affs_fill_super); } static struct file_system_type affs_fs_type = { .owner = THIS_MODULE, .name = "affs", .mount = affs_mount, .kill_sb = kill_block_super, .fs_flags = FS_REQUIRES_DEV, }; MODULE_ALIAS_FS("affs"); static int __init init_affs_fs(void) { int err = init_inodecache(); if (err) goto out1; err = register_filesystem(&affs_fs_type); if (err) goto out; return 0; out: destroy_inodecache(); out1: return err; } static void __exit exit_affs_fs(void) { unregister_filesystem(&affs_fs_type); destroy_inodecache(); } MODULE_DESCRIPTION("Amiga filesystem support for Linux"); MODULE_LICENSE("GPL"); module_init(init_affs_fs) module_exit(exit_affs_fs)