/* * Copyright (C) 2011 STRATO. All rights reserved. * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public * License v2 as published by the Free Software Foundation. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public * License along with this program; if not, write to the * Free Software Foundation, Inc., 59 Temple Place - Suite 330, * Boston, MA 021110-1307, USA. */ #include "ctree.h" #include "disk-io.h" #include "backref.h" struct __data_ref { struct list_head list; u64 inum; u64 root; u64 extent_data_item_offset; }; struct __shared_ref { struct list_head list; u64 disk_byte; }; static int __inode_info(u64 inum, u64 ioff, u8 key_type, struct btrfs_root *fs_root, struct btrfs_path *path, struct btrfs_key *found_key) { int ret; struct btrfs_key key; struct extent_buffer *eb; key.type = key_type; key.objectid = inum; key.offset = ioff; ret = btrfs_search_slot(NULL, fs_root, &key, path, 0, 0); if (ret < 0) return ret; eb = path->nodes[0]; if (ret && path->slots[0] >= btrfs_header_nritems(eb)) { ret = btrfs_next_leaf(fs_root, path); if (ret) return ret; eb = path->nodes[0]; } btrfs_item_key_to_cpu(eb, found_key, path->slots[0]); if (found_key->type != key.type || found_key->objectid != key.objectid) return 1; return 0; } /* * this makes the path point to (inum INODE_ITEM ioff) */ int inode_item_info(u64 inum, u64 ioff, struct btrfs_root *fs_root, struct btrfs_path *path) { struct btrfs_key key; return __inode_info(inum, ioff, BTRFS_INODE_ITEM_KEY, fs_root, path, &key); } static int inode_ref_info(u64 inum, u64 ioff, struct btrfs_root *fs_root, struct btrfs_path *path, struct btrfs_key *found_key) { return __inode_info(inum, ioff, BTRFS_INODE_REF_KEY, fs_root, path, found_key); } /* * this iterates to turn a btrfs_inode_ref into a full filesystem path. elements * of the path are separated by '/' and the path is guaranteed to be * 0-terminated. the path is only given within the current file system. * Therefore, it never starts with a '/'. the caller is responsible to provide * "size" bytes in "dest". the dest buffer will be filled backwards. finally, * the start point of the resulting string is returned. this pointer is within * dest, normally. * in case the path buffer would overflow, the pointer is decremented further * as if output was written to the buffer, though no more output is actually * generated. that way, the caller can determine how much space would be * required for the path to fit into the buffer. in that case, the returned * value will be smaller than dest. callers must check this! */ static char *iref_to_path(struct btrfs_root *fs_root, struct btrfs_path *path, struct btrfs_inode_ref *iref, struct extent_buffer *eb_in, u64 parent, char *dest, u32 size) { u32 len; int slot; u64 next_inum; int ret; s64 bytes_left = size - 1; struct extent_buffer *eb = eb_in; struct btrfs_key found_key; if (bytes_left >= 0) dest[bytes_left] = '\0'; while (1) { len = btrfs_inode_ref_name_len(eb, iref); bytes_left -= len; if (bytes_left >= 0) read_extent_buffer(eb, dest + bytes_left, (unsigned long)(iref + 1), len); if (eb != eb_in) free_extent_buffer(eb); ret = inode_ref_info(parent, 0, fs_root, path, &found_key); if (ret) break; next_inum = found_key.offset; /* regular exit ahead */ if (parent == next_inum) break; slot = path->slots[0]; eb = path->nodes[0]; /* make sure we can use eb after releasing the path */ if (eb != eb_in) atomic_inc(&eb->refs); btrfs_release_path(path); iref = btrfs_item_ptr(eb, slot, struct btrfs_inode_ref); parent = next_inum; --bytes_left; if (bytes_left >= 0) dest[bytes_left] = '/'; } btrfs_release_path(path); if (ret) return ERR_PTR(ret); return dest + bytes_left; } /* * this makes the path point to (logical EXTENT_ITEM *) * returns BTRFS_EXTENT_FLAG_DATA for data, BTRFS_EXTENT_FLAG_TREE_BLOCK for * tree blocks and <0 on error. */ int extent_from_logical(struct btrfs_fs_info *fs_info, u64 logical, struct btrfs_path *path, struct btrfs_key *found_key) { int ret; u64 flags; u32 item_size; struct extent_buffer *eb; struct btrfs_extent_item *ei; struct btrfs_key key; key.type = BTRFS_EXTENT_ITEM_KEY; key.objectid = logical; key.offset = (u64)-1; ret = btrfs_search_slot(NULL, fs_info->extent_root, &key, path, 0, 0); if (ret < 0) return ret; ret = btrfs_previous_item(fs_info->extent_root, path, 0, BTRFS_EXTENT_ITEM_KEY); if (ret < 0) return ret; btrfs_item_key_to_cpu(path->nodes[0], found_key, path->slots[0]); if (found_key->type != BTRFS_EXTENT_ITEM_KEY || found_key->objectid > logical || found_key->objectid + found_key->offset <= logical) return -ENOENT; eb = path->nodes[0]; item_size = btrfs_item_size_nr(eb, path->slots[0]); BUG_ON(item_size < sizeof(*ei)); ei = btrfs_item_ptr(eb, path->slots[0], struct btrfs_extent_item); flags = btrfs_extent_flags(eb, ei); if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) return BTRFS_EXTENT_FLAG_TREE_BLOCK; if (flags & BTRFS_EXTENT_FLAG_DATA) return BTRFS_EXTENT_FLAG_DATA; return -EIO; } /* * helper function to iterate extent inline refs. ptr must point to a 0 value * for the first call and may be modified. it is used to track state. * if more refs exist, 0 is returned and the next call to * __get_extent_inline_ref must pass the modified ptr parameter to get the * next ref. after the last ref was processed, 1 is returned. * returns <0 on error */ static int __get_extent_inline_ref(unsigned long *ptr, struct extent_buffer *eb, struct btrfs_extent_item *ei, u32 item_size, struct btrfs_extent_inline_ref **out_eiref, int *out_type) { unsigned long end; u64 flags; struct btrfs_tree_block_info *info; if (!*ptr) { /* first call */ flags = btrfs_extent_flags(eb, ei); if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) { info = (struct btrfs_tree_block_info *)(ei + 1); *out_eiref = (struct btrfs_extent_inline_ref *)(info + 1); } else { *out_eiref = (struct btrfs_extent_inline_ref *)(ei + 1); } *ptr = (unsigned long)*out_eiref; if ((void *)*ptr >= (void *)ei + item_size) return -ENOENT; } end = (unsigned long)ei + item_size; *out_eiref = (struct btrfs_extent_inline_ref *)*ptr; *out_type = btrfs_extent_inline_ref_type(eb, *out_eiref); *ptr += btrfs_extent_inline_ref_size(*out_type); WARN_ON(*ptr > end); if (*ptr == end) return 1; /* last */ return 0; } /* * reads the tree block backref for an extent. tree level and root are returned * through out_level and out_root. ptr must point to a 0 value for the first * call and may be modified (see __get_extent_inline_ref comment). * returns 0 if data was provided, 1 if there was no more data to provide or * <0 on error. */ int tree_backref_for_extent(unsigned long *ptr, struct extent_buffer *eb, struct btrfs_extent_item *ei, u32 item_size, u64 *out_root, u8 *out_level) { int ret; int type; struct btrfs_tree_block_info *info; struct btrfs_extent_inline_ref *eiref; if (*ptr == (unsigned long)-1) return 1; while (1) { ret = __get_extent_inline_ref(ptr, eb, ei, item_size, &eiref, &type); if (ret < 0) return ret; if (type == BTRFS_TREE_BLOCK_REF_KEY || type == BTRFS_SHARED_BLOCK_REF_KEY) break; if (ret == 1) return 1; } /* we can treat both ref types equally here */ info = (struct btrfs_tree_block_info *)(ei + 1); *out_root = btrfs_extent_inline_ref_offset(eb, eiref); *out_level = btrfs_tree_block_level(eb, info); if (ret == 1) *ptr = (unsigned long)-1; return 0; } static int __data_list_add(struct list_head *head, u64 inum, u64 extent_data_item_offset, u64 root) { struct __data_ref *ref; ref = kmalloc(sizeof(*ref), GFP_NOFS); if (!ref) return -ENOMEM; ref->inum = inum; ref->extent_data_item_offset = extent_data_item_offset; ref->root = root; list_add_tail(&ref->list, head); return 0; } static int __data_list_add_eb(struct list_head *head, struct extent_buffer *eb, struct btrfs_extent_data_ref *dref) { return __data_list_add(head, btrfs_extent_data_ref_objectid(eb, dref), btrfs_extent_data_ref_offset(eb, dref), btrfs_extent_data_ref_root(eb, dref)); } static int __shared_list_add(struct list_head *head, u64 disk_byte) { struct __shared_ref *ref; ref = kmalloc(sizeof(*ref), GFP_NOFS); if (!ref) return -ENOMEM; ref->disk_byte = disk_byte; list_add_tail(&ref->list, head); return 0; } static int __iter_shared_inline_ref_inodes(struct btrfs_fs_info *fs_info, u64 logical, u64 inum, u64 extent_data_item_offset, u64 extent_offset, struct btrfs_path *path, struct list_head *data_refs, iterate_extent_inodes_t *iterate, void *ctx) { u64 ref_root; u32 item_size; struct btrfs_key key; struct extent_buffer *eb; struct btrfs_extent_item *ei; struct btrfs_extent_inline_ref *eiref; struct __data_ref *ref; int ret; int type; int last; unsigned long ptr = 0; WARN_ON(!list_empty(data_refs)); ret = extent_from_logical(fs_info, logical, path, &key); if (ret & BTRFS_EXTENT_FLAG_DATA) ret = -EIO; if (ret < 0) goto out; eb = path->nodes[0]; ei = btrfs_item_ptr(eb, path->slots[0], struct btrfs_extent_item); item_size = btrfs_item_size_nr(eb, path->slots[0]); ret = 0; ref_root = 0; /* * as done in iterate_extent_inodes, we first build a list of refs to * iterate, then free the path and then iterate them to avoid deadlocks. */ do { last = __get_extent_inline_ref(&ptr, eb, ei, item_size, &eiref, &type); if (last < 0) { ret = last; goto out; } if (type == BTRFS_TREE_BLOCK_REF_KEY || type == BTRFS_SHARED_BLOCK_REF_KEY) { ref_root = btrfs_extent_inline_ref_offset(eb, eiref); ret = __data_list_add(data_refs, inum, extent_data_item_offset, ref_root); } } while (!ret && !last); btrfs_release_path(path); if (ref_root == 0) { printk(KERN_ERR "btrfs: failed to find tree block ref " "for shared data backref %llu\n", logical); WARN_ON(1); ret = -EIO; } out: while (!list_empty(data_refs)) { ref = list_first_entry(data_refs, struct __data_ref, list); list_del(&ref->list); if (!ret) ret = iterate(ref->inum, extent_offset + ref->extent_data_item_offset, ref->root, ctx); kfree(ref); } return ret; } static int __iter_shared_inline_ref(struct btrfs_fs_info *fs_info, u64 logical, u64 orig_extent_item_objectid, u64 extent_offset, struct btrfs_path *path, struct list_head *data_refs, iterate_extent_inodes_t *iterate, void *ctx) { u64 disk_byte; struct btrfs_key key; struct btrfs_file_extent_item *fi; struct extent_buffer *eb; int slot; int nritems; int ret; int found = 0; eb = read_tree_block(fs_info->tree_root, logical, fs_info->tree_root->leafsize, 0); if (!eb) return -EIO; /* * from the shared data ref, we only have the leaf but we need * the key. thus, we must look into all items and see that we * find one (some) with a reference to our extent item. */ nritems = btrfs_header_nritems(eb); for (slot = 0; slot < nritems; ++slot) { btrfs_item_key_to_cpu(eb, &key, slot); if (key.type != BTRFS_EXTENT_DATA_KEY) continue; fi = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item); if (!fi) { free_extent_buffer(eb); return -EIO; } disk_byte = btrfs_file_extent_disk_bytenr(eb, fi); if (disk_byte != orig_extent_item_objectid) { if (found) break; else continue; } ++found; ret = __iter_shared_inline_ref_inodes(fs_info, logical, key.objectid, key.offset, extent_offset, path, data_refs, iterate, ctx); if (ret) break; } if (!found) { printk(KERN_ERR "btrfs: failed to follow shared data backref " "to parent %llu\n", logical); WARN_ON(1); ret = -EIO; } free_extent_buffer(eb); return ret; } /* * calls iterate() for every inode that references the extent identified by * the given parameters. will use the path given as a parameter and return it * released. * when the iterator function returns a non-zero value, iteration stops. */ int iterate_extent_inodes(struct btrfs_fs_info *fs_info, struct btrfs_path *path, u64 extent_item_objectid, u64 extent_offset, iterate_extent_inodes_t *iterate, void *ctx) { unsigned long ptr = 0; int last; int ret; int type; u64 logical; u32 item_size; struct btrfs_extent_inline_ref *eiref; struct btrfs_extent_data_ref *dref; struct extent_buffer *eb; struct btrfs_extent_item *ei; struct btrfs_key key; struct list_head data_refs = LIST_HEAD_INIT(data_refs); struct list_head shared_refs = LIST_HEAD_INIT(shared_refs); struct __data_ref *ref_d; struct __shared_ref *ref_s; eb = path->nodes[0]; ei = btrfs_item_ptr(eb, path->slots[0], struct btrfs_extent_item); item_size = btrfs_item_size_nr(eb, path->slots[0]); /* first we iterate the inline refs, ... */ do { last = __get_extent_inline_ref(&ptr, eb, ei, item_size, &eiref, &type); if (last == -ENOENT) { ret = 0; break; } if (last < 0) { ret = last; break; } if (type == BTRFS_EXTENT_DATA_REF_KEY) { dref = (struct btrfs_extent_data_ref *)(&eiref->offset); ret = __data_list_add_eb(&data_refs, eb, dref); } else if (type == BTRFS_SHARED_DATA_REF_KEY) { logical = btrfs_extent_inline_ref_offset(eb, eiref); ret = __shared_list_add(&shared_refs, logical); } } while (!ret && !last); /* ... then we proceed to in-tree references and ... */ while (!ret) { ++path->slots[0]; if (path->slots[0] > btrfs_header_nritems(eb)) { ret = btrfs_next_leaf(fs_info->extent_root, path); if (ret) { if (ret == 1) ret = 0; /* we're done */ break; } eb = path->nodes[0]; } btrfs_item_key_to_cpu(eb, &key, path->slots[0]); if (key.objectid != extent_item_objectid) break; if (key.type == BTRFS_EXTENT_DATA_REF_KEY) { dref = btrfs_item_ptr(eb, path->slots[0], struct btrfs_extent_data_ref); ret = __data_list_add_eb(&data_refs, eb, dref); } else if (key.type == BTRFS_SHARED_DATA_REF_KEY) { ret = __shared_list_add(&shared_refs, key.offset); } } btrfs_release_path(path); /* * ... only at the very end we can process the refs we found. this is * because the iterator function we call is allowed to make tree lookups * and we have to avoid deadlocks. additionally, we need more tree * lookups ourselves for shared data refs. */ while (!list_empty(&data_refs)) { ref_d = list_first_entry(&data_refs, struct __data_ref, list); list_del(&ref_d->list); if (!ret) ret = iterate(ref_d->inum, extent_offset + ref_d->extent_data_item_offset, ref_d->root, ctx); kfree(ref_d); } while (!list_empty(&shared_refs)) { ref_s = list_first_entry(&shared_refs, struct __shared_ref, list); list_del(&ref_s->list); if (!ret) ret = __iter_shared_inline_ref(fs_info, ref_s->disk_byte, extent_item_objectid, extent_offset, path, &data_refs, iterate, ctx); kfree(ref_s); } return ret; } int iterate_inodes_from_logical(u64 logical, struct btrfs_fs_info *fs_info, struct btrfs_path *path, iterate_extent_inodes_t *iterate, void *ctx) { int ret; u64 offset; struct btrfs_key found_key; ret = extent_from_logical(fs_info, logical, path, &found_key); if (ret & BTRFS_EXTENT_FLAG_TREE_BLOCK) ret = -EINVAL; if (ret < 0) return ret; offset = logical - found_key.objectid; ret = iterate_extent_inodes(fs_info, path, found_key.objectid, offset, iterate, ctx); return ret; } static int iterate_irefs(u64 inum, struct btrfs_root *fs_root, struct btrfs_path *path, iterate_irefs_t *iterate, void *ctx) { int ret; int slot; u32 cur; u32 len; u32 name_len; u64 parent = 0; int found = 0; struct extent_buffer *eb; struct btrfs_item *item; struct btrfs_inode_ref *iref; struct btrfs_key found_key; while (1) { ret = inode_ref_info(inum, parent ? parent+1 : 0, fs_root, path, &found_key); if (ret < 0) break; if (ret) { ret = found ? 0 : -ENOENT; break; } ++found; parent = found_key.offset; slot = path->slots[0]; eb = path->nodes[0]; /* make sure we can use eb after releasing the path */ atomic_inc(&eb->refs); btrfs_release_path(path); item = btrfs_item_nr(eb, slot); iref = btrfs_item_ptr(eb, slot, struct btrfs_inode_ref); for (cur = 0; cur < btrfs_item_size(eb, item); cur += len) { name_len = btrfs_inode_ref_name_len(eb, iref); /* path must be released before calling iterate()! */ ret = iterate(parent, iref, eb, ctx); if (ret) { free_extent_buffer(eb); break; } len = sizeof(*iref) + name_len; iref = (struct btrfs_inode_ref *)((char *)iref + len); } free_extent_buffer(eb); } btrfs_release_path(path); return ret; } /* * returns 0 if the path could be dumped (probably truncated) * returns <0 in case of an error */ static int inode_to_path(u64 inum, struct btrfs_inode_ref *iref, struct extent_buffer *eb, void *ctx) { struct inode_fs_paths *ipath = ctx; char *fspath; char *fspath_min; int i = ipath->fspath->elem_cnt; const int s_ptr = sizeof(char *); u32 bytes_left; bytes_left = ipath->fspath->bytes_left > s_ptr ? ipath->fspath->bytes_left - s_ptr : 0; fspath_min = (char *)ipath->fspath->val + (i + 1) * s_ptr; fspath = iref_to_path(ipath->fs_root, ipath->btrfs_path, iref, eb, inum, fspath_min, bytes_left); if (IS_ERR(fspath)) return PTR_ERR(fspath); if (fspath > fspath_min) { ipath->fspath->val[i] = (u64)(unsigned long)fspath; ++ipath->fspath->elem_cnt; ipath->fspath->bytes_left = fspath - fspath_min; } else { ++ipath->fspath->elem_missed; ipath->fspath->bytes_missing += fspath_min - fspath; ipath->fspath->bytes_left = 0; } return 0; } /* * this dumps all file system paths to the inode into the ipath struct, provided * is has been created large enough. each path is zero-terminated and accessed * from ipath->fspath->val[i]. * when it returns, there are ipath->fspath->elem_cnt number of paths available * in ipath->fspath->val[]. when the allocated space wasn't sufficient, the * number of missed paths in recored in ipath->fspath->elem_missed, otherwise, * it's zero. ipath->fspath->bytes_missing holds the number of bytes that would * have been needed to return all paths. */ int paths_from_inode(u64 inum, struct inode_fs_paths *ipath) { return iterate_irefs(inum, ipath->fs_root, ipath->btrfs_path, inode_to_path, ipath); } /* * allocates space to return multiple file system paths for an inode. * total_bytes to allocate are passed, note that space usable for actual path * information will be total_bytes - sizeof(struct inode_fs_paths). * the returned pointer must be freed with free_ipath() in the end. */ struct btrfs_data_container *init_data_container(u32 total_bytes) { struct btrfs_data_container *data; size_t alloc_bytes; alloc_bytes = max_t(size_t, total_bytes, sizeof(*data)); data = kmalloc(alloc_bytes, GFP_NOFS); if (!data) return ERR_PTR(-ENOMEM); if (total_bytes >= sizeof(*data)) { data->bytes_left = total_bytes - sizeof(*data); data->bytes_missing = 0; } else { data->bytes_missing = sizeof(*data) - total_bytes; data->bytes_left = 0; } data->elem_cnt = 0; data->elem_missed = 0; return data; } /* * allocates space to return multiple file system paths for an inode. * total_bytes to allocate are passed, note that space usable for actual path * information will be total_bytes - sizeof(struct inode_fs_paths). * the returned pointer must be freed with free_ipath() in the end. */ struct inode_fs_paths *init_ipath(s32 total_bytes, struct btrfs_root *fs_root, struct btrfs_path *path) { struct inode_fs_paths *ifp; struct btrfs_data_container *fspath; fspath = init_data_container(total_bytes); if (IS_ERR(fspath)) return (void *)fspath; ifp = kmalloc(sizeof(*ifp), GFP_NOFS); if (!ifp) { kfree(fspath); return ERR_PTR(-ENOMEM); } ifp->btrfs_path = path; ifp->fspath = fspath; ifp->fs_root = fs_root; return ifp; } void free_ipath(struct inode_fs_paths *ipath) { kfree(ipath); }