/* * Copyright (C) 2007 Oracle. All rights reserved. * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public * License v2 as published by the Free Software Foundation. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public * License along with this program; if not, write to the * Free Software Foundation, Inc., 59 Temple Place - Suite 330, * Boston, MA 021110-1307, USA. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "compat.h" #include "delayed-inode.h" #include "ctree.h" #include "disk-io.h" #include "transaction.h" #include "btrfs_inode.h" #include "print-tree.h" #include "xattr.h" #include "volumes.h" #include "version.h" #include "export.h" #include "compression.h" #include "rcu-string.h" #include "dev-replace.h" #include "free-space-cache.h" #define CREATE_TRACE_POINTS #include static const struct super_operations btrfs_super_ops; static struct file_system_type btrfs_fs_type; static const char *btrfs_decode_error(int errno) { char *errstr = "unknown"; switch (errno) { case -EIO: errstr = "IO failure"; break; case -ENOMEM: errstr = "Out of memory"; break; case -EROFS: errstr = "Readonly filesystem"; break; case -EEXIST: errstr = "Object already exists"; break; case -ENOSPC: errstr = "No space left"; break; case -ENOENT: errstr = "No such entry"; break; } return errstr; } static void save_error_info(struct btrfs_fs_info *fs_info) { /* * today we only save the error info into ram. Long term we'll * also send it down to the disk */ set_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state); } /* btrfs handle error by forcing the filesystem readonly */ static void btrfs_handle_error(struct btrfs_fs_info *fs_info) { struct super_block *sb = fs_info->sb; if (sb->s_flags & MS_RDONLY) return; if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) { sb->s_flags |= MS_RDONLY; btrfs_info(fs_info, "forced readonly"); /* * Note that a running device replace operation is not * canceled here although there is no way to update * the progress. It would add the risk of a deadlock, * therefore the canceling is ommited. The only penalty * is that some I/O remains active until the procedure * completes. The next time when the filesystem is * mounted writeable again, the device replace * operation continues. */ } } #ifdef CONFIG_PRINTK /* * __btrfs_std_error decodes expected errors from the caller and * invokes the approciate error response. */ void __btrfs_std_error(struct btrfs_fs_info *fs_info, const char *function, unsigned int line, int errno, const char *fmt, ...) { struct super_block *sb = fs_info->sb; const char *errstr; /* * Special case: if the error is EROFS, and we're already * under MS_RDONLY, then it is safe here. */ if (errno == -EROFS && (sb->s_flags & MS_RDONLY)) return; errstr = btrfs_decode_error(errno); if (fmt) { struct va_format vaf; va_list args; va_start(args, fmt); vaf.fmt = fmt; vaf.va = &args; printk(KERN_CRIT "BTRFS error (device %s) in %s:%d: errno=%d %s (%pV)\n", sb->s_id, function, line, errno, errstr, &vaf); va_end(args); } else { printk(KERN_CRIT "BTRFS error (device %s) in %s:%d: errno=%d %s\n", sb->s_id, function, line, errno, errstr); } /* Don't go through full error handling during mount */ save_error_info(fs_info); if (sb->s_flags & MS_BORN) btrfs_handle_error(fs_info); } static const char * const logtypes[] = { "emergency", "alert", "critical", "error", "warning", "notice", "info", "debug", }; void btrfs_printk(const struct btrfs_fs_info *fs_info, const char *fmt, ...) { struct super_block *sb = fs_info->sb; char lvl[4]; struct va_format vaf; va_list args; const char *type = logtypes[4]; int kern_level; va_start(args, fmt); kern_level = printk_get_level(fmt); if (kern_level) { size_t size = printk_skip_level(fmt) - fmt; memcpy(lvl, fmt, size); lvl[size] = '\0'; fmt += size; type = logtypes[kern_level - '0']; } else *lvl = '\0'; vaf.fmt = fmt; vaf.va = &args; printk("%sBTRFS %s (device %s): %pV\n", lvl, type, sb->s_id, &vaf); va_end(args); } #else void __btrfs_std_error(struct btrfs_fs_info *fs_info, const char *function, unsigned int line, int errno, const char *fmt, ...) { struct super_block *sb = fs_info->sb; /* * Special case: if the error is EROFS, and we're already * under MS_RDONLY, then it is safe here. */ if (errno == -EROFS && (sb->s_flags & MS_RDONLY)) return; /* Don't go through full error handling during mount */ if (sb->s_flags & MS_BORN) { save_error_info(fs_info); btrfs_handle_error(fs_info); } } #endif /* * We only mark the transaction aborted and then set the file system read-only. * This will prevent new transactions from starting or trying to join this * one. * * This means that error recovery at the call site is limited to freeing * any local memory allocations and passing the error code up without * further cleanup. The transaction should complete as it normally would * in the call path but will return -EIO. * * We'll complete the cleanup in btrfs_end_transaction and * btrfs_commit_transaction. */ void __btrfs_abort_transaction(struct btrfs_trans_handle *trans, struct btrfs_root *root, const char *function, unsigned int line, int errno) { /* * Report first abort since mount */ if (!test_and_set_bit(BTRFS_FS_STATE_TRANS_ABORTED, &root->fs_info->fs_state)) { WARN(1, KERN_DEBUG "btrfs: Transaction aborted (error %d)\n", errno); } trans->aborted = errno; /* Nothing used. The other threads that have joined this * transaction may be able to continue. */ if (!trans->blocks_used) { const char *errstr; errstr = btrfs_decode_error(errno); btrfs_warn(root->fs_info, "%s:%d: Aborting unused transaction(%s).", function, line, errstr); return; } ACCESS_ONCE(trans->transaction->aborted) = errno; __btrfs_std_error(root->fs_info, function, line, errno, NULL); } /* * __btrfs_panic decodes unexpected, fatal errors from the caller, * issues an alert, and either panics or BUGs, depending on mount options. */ void __btrfs_panic(struct btrfs_fs_info *fs_info, const char *function, unsigned int line, int errno, const char *fmt, ...) { char *s_id = ""; const char *errstr; struct va_format vaf = { .fmt = fmt }; va_list args; if (fs_info) s_id = fs_info->sb->s_id; va_start(args, fmt); vaf.va = &args; errstr = btrfs_decode_error(errno); if (fs_info && (fs_info->mount_opt & BTRFS_MOUNT_PANIC_ON_FATAL_ERROR)) panic(KERN_CRIT "BTRFS panic (device %s) in %s:%d: %pV (errno=%d %s)\n", s_id, function, line, &vaf, errno, errstr); printk(KERN_CRIT "BTRFS panic (device %s) in %s:%d: %pV (errno=%d %s)\n", s_id, function, line, &vaf, errno, errstr); va_end(args); /* Caller calls BUG() */ } static void btrfs_put_super(struct super_block *sb) { (void)close_ctree(btrfs_sb(sb)->tree_root); /* FIXME: need to fix VFS to return error? */ /* AV: return it _where_? ->put_super() can be triggered by any number * of async events, up to and including delivery of SIGKILL to the * last process that kept it busy. Or segfault in the aforementioned * process... Whom would you report that to? */ } enum { Opt_degraded, Opt_subvol, Opt_subvolid, Opt_device, Opt_nodatasum, Opt_nodatacow, Opt_max_inline, Opt_alloc_start, Opt_nobarrier, Opt_ssd, Opt_nossd, Opt_ssd_spread, Opt_thread_pool, Opt_noacl, Opt_compress, Opt_compress_type, Opt_compress_force, Opt_compress_force_type, Opt_notreelog, Opt_ratio, Opt_flushoncommit, Opt_discard, Opt_space_cache, Opt_clear_cache, Opt_user_subvol_rm_allowed, Opt_enospc_debug, Opt_subvolrootid, Opt_defrag, Opt_inode_cache, Opt_no_space_cache, Opt_recovery, Opt_skip_balance, Opt_check_integrity, Opt_check_integrity_including_extent_data, Opt_check_integrity_print_mask, Opt_fatal_errors, Opt_err, }; static match_table_t tokens = { {Opt_degraded, "degraded"}, {Opt_subvol, "subvol=%s"}, {Opt_subvolid, "subvolid=%d"}, {Opt_device, "device=%s"}, {Opt_nodatasum, "nodatasum"}, {Opt_nodatacow, "nodatacow"}, {Opt_nobarrier, "nobarrier"}, {Opt_max_inline, "max_inline=%s"}, {Opt_alloc_start, "alloc_start=%s"}, {Opt_thread_pool, "thread_pool=%d"}, {Opt_compress, "compress"}, {Opt_compress_type, "compress=%s"}, {Opt_compress_force, "compress-force"}, {Opt_compress_force_type, "compress-force=%s"}, {Opt_ssd, "ssd"}, {Opt_ssd_spread, "ssd_spread"}, {Opt_nossd, "nossd"}, {Opt_noacl, "noacl"}, {Opt_notreelog, "notreelog"}, {Opt_flushoncommit, "flushoncommit"}, {Opt_ratio, "metadata_ratio=%d"}, {Opt_discard, "discard"}, {Opt_space_cache, "space_cache"}, {Opt_clear_cache, "clear_cache"}, {Opt_user_subvol_rm_allowed, "user_subvol_rm_allowed"}, {Opt_enospc_debug, "enospc_debug"}, {Opt_subvolrootid, "subvolrootid=%d"}, {Opt_defrag, "autodefrag"}, {Opt_inode_cache, "inode_cache"}, {Opt_no_space_cache, "nospace_cache"}, {Opt_recovery, "recovery"}, {Opt_skip_balance, "skip_balance"}, {Opt_check_integrity, "check_int"}, {Opt_check_integrity_including_extent_data, "check_int_data"}, {Opt_check_integrity_print_mask, "check_int_print_mask=%d"}, {Opt_fatal_errors, "fatal_errors=%s"}, {Opt_err, NULL}, }; /* * Regular mount options parser. Everything that is needed only when * reading in a new superblock is parsed here. * XXX JDM: This needs to be cleaned up for remount. */ int btrfs_parse_options(struct btrfs_root *root, char *options) { struct btrfs_fs_info *info = root->fs_info; substring_t args[MAX_OPT_ARGS]; char *p, *num, *orig = NULL; u64 cache_gen; int intarg; int ret = 0; char *compress_type; bool compress_force = false; cache_gen = btrfs_super_cache_generation(root->fs_info->super_copy); if (cache_gen) btrfs_set_opt(info->mount_opt, SPACE_CACHE); if (!options) goto out; /* * strsep changes the string, duplicate it because parse_options * gets called twice */ options = kstrdup(options, GFP_NOFS); if (!options) return -ENOMEM; orig = options; while ((p = strsep(&options, ",")) != NULL) { int token; if (!*p) continue; token = match_token(p, tokens, args); switch (token) { case Opt_degraded: printk(KERN_INFO "btrfs: allowing degraded mounts\n"); btrfs_set_opt(info->mount_opt, DEGRADED); break; case Opt_subvol: case Opt_subvolid: case Opt_subvolrootid: case Opt_device: /* * These are parsed by btrfs_parse_early_options * and can be happily ignored here. */ break; case Opt_nodatasum: printk(KERN_INFO "btrfs: setting nodatasum\n"); btrfs_set_opt(info->mount_opt, NODATASUM); break; case Opt_nodatacow: if (!btrfs_test_opt(root, COMPRESS) || !btrfs_test_opt(root, FORCE_COMPRESS)) { printk(KERN_INFO "btrfs: setting nodatacow, compression disabled\n"); } else { printk(KERN_INFO "btrfs: setting nodatacow\n"); } info->compress_type = BTRFS_COMPRESS_NONE; btrfs_clear_opt(info->mount_opt, COMPRESS); btrfs_clear_opt(info->mount_opt, FORCE_COMPRESS); btrfs_set_opt(info->mount_opt, NODATACOW); btrfs_set_opt(info->mount_opt, NODATASUM); break; case Opt_compress_force: case Opt_compress_force_type: compress_force = true; /* Fallthrough */ case Opt_compress: case Opt_compress_type: if (token == Opt_compress || token == Opt_compress_force || strcmp(args[0].from, "zlib") == 0) { compress_type = "zlib"; info->compress_type = BTRFS_COMPRESS_ZLIB; btrfs_set_opt(info->mount_opt, COMPRESS); btrfs_clear_opt(info->mount_opt, NODATACOW); btrfs_clear_opt(info->mount_opt, NODATASUM); } else if (strcmp(args[0].from, "lzo") == 0) { compress_type = "lzo"; info->compress_type = BTRFS_COMPRESS_LZO; btrfs_set_opt(info->mount_opt, COMPRESS); btrfs_clear_opt(info->mount_opt, NODATACOW); btrfs_clear_opt(info->mount_opt, NODATASUM); btrfs_set_fs_incompat(info, COMPRESS_LZO); } else if (strncmp(args[0].from, "no", 2) == 0) { compress_type = "no"; info->compress_type = BTRFS_COMPRESS_NONE; btrfs_clear_opt(info->mount_opt, COMPRESS); btrfs_clear_opt(info->mount_opt, FORCE_COMPRESS); compress_force = false; } else { ret = -EINVAL; goto out; } if (compress_force) { btrfs_set_opt(info->mount_opt, FORCE_COMPRESS); pr_info("btrfs: force %s compression\n", compress_type); } else pr_info("btrfs: use %s compression\n", compress_type); break; case Opt_ssd: printk(KERN_INFO "btrfs: use ssd allocation scheme\n"); btrfs_set_opt(info->mount_opt, SSD); break; case Opt_ssd_spread: printk(KERN_INFO "btrfs: use spread ssd " "allocation scheme\n"); btrfs_set_opt(info->mount_opt, SSD); btrfs_set_opt(info->mount_opt, SSD_SPREAD); break; case Opt_nossd: printk(KERN_INFO "btrfs: not using ssd allocation " "scheme\n"); btrfs_set_opt(info->mount_opt, NOSSD); btrfs_clear_opt(info->mount_opt, SSD); btrfs_clear_opt(info->mount_opt, SSD_SPREAD); break; case Opt_nobarrier: printk(KERN_INFO "btrfs: turning off barriers\n"); btrfs_set_opt(info->mount_opt, NOBARRIER); break; case Opt_thread_pool: intarg = 0; match_int(&args[0], &intarg); if (intarg) info->thread_pool_size = intarg; break; case Opt_max_inline: num = match_strdup(&args[0]); if (num) { info->max_inline = memparse(num, NULL); kfree(num); if (info->max_inline) { info->max_inline = max_t(u64, info->max_inline, root->sectorsize); } printk(KERN_INFO "btrfs: max_inline at %llu\n", (unsigned long long)info->max_inline); } break; case Opt_alloc_start: num = match_strdup(&args[0]); if (num) { mutex_lock(&info->chunk_mutex); info->alloc_start = memparse(num, NULL); mutex_unlock(&info->chunk_mutex); kfree(num); printk(KERN_INFO "btrfs: allocations start at %llu\n", (unsigned long long)info->alloc_start); } break; case Opt_noacl: root->fs_info->sb->s_flags &= ~MS_POSIXACL; break; case Opt_notreelog: printk(KERN_INFO "btrfs: disabling tree log\n"); btrfs_set_opt(info->mount_opt, NOTREELOG); break; case Opt_flushoncommit: printk(KERN_INFO "btrfs: turning on flush-on-commit\n"); btrfs_set_opt(info->mount_opt, FLUSHONCOMMIT); break; case Opt_ratio: intarg = 0; match_int(&args[0], &intarg); if (intarg) { info->metadata_ratio = intarg; printk(KERN_INFO "btrfs: metadata ratio %d\n", info->metadata_ratio); } break; case Opt_discard: btrfs_set_opt(info->mount_opt, DISCARD); break; case Opt_space_cache: btrfs_set_opt(info->mount_opt, SPACE_CACHE); break; case Opt_no_space_cache: printk(KERN_INFO "btrfs: disabling disk space caching\n"); btrfs_clear_opt(info->mount_opt, SPACE_CACHE); break; case Opt_inode_cache: printk(KERN_INFO "btrfs: enabling inode map caching\n"); btrfs_set_opt(info->mount_opt, INODE_MAP_CACHE); break; case Opt_clear_cache: printk(KERN_INFO "btrfs: force clearing of disk cache\n"); btrfs_set_opt(info->mount_opt, CLEAR_CACHE); break; case Opt_user_subvol_rm_allowed: btrfs_set_opt(info->mount_opt, USER_SUBVOL_RM_ALLOWED); break; case Opt_enospc_debug: btrfs_set_opt(info->mount_opt, ENOSPC_DEBUG); break; case Opt_defrag: printk(KERN_INFO "btrfs: enabling auto defrag\n"); btrfs_set_opt(info->mount_opt, AUTO_DEFRAG); break; case Opt_recovery: printk(KERN_INFO "btrfs: enabling auto recovery\n"); btrfs_set_opt(info->mount_opt, RECOVERY); break; case Opt_skip_balance: btrfs_set_opt(info->mount_opt, SKIP_BALANCE); break; #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY case Opt_check_integrity_including_extent_data: printk(KERN_INFO "btrfs: enabling check integrity" " including extent data\n"); btrfs_set_opt(info->mount_opt, CHECK_INTEGRITY_INCLUDING_EXTENT_DATA); btrfs_set_opt(info->mount_opt, CHECK_INTEGRITY); break; case Opt_check_integrity: printk(KERN_INFO "btrfs: enabling check integrity\n"); btrfs_set_opt(info->mount_opt, CHECK_INTEGRITY); break; case Opt_check_integrity_print_mask: intarg = 0; match_int(&args[0], &intarg); if (intarg) { info->check_integrity_print_mask = intarg; printk(KERN_INFO "btrfs:" " check_integrity_print_mask 0x%x\n", info->check_integrity_print_mask); } break; #else case Opt_check_integrity_including_extent_data: case Opt_check_integrity: case Opt_check_integrity_print_mask: printk(KERN_ERR "btrfs: support for check_integrity*" " not compiled in!\n"); ret = -EINVAL; goto out; #endif case Opt_fatal_errors: if (strcmp(args[0].from, "panic") == 0) btrfs_set_opt(info->mount_opt, PANIC_ON_FATAL_ERROR); else if (strcmp(args[0].from, "bug") == 0) btrfs_clear_opt(info->mount_opt, PANIC_ON_FATAL_ERROR); else { ret = -EINVAL; goto out; } break; case Opt_err: printk(KERN_INFO "btrfs: unrecognized mount option " "'%s'\n", p); ret = -EINVAL; goto out; default: break; } } out: if (!ret && btrfs_test_opt(root, SPACE_CACHE)) printk(KERN_INFO "btrfs: disk space caching is enabled\n"); kfree(orig); return ret; } /* * Parse mount options that are required early in the mount process. * * All other options will be parsed on much later in the mount process and * only when we need to allocate a new super block. */ static int btrfs_parse_early_options(const char *options, fmode_t flags, void *holder, char **subvol_name, u64 *subvol_objectid, struct btrfs_fs_devices **fs_devices) { substring_t args[MAX_OPT_ARGS]; char *device_name, *opts, *orig, *p; int error = 0; int intarg; if (!options) return 0; /* * strsep changes the string, duplicate it because parse_options * gets called twice */ opts = kstrdup(options, GFP_KERNEL); if (!opts) return -ENOMEM; orig = opts; while ((p = strsep(&opts, ",")) != NULL) { int token; if (!*p) continue; token = match_token(p, tokens, args); switch (token) { case Opt_subvol: kfree(*subvol_name); *subvol_name = match_strdup(&args[0]); break; case Opt_subvolid: intarg = 0; error = match_int(&args[0], &intarg); if (!error) { /* we want the original fs_tree */ if (!intarg) *subvol_objectid = BTRFS_FS_TREE_OBJECTID; else *subvol_objectid = intarg; } break; case Opt_subvolrootid: printk(KERN_WARNING "btrfs: 'subvolrootid' mount option is deprecated and has no effect\n"); break; case Opt_device: device_name = match_strdup(&args[0]); if (!device_name) { error = -ENOMEM; goto out; } error = btrfs_scan_one_device(device_name, flags, holder, fs_devices); kfree(device_name); if (error) goto out; break; default: break; } } out: kfree(orig); return error; } static struct dentry *get_default_root(struct super_block *sb, u64 subvol_objectid) { struct btrfs_fs_info *fs_info = btrfs_sb(sb); struct btrfs_root *root = fs_info->tree_root; struct btrfs_root *new_root; struct btrfs_dir_item *di; struct btrfs_path *path; struct btrfs_key location; struct inode *inode; u64 dir_id; int new = 0; /* * We have a specific subvol we want to mount, just setup location and * go look up the root. */ if (subvol_objectid) { location.objectid = subvol_objectid; location.type = BTRFS_ROOT_ITEM_KEY; location.offset = (u64)-1; goto find_root; } path = btrfs_alloc_path(); if (!path) return ERR_PTR(-ENOMEM); path->leave_spinning = 1; /* * Find the "default" dir item which points to the root item that we * will mount by default if we haven't been given a specific subvolume * to mount. */ dir_id = btrfs_super_root_dir(fs_info->super_copy); di = btrfs_lookup_dir_item(NULL, root, path, dir_id, "default", 7, 0); if (IS_ERR(di)) { btrfs_free_path(path); return ERR_CAST(di); } if (!di) { /* * Ok the default dir item isn't there. This is weird since * it's always been there, but don't freak out, just try and * mount to root most subvolume. */ btrfs_free_path(path); dir_id = BTRFS_FIRST_FREE_OBJECTID; new_root = fs_info->fs_root; goto setup_root; } btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location); btrfs_free_path(path); find_root: new_root = btrfs_read_fs_root_no_name(fs_info, &location); if (IS_ERR(new_root)) return ERR_CAST(new_root); if (btrfs_root_refs(&new_root->root_item) == 0) return ERR_PTR(-ENOENT); dir_id = btrfs_root_dirid(&new_root->root_item); setup_root: location.objectid = dir_id; location.type = BTRFS_INODE_ITEM_KEY; location.offset = 0; inode = btrfs_iget(sb, &location, new_root, &new); if (IS_ERR(inode)) return ERR_CAST(inode); /* * If we're just mounting the root most subvol put the inode and return * a reference to the dentry. We will have already gotten a reference * to the inode in btrfs_fill_super so we're good to go. */ if (!new && sb->s_root->d_inode == inode) { iput(inode); return dget(sb->s_root); } return d_obtain_alias(inode); } static int btrfs_fill_super(struct super_block *sb, struct btrfs_fs_devices *fs_devices, void *data, int silent) { struct inode *inode; struct btrfs_fs_info *fs_info = btrfs_sb(sb); struct btrfs_key key; int err; sb->s_maxbytes = MAX_LFS_FILESIZE; sb->s_magic = BTRFS_SUPER_MAGIC; sb->s_op = &btrfs_super_ops; sb->s_d_op = &btrfs_dentry_operations; sb->s_export_op = &btrfs_export_ops; sb->s_xattr = btrfs_xattr_handlers; sb->s_time_gran = 1; #ifdef CONFIG_BTRFS_FS_POSIX_ACL sb->s_flags |= MS_POSIXACL; #endif sb->s_flags |= MS_I_VERSION; err = open_ctree(sb, fs_devices, (char *)data); if (err) { printk("btrfs: open_ctree failed\n"); return err; } key.objectid = BTRFS_FIRST_FREE_OBJECTID; key.type = BTRFS_INODE_ITEM_KEY; key.offset = 0; inode = btrfs_iget(sb, &key, fs_info->fs_root, NULL); if (IS_ERR(inode)) { err = PTR_ERR(inode); goto fail_close; } sb->s_root = d_make_root(inode); if (!sb->s_root) { err = -ENOMEM; goto fail_close; } save_mount_options(sb, data); cleancache_init_fs(sb); sb->s_flags |= MS_ACTIVE; return 0; fail_close: close_ctree(fs_info->tree_root); return err; } int btrfs_sync_fs(struct super_block *sb, int wait) { struct btrfs_trans_handle *trans; struct btrfs_fs_info *fs_info = btrfs_sb(sb); struct btrfs_root *root = fs_info->tree_root; trace_btrfs_sync_fs(wait); if (!wait) { filemap_flush(fs_info->btree_inode->i_mapping); return 0; } btrfs_wait_ordered_extents(root, 1); trans = btrfs_attach_transaction_barrier(root); if (IS_ERR(trans)) { /* no transaction, don't bother */ if (PTR_ERR(trans) == -ENOENT) return 0; return PTR_ERR(trans); } return btrfs_commit_transaction(trans, root); } static int btrfs_show_options(struct seq_file *seq, struct dentry *dentry) { struct btrfs_fs_info *info = btrfs_sb(dentry->d_sb); struct btrfs_root *root = info->tree_root; char *compress_type; if (btrfs_test_opt(root, DEGRADED)) seq_puts(seq, ",degraded"); if (btrfs_test_opt(root, NODATASUM)) seq_puts(seq, ",nodatasum"); if (btrfs_test_opt(root, NODATACOW)) seq_puts(seq, ",nodatacow"); if (btrfs_test_opt(root, NOBARRIER)) seq_puts(seq, ",nobarrier"); if (info->max_inline != 8192 * 1024) seq_printf(seq, ",max_inline=%llu", (unsigned long long)info->max_inline); if (info->alloc_start != 0) seq_printf(seq, ",alloc_start=%llu", (unsigned long long)info->alloc_start); if (info->thread_pool_size != min_t(unsigned long, num_online_cpus() + 2, 8)) seq_printf(seq, ",thread_pool=%d", info->thread_pool_size); if (btrfs_test_opt(root, COMPRESS)) { if (info->compress_type == BTRFS_COMPRESS_ZLIB) compress_type = "zlib"; else compress_type = "lzo"; if (btrfs_test_opt(root, FORCE_COMPRESS)) seq_printf(seq, ",compress-force=%s", compress_type); else seq_printf(seq, ",compress=%s", compress_type); } if (btrfs_test_opt(root, NOSSD)) seq_puts(seq, ",nossd"); if (btrfs_test_opt(root, SSD_SPREAD)) seq_puts(seq, ",ssd_spread"); else if (btrfs_test_opt(root, SSD)) seq_puts(seq, ",ssd"); if (btrfs_test_opt(root, NOTREELOG)) seq_puts(seq, ",notreelog"); if (btrfs_test_opt(root, FLUSHONCOMMIT)) seq_puts(seq, ",flushoncommit"); if (btrfs_test_opt(root, DISCARD)) seq_puts(seq, ",discard"); if (!(root->fs_info->sb->s_flags & MS_POSIXACL)) seq_puts(seq, ",noacl"); if (btrfs_test_opt(root, SPACE_CACHE)) seq_puts(seq, ",space_cache"); else seq_puts(seq, ",nospace_cache"); if (btrfs_test_opt(root, CLEAR_CACHE)) seq_puts(seq, ",clear_cache"); if (btrfs_test_opt(root, USER_SUBVOL_RM_ALLOWED)) seq_puts(seq, ",user_subvol_rm_allowed"); if (btrfs_test_opt(root, ENOSPC_DEBUG)) seq_puts(seq, ",enospc_debug"); if (btrfs_test_opt(root, AUTO_DEFRAG)) seq_puts(seq, ",autodefrag"); if (btrfs_test_opt(root, INODE_MAP_CACHE)) seq_puts(seq, ",inode_cache"); if (btrfs_test_opt(root, SKIP_BALANCE)) seq_puts(seq, ",skip_balance"); if (btrfs_test_opt(root, PANIC_ON_FATAL_ERROR)) seq_puts(seq, ",fatal_errors=panic"); return 0; } static int btrfs_test_super(struct super_block *s, void *data) { struct btrfs_fs_info *p = data; struct btrfs_fs_info *fs_info = btrfs_sb(s); return fs_info->fs_devices == p->fs_devices; } static int btrfs_set_super(struct super_block *s, void *data) { int err = set_anon_super(s, data); if (!err) s->s_fs_info = data; return err; } /* * subvolumes are identified by ino 256 */ static inline int is_subvolume_inode(struct inode *inode) { if (inode && inode->i_ino == BTRFS_FIRST_FREE_OBJECTID) return 1; return 0; } /* * This will strip out the subvol=%s argument for an argument string and add * subvolid=0 to make sure we get the actual tree root for path walking to the * subvol we want. */ static char *setup_root_args(char *args) { unsigned len = strlen(args) + 2 + 1; char *src, *dst, *buf; /* * We need the same args as before, but with this substitution: * s!subvol=[^,]+!subvolid=0! * * Since the replacement string is up to 2 bytes longer than the * original, allocate strlen(args) + 2 + 1 bytes. */ src = strstr(args, "subvol="); /* This shouldn't happen, but just in case.. */ if (!src) return NULL; buf = dst = kmalloc(len, GFP_NOFS); if (!buf) return NULL; /* * If the subvol= arg is not at the start of the string, * copy whatever precedes it into buf. */ if (src != args) { *src++ = '\0'; strcpy(buf, args); dst += strlen(args); } strcpy(dst, "subvolid=0"); dst += strlen("subvolid=0"); /* * If there is a "," after the original subvol=... string, * copy that suffix into our buffer. Otherwise, we're done. */ src = strchr(src, ','); if (src) strcpy(dst, src); return buf; } static struct dentry *mount_subvol(const char *subvol_name, int flags, const char *device_name, char *data) { struct dentry *root; struct vfsmount *mnt; char *newargs; newargs = setup_root_args(data); if (!newargs) return ERR_PTR(-ENOMEM); mnt = vfs_kern_mount(&btrfs_fs_type, flags, device_name, newargs); kfree(newargs); if (IS_ERR(mnt)) return ERR_CAST(mnt); root = mount_subtree(mnt, subvol_name); if (!IS_ERR(root) && !is_subvolume_inode(root->d_inode)) { struct super_block *s = root->d_sb; dput(root); root = ERR_PTR(-EINVAL); deactivate_locked_super(s); printk(KERN_ERR "btrfs: '%s' is not a valid subvolume\n", subvol_name); } return root; } /* * Find a superblock for the given device / mount point. * * Note: This is based on get_sb_bdev from fs/super.c with a few additions * for multiple device setup. Make sure to keep it in sync. */ static struct dentry *btrfs_mount(struct file_system_type *fs_type, int flags, const char *device_name, void *data) { struct block_device *bdev = NULL; struct super_block *s; struct dentry *root; struct btrfs_fs_devices *fs_devices = NULL; struct btrfs_fs_info *fs_info = NULL; fmode_t mode = FMODE_READ; char *subvol_name = NULL; u64 subvol_objectid = 0; int error = 0; if (!(flags & MS_RDONLY)) mode |= FMODE_WRITE; error = btrfs_parse_early_options(data, mode, fs_type, &subvol_name, &subvol_objectid, &fs_devices); if (error) { kfree(subvol_name); return ERR_PTR(error); } if (subvol_name) { root = mount_subvol(subvol_name, flags, device_name, data); kfree(subvol_name); return root; } error = btrfs_scan_one_device(device_name, mode, fs_type, &fs_devices); if (error) return ERR_PTR(error); /* * Setup a dummy root and fs_info for test/set super. This is because * we don't actually fill this stuff out until open_ctree, but we need * it for searching for existing supers, so this lets us do that and * then open_ctree will properly initialize everything later. */ fs_info = kzalloc(sizeof(struct btrfs_fs_info), GFP_NOFS); if (!fs_info) return ERR_PTR(-ENOMEM); fs_info->fs_devices = fs_devices; fs_info->super_copy = kzalloc(BTRFS_SUPER_INFO_SIZE, GFP_NOFS); fs_info->super_for_commit = kzalloc(BTRFS_SUPER_INFO_SIZE, GFP_NOFS); if (!fs_info->super_copy || !fs_info->super_for_commit) { error = -ENOMEM; goto error_fs_info; } error = btrfs_open_devices(fs_devices, mode, fs_type); if (error) goto error_fs_info; if (!(flags & MS_RDONLY) && fs_devices->rw_devices == 0) { error = -EACCES; goto error_close_devices; } bdev = fs_devices->latest_bdev; s = sget(fs_type, btrfs_test_super, btrfs_set_super, flags | MS_NOSEC, fs_info); if (IS_ERR(s)) { error = PTR_ERR(s); goto error_close_devices; } if (s->s_root) { btrfs_close_devices(fs_devices); free_fs_info(fs_info); if ((flags ^ s->s_flags) & MS_RDONLY) error = -EBUSY; } else { char b[BDEVNAME_SIZE]; strlcpy(s->s_id, bdevname(bdev, b), sizeof(s->s_id)); btrfs_sb(s)->bdev_holder = fs_type; error = btrfs_fill_super(s, fs_devices, data, flags & MS_SILENT ? 1 : 0); } root = !error ? get_default_root(s, subvol_objectid) : ERR_PTR(error); if (IS_ERR(root)) deactivate_locked_super(s); return root; error_close_devices: btrfs_close_devices(fs_devices); error_fs_info: free_fs_info(fs_info); return ERR_PTR(error); } static void btrfs_set_max_workers(struct btrfs_workers *workers, int new_limit) { spin_lock_irq(&workers->lock); workers->max_workers = new_limit; spin_unlock_irq(&workers->lock); } static void btrfs_resize_thread_pool(struct btrfs_fs_info *fs_info, int new_pool_size, int old_pool_size) { if (new_pool_size == old_pool_size) return; fs_info->thread_pool_size = new_pool_size; printk(KERN_INFO "btrfs: resize thread pool %d -> %d\n", old_pool_size, new_pool_size); btrfs_set_max_workers(&fs_info->generic_worker, new_pool_size); btrfs_set_max_workers(&fs_info->workers, new_pool_size); btrfs_set_max_workers(&fs_info->delalloc_workers, new_pool_size); btrfs_set_max_workers(&fs_info->submit_workers, new_pool_size); btrfs_set_max_workers(&fs_info->caching_workers, new_pool_size); btrfs_set_max_workers(&fs_info->fixup_workers, new_pool_size); btrfs_set_max_workers(&fs_info->endio_workers, new_pool_size); btrfs_set_max_workers(&fs_info->endio_meta_workers, new_pool_size); btrfs_set_max_workers(&fs_info->endio_meta_write_workers, new_pool_size); btrfs_set_max_workers(&fs_info->endio_write_workers, new_pool_size); btrfs_set_max_workers(&fs_info->endio_freespace_worker, new_pool_size); btrfs_set_max_workers(&fs_info->delayed_workers, new_pool_size); btrfs_set_max_workers(&fs_info->readahead_workers, new_pool_size); btrfs_set_max_workers(&fs_info->scrub_wr_completion_workers, new_pool_size); } static inline void btrfs_remount_prepare(struct btrfs_fs_info *fs_info) { set_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state); } static inline void btrfs_remount_begin(struct btrfs_fs_info *fs_info, unsigned long old_opts, int flags) { if (btrfs_raw_test_opt(old_opts, AUTO_DEFRAG) && (!btrfs_raw_test_opt(fs_info->mount_opt, AUTO_DEFRAG) || (flags & MS_RDONLY))) { /* wait for any defraggers to finish */ wait_event(fs_info->transaction_wait, (atomic_read(&fs_info->defrag_running) == 0)); if (flags & MS_RDONLY) sync_filesystem(fs_info->sb); } } static inline void btrfs_remount_cleanup(struct btrfs_fs_info *fs_info, unsigned long old_opts) { /* * We need cleanup all defragable inodes if the autodefragment is * close or the fs is R/O. */ if (btrfs_raw_test_opt(old_opts, AUTO_DEFRAG) && (!btrfs_raw_test_opt(fs_info->mount_opt, AUTO_DEFRAG) || (fs_info->sb->s_flags & MS_RDONLY))) { btrfs_cleanup_defrag_inodes(fs_info); } clear_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state); } static int btrfs_remount(struct super_block *sb, int *flags, char *data) { struct btrfs_fs_info *fs_info = btrfs_sb(sb); struct btrfs_root *root = fs_info->tree_root; unsigned old_flags = sb->s_flags; unsigned long old_opts = fs_info->mount_opt; unsigned long old_compress_type = fs_info->compress_type; u64 old_max_inline = fs_info->max_inline; u64 old_alloc_start = fs_info->alloc_start; int old_thread_pool_size = fs_info->thread_pool_size; unsigned int old_metadata_ratio = fs_info->metadata_ratio; int ret; btrfs_remount_prepare(fs_info); ret = btrfs_parse_options(root, data); if (ret) { ret = -EINVAL; goto restore; } btrfs_remount_begin(fs_info, old_opts, *flags); btrfs_resize_thread_pool(fs_info, fs_info->thread_pool_size, old_thread_pool_size); if ((*flags & MS_RDONLY) == (sb->s_flags & MS_RDONLY)) goto out; if (*flags & MS_RDONLY) { /* * this also happens on 'umount -rf' or on shutdown, when * the filesystem is busy. */ sb->s_flags |= MS_RDONLY; btrfs_dev_replace_suspend_for_unmount(fs_info); btrfs_scrub_cancel(fs_info); btrfs_pause_balance(fs_info); ret = btrfs_commit_super(root); if (ret) goto restore; } else { if (fs_info->fs_devices->rw_devices == 0) { ret = -EACCES; goto restore; } if (fs_info->fs_devices->missing_devices > fs_info->num_tolerated_disk_barrier_failures && !(*flags & MS_RDONLY)) { printk(KERN_WARNING "Btrfs: too many missing devices, writeable remount is not allowed\n"); ret = -EACCES; goto restore; } if (btrfs_super_log_root(fs_info->super_copy) != 0) { ret = -EINVAL; goto restore; } ret = btrfs_cleanup_fs_roots(fs_info); if (ret) goto restore; /* recover relocation */ ret = btrfs_recover_relocation(root); if (ret) goto restore; ret = btrfs_resume_balance_async(fs_info); if (ret) goto restore; ret = btrfs_resume_dev_replace_async(fs_info); if (ret) { pr_warn("btrfs: failed to resume dev_replace\n"); goto restore; } sb->s_flags &= ~MS_RDONLY; } out: btrfs_remount_cleanup(fs_info, old_opts); return 0; restore: /* We've hit an error - don't reset MS_RDONLY */ if (sb->s_flags & MS_RDONLY) old_flags |= MS_RDONLY; sb->s_flags = old_flags; fs_info->mount_opt = old_opts; fs_info->compress_type = old_compress_type; fs_info->max_inline = old_max_inline; mutex_lock(&fs_info->chunk_mutex); fs_info->alloc_start = old_alloc_start; mutex_unlock(&fs_info->chunk_mutex); btrfs_resize_thread_pool(fs_info, old_thread_pool_size, fs_info->thread_pool_size); fs_info->metadata_ratio = old_metadata_ratio; btrfs_remount_cleanup(fs_info, old_opts); return ret; } /* Used to sort the devices by max_avail(descending sort) */ static int btrfs_cmp_device_free_bytes(const void *dev_info1, const void *dev_info2) { if (((struct btrfs_device_info *)dev_info1)->max_avail > ((struct btrfs_device_info *)dev_info2)->max_avail) return -1; else if (((struct btrfs_device_info *)dev_info1)->max_avail < ((struct btrfs_device_info *)dev_info2)->max_avail) return 1; else return 0; } /* * sort the devices by max_avail, in which max free extent size of each device * is stored.(Descending Sort) */ static inline void btrfs_descending_sort_devices( struct btrfs_device_info *devices, size_t nr_devices) { sort(devices, nr_devices, sizeof(struct btrfs_device_info), btrfs_cmp_device_free_bytes, NULL); } /* * The helper to calc the free space on the devices that can be used to store * file data. */ static int btrfs_calc_avail_data_space(struct btrfs_root *root, u64 *free_bytes) { struct btrfs_fs_info *fs_info = root->fs_info; struct btrfs_device_info *devices_info; struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; struct btrfs_device *device; u64 skip_space; u64 type; u64 avail_space; u64 used_space; u64 min_stripe_size; int min_stripes = 1, num_stripes = 1; int i = 0, nr_devices; int ret; nr_devices = fs_info->fs_devices->open_devices; BUG_ON(!nr_devices); devices_info = kmalloc(sizeof(*devices_info) * nr_devices, GFP_NOFS); if (!devices_info) return -ENOMEM; /* calc min stripe number for data space alloction */ type = btrfs_get_alloc_profile(root, 1); if (type & BTRFS_BLOCK_GROUP_RAID0) { min_stripes = 2; num_stripes = nr_devices; } else if (type & BTRFS_BLOCK_GROUP_RAID1) { min_stripes = 2; num_stripes = 2; } else if (type & BTRFS_BLOCK_GROUP_RAID10) { min_stripes = 4; num_stripes = 4; } if (type & BTRFS_BLOCK_GROUP_DUP) min_stripe_size = 2 * BTRFS_STRIPE_LEN; else min_stripe_size = BTRFS_STRIPE_LEN; list_for_each_entry(device, &fs_devices->devices, dev_list) { if (!device->in_fs_metadata || !device->bdev || device->is_tgtdev_for_dev_replace) continue; avail_space = device->total_bytes - device->bytes_used; /* align with stripe_len */ do_div(avail_space, BTRFS_STRIPE_LEN); avail_space *= BTRFS_STRIPE_LEN; /* * In order to avoid overwritting the superblock on the drive, * btrfs starts at an offset of at least 1MB when doing chunk * allocation. */ skip_space = 1024 * 1024; /* user can set the offset in fs_info->alloc_start. */ if (fs_info->alloc_start + BTRFS_STRIPE_LEN <= device->total_bytes) skip_space = max(fs_info->alloc_start, skip_space); /* * btrfs can not use the free space in [0, skip_space - 1], * we must subtract it from the total. In order to implement * it, we account the used space in this range first. */ ret = btrfs_account_dev_extents_size(device, 0, skip_space - 1, &used_space); if (ret) { kfree(devices_info); return ret; } /* calc the free space in [0, skip_space - 1] */ skip_space -= used_space; /* * we can use the free space in [0, skip_space - 1], subtract * it from the total. */ if (avail_space && avail_space >= skip_space) avail_space -= skip_space; else avail_space = 0; if (avail_space < min_stripe_size) continue; devices_info[i].dev = device; devices_info[i].max_avail = avail_space; i++; } nr_devices = i; btrfs_descending_sort_devices(devices_info, nr_devices); i = nr_devices - 1; avail_space = 0; while (nr_devices >= min_stripes) { if (num_stripes > nr_devices) num_stripes = nr_devices; if (devices_info[i].max_avail >= min_stripe_size) { int j; u64 alloc_size; avail_space += devices_info[i].max_avail * num_stripes; alloc_size = devices_info[i].max_avail; for (j = i + 1 - num_stripes; j <= i; j++) devices_info[j].max_avail -= alloc_size; } i--; nr_devices--; } kfree(devices_info); *free_bytes = avail_space; return 0; } static int btrfs_statfs(struct dentry *dentry, struct kstatfs *buf) { struct btrfs_fs_info *fs_info = btrfs_sb(dentry->d_sb); struct btrfs_super_block *disk_super = fs_info->super_copy; struct list_head *head = &fs_info->space_info; struct btrfs_space_info *found; u64 total_used = 0; u64 total_free_data = 0; int bits = dentry->d_sb->s_blocksize_bits; __be32 *fsid = (__be32 *)fs_info->fsid; int ret; /* holding chunk_muext to avoid allocating new chunks */ mutex_lock(&fs_info->chunk_mutex); rcu_read_lock(); list_for_each_entry_rcu(found, head, list) { if (found->flags & BTRFS_BLOCK_GROUP_DATA) { total_free_data += found->disk_total - found->disk_used; total_free_data -= btrfs_account_ro_block_groups_free_space(found); } total_used += found->disk_used; } rcu_read_unlock(); buf->f_namelen = BTRFS_NAME_LEN; buf->f_blocks = btrfs_super_total_bytes(disk_super) >> bits; buf->f_bfree = buf->f_blocks - (total_used >> bits); buf->f_bsize = dentry->d_sb->s_blocksize; buf->f_type = BTRFS_SUPER_MAGIC; buf->f_bavail = total_free_data; ret = btrfs_calc_avail_data_space(fs_info->tree_root, &total_free_data); if (ret) { mutex_unlock(&fs_info->chunk_mutex); return ret; } buf->f_bavail += total_free_data; buf->f_bavail = buf->f_bavail >> bits; mutex_unlock(&fs_info->chunk_mutex); /* We treat it as constant endianness (it doesn't matter _which_) because we want the fsid to come out the same whether mounted on a big-endian or little-endian host */ buf->f_fsid.val[0] = be32_to_cpu(fsid[0]) ^ be32_to_cpu(fsid[2]); buf->f_fsid.val[1] = be32_to_cpu(fsid[1]) ^ be32_to_cpu(fsid[3]); /* Mask in the root object ID too, to disambiguate subvols */ buf->f_fsid.val[0] ^= BTRFS_I(dentry->d_inode)->root->objectid >> 32; buf->f_fsid.val[1] ^= BTRFS_I(dentry->d_inode)->root->objectid; return 0; } static void btrfs_kill_super(struct super_block *sb) { struct btrfs_fs_info *fs_info = btrfs_sb(sb); kill_anon_super(sb); free_fs_info(fs_info); } static struct file_system_type btrfs_fs_type = { .owner = THIS_MODULE, .name = "btrfs", .mount = btrfs_mount, .kill_sb = btrfs_kill_super, .fs_flags = FS_REQUIRES_DEV, }; MODULE_ALIAS_FS("btrfs"); /* * used by btrfsctl to scan devices when no FS is mounted */ static long btrfs_control_ioctl(struct file *file, unsigned int cmd, unsigned long arg) { struct btrfs_ioctl_vol_args *vol; struct btrfs_fs_devices *fs_devices; int ret = -ENOTTY; if (!capable(CAP_SYS_ADMIN)) return -EPERM; vol = memdup_user((void __user *)arg, sizeof(*vol)); if (IS_ERR(vol)) return PTR_ERR(vol); switch (cmd) { case BTRFS_IOC_SCAN_DEV: ret = btrfs_scan_one_device(vol->name, FMODE_READ, &btrfs_fs_type, &fs_devices); break; case BTRFS_IOC_DEVICES_READY: ret = btrfs_scan_one_device(vol->name, FMODE_READ, &btrfs_fs_type, &fs_devices); if (ret) break; ret = !(fs_devices->num_devices == fs_devices->total_devices); break; } kfree(vol); return ret; } static int btrfs_freeze(struct super_block *sb) { struct btrfs_trans_handle *trans; struct btrfs_root *root = btrfs_sb(sb)->tree_root; trans = btrfs_attach_transaction_barrier(root); if (IS_ERR(trans)) { /* no transaction, don't bother */ if (PTR_ERR(trans) == -ENOENT) return 0; return PTR_ERR(trans); } return btrfs_commit_transaction(trans, root); } static int btrfs_unfreeze(struct super_block *sb) { return 0; } static int btrfs_show_devname(struct seq_file *m, struct dentry *root) { struct btrfs_fs_info *fs_info = btrfs_sb(root->d_sb); struct btrfs_fs_devices *cur_devices; struct btrfs_device *dev, *first_dev = NULL; struct list_head *head; struct rcu_string *name; mutex_lock(&fs_info->fs_devices->device_list_mutex); cur_devices = fs_info->fs_devices; while (cur_devices) { head = &cur_devices->devices; list_for_each_entry(dev, head, dev_list) { if (dev->missing) continue; if (!first_dev || dev->devid < first_dev->devid) first_dev = dev; } cur_devices = cur_devices->seed; } if (first_dev) { rcu_read_lock(); name = rcu_dereference(first_dev->name); seq_escape(m, name->str, " \t\n\\"); rcu_read_unlock(); } else { WARN_ON(1); } mutex_unlock(&fs_info->fs_devices->device_list_mutex); return 0; } static const struct super_operations btrfs_super_ops = { .drop_inode = btrfs_drop_inode, .evict_inode = btrfs_evict_inode, .put_super = btrfs_put_super, .sync_fs = btrfs_sync_fs, .show_options = btrfs_show_options, .show_devname = btrfs_show_devname, .write_inode = btrfs_write_inode, .alloc_inode = btrfs_alloc_inode, .destroy_inode = btrfs_destroy_inode, .statfs = btrfs_statfs, .remount_fs = btrfs_remount, .freeze_fs = btrfs_freeze, .unfreeze_fs = btrfs_unfreeze, }; static const struct file_operations btrfs_ctl_fops = { .unlocked_ioctl = btrfs_control_ioctl, .compat_ioctl = btrfs_control_ioctl, .owner = THIS_MODULE, .llseek = noop_llseek, }; static struct miscdevice btrfs_misc = { .minor = BTRFS_MINOR, .name = "btrfs-control", .fops = &btrfs_ctl_fops }; MODULE_ALIAS_MISCDEV(BTRFS_MINOR); MODULE_ALIAS("devname:btrfs-control"); static int btrfs_interface_init(void) { return misc_register(&btrfs_misc); } static void btrfs_interface_exit(void) { if (misc_deregister(&btrfs_misc) < 0) printk(KERN_INFO "btrfs: misc_deregister failed for control device\n"); } static int __init init_btrfs_fs(void) { int err; err = btrfs_init_sysfs(); if (err) return err; btrfs_init_compress(); err = btrfs_init_cachep(); if (err) goto free_compress; err = extent_io_init(); if (err) goto free_cachep; err = extent_map_init(); if (err) goto free_extent_io; err = ordered_data_init(); if (err) goto free_extent_map; err = btrfs_delayed_inode_init(); if (err) goto free_ordered_data; err = btrfs_auto_defrag_init(); if (err) goto free_delayed_inode; err = btrfs_delayed_ref_init(); if (err) goto free_auto_defrag; err = btrfs_interface_init(); if (err) goto free_delayed_ref; err = register_filesystem(&btrfs_fs_type); if (err) goto unregister_ioctl; btrfs_init_lockdep(); #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS btrfs_test_free_space_cache(); #endif printk(KERN_INFO "%s loaded\n", BTRFS_BUILD_VERSION); return 0; unregister_ioctl: btrfs_interface_exit(); free_delayed_ref: btrfs_delayed_ref_exit(); free_auto_defrag: btrfs_auto_defrag_exit(); free_delayed_inode: btrfs_delayed_inode_exit(); free_ordered_data: ordered_data_exit(); free_extent_map: extent_map_exit(); free_extent_io: extent_io_exit(); free_cachep: btrfs_destroy_cachep(); free_compress: btrfs_exit_compress(); btrfs_exit_sysfs(); return err; } static void __exit exit_btrfs_fs(void) { btrfs_destroy_cachep(); btrfs_delayed_ref_exit(); btrfs_auto_defrag_exit(); btrfs_delayed_inode_exit(); ordered_data_exit(); extent_map_exit(); extent_io_exit(); btrfs_interface_exit(); unregister_filesystem(&btrfs_fs_type); btrfs_exit_sysfs(); btrfs_cleanup_fs_uuids(); btrfs_exit_compress(); } module_init(init_btrfs_fs) module_exit(exit_btrfs_fs) MODULE_LICENSE("GPL");