/* * Copyright (c) 2000-2005 Silicon Graphics, Inc. * All Rights Reserved. * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License as * published by the Free Software Foundation. * * This program is distributed in the hope that it would be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write the Free Software Foundation, * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA */ #include "xfs.h" #include "xfs_fs.h" #include "xfs_bit.h" #include "xfs_log.h" #include "xfs_inum.h" #include "xfs_sb.h" #include "xfs_ag.h" #include "xfs_trans.h" #include "xfs_mount.h" #include "xfs_bmap_btree.h" #include "xfs_alloc.h" #include "xfs_dinode.h" #include "xfs_inode.h" #include "xfs_inode_item.h" #include "xfs_bmap.h" #include "xfs_error.h" #include "xfs_vnodeops.h" #include "xfs_da_btree.h" #include "xfs_ioctl.h" #include "xfs_trace.h" #include #include static const struct vm_operations_struct xfs_file_vm_ops; /* * Locking primitives for read and write IO paths to ensure we consistently use * and order the inode->i_mutex, ip->i_lock and ip->i_iolock. */ static inline void xfs_rw_ilock( struct xfs_inode *ip, int type) { if (type & XFS_IOLOCK_EXCL) mutex_lock(&VFS_I(ip)->i_mutex); xfs_ilock(ip, type); } static inline void xfs_rw_iunlock( struct xfs_inode *ip, int type) { xfs_iunlock(ip, type); if (type & XFS_IOLOCK_EXCL) mutex_unlock(&VFS_I(ip)->i_mutex); } static inline void xfs_rw_ilock_demote( struct xfs_inode *ip, int type) { xfs_ilock_demote(ip, type); if (type & XFS_IOLOCK_EXCL) mutex_unlock(&VFS_I(ip)->i_mutex); } /* * xfs_iozero * * xfs_iozero clears the specified range of buffer supplied, * and marks all the affected blocks as valid and modified. If * an affected block is not allocated, it will be allocated. If * an affected block is not completely overwritten, and is not * valid before the operation, it will be read from disk before * being partially zeroed. */ STATIC int xfs_iozero( struct xfs_inode *ip, /* inode */ loff_t pos, /* offset in file */ size_t count) /* size of data to zero */ { struct page *page; struct address_space *mapping; int status; mapping = VFS_I(ip)->i_mapping; do { unsigned offset, bytes; void *fsdata; offset = (pos & (PAGE_CACHE_SIZE -1)); /* Within page */ bytes = PAGE_CACHE_SIZE - offset; if (bytes > count) bytes = count; status = pagecache_write_begin(NULL, mapping, pos, bytes, AOP_FLAG_UNINTERRUPTIBLE, &page, &fsdata); if (status) break; zero_user(page, offset, bytes); status = pagecache_write_end(NULL, mapping, pos, bytes, bytes, page, fsdata); WARN_ON(status <= 0); /* can't return less than zero! */ pos += bytes; count -= bytes; status = 0; } while (count); return (-status); } /* * Fsync operations on directories are much simpler than on regular files, * as there is no file data to flush, and thus also no need for explicit * cache flush operations, and there are no non-transaction metadata updates * on directories either. */ STATIC int xfs_dir_fsync( struct file *file, loff_t start, loff_t end, int datasync) { struct xfs_inode *ip = XFS_I(file->f_mapping->host); struct xfs_mount *mp = ip->i_mount; xfs_lsn_t lsn = 0; trace_xfs_dir_fsync(ip); xfs_ilock(ip, XFS_ILOCK_SHARED); if (xfs_ipincount(ip)) lsn = ip->i_itemp->ili_last_lsn; xfs_iunlock(ip, XFS_ILOCK_SHARED); if (!lsn) return 0; return _xfs_log_force_lsn(mp, lsn, XFS_LOG_SYNC, NULL); } STATIC int xfs_file_fsync( struct file *file, loff_t start, loff_t end, int datasync) { struct inode *inode = file->f_mapping->host; struct xfs_inode *ip = XFS_I(inode); struct xfs_mount *mp = ip->i_mount; struct xfs_trans *tp; int error = 0; int log_flushed = 0; xfs_lsn_t lsn = 0; trace_xfs_file_fsync(ip); error = filemap_write_and_wait_range(inode->i_mapping, start, end); if (error) return error; if (XFS_FORCED_SHUTDOWN(mp)) return -XFS_ERROR(EIO); xfs_iflags_clear(ip, XFS_ITRUNCATED); if (mp->m_flags & XFS_MOUNT_BARRIER) { /* * If we have an RT and/or log subvolume we need to make sure * to flush the write cache the device used for file data * first. This is to ensure newly written file data make * it to disk before logging the new inode size in case of * an extending write. */ if (XFS_IS_REALTIME_INODE(ip)) xfs_blkdev_issue_flush(mp->m_rtdev_targp); else if (mp->m_logdev_targp != mp->m_ddev_targp) xfs_blkdev_issue_flush(mp->m_ddev_targp); } /* * We always need to make sure that the required inode state is safe on * disk. The inode might be clean but we still might need to force the * log because of committed transactions that haven't hit the disk yet. * Likewise, there could be unflushed non-transactional changes to the * inode core that have to go to disk and this requires us to issue * a synchronous transaction to capture these changes correctly. * * This code relies on the assumption that if the i_update_core field * of the inode is clear and the inode is unpinned then it is clean * and no action is required. */ xfs_ilock(ip, XFS_ILOCK_SHARED); /* * First check if the VFS inode is marked dirty. All the dirtying * of non-transactional updates do not go through mark_inode_dirty*, * which allows us to distinguish between pure timestamp updates * and i_size updates which need to be caught for fdatasync. * After that also check for the dirty state in the XFS inode, which * might gets cleared when the inode gets written out via the AIL * or xfs_iflush_cluster. */ if (((inode->i_state & I_DIRTY_DATASYNC) || ((inode->i_state & I_DIRTY_SYNC) && !datasync)) && ip->i_update_core) { /* * Kick off a transaction to log the inode core to get the * updates. The sync transaction will also force the log. */ xfs_iunlock(ip, XFS_ILOCK_SHARED); tp = xfs_trans_alloc(mp, XFS_TRANS_FSYNC_TS); error = xfs_trans_reserve(tp, 0, XFS_FSYNC_TS_LOG_RES(mp), 0, 0, 0); if (error) { xfs_trans_cancel(tp, 0); return -error; } xfs_ilock(ip, XFS_ILOCK_EXCL); /* * Note - it's possible that we might have pushed ourselves out * of the way during trans_reserve which would flush the inode. * But there's no guarantee that the inode buffer has actually * gone out yet (it's delwri). Plus the buffer could be pinned * anyway if it's part of an inode in another recent * transaction. So we play it safe and fire off the * transaction anyway. */ xfs_trans_ijoin(tp, ip, 0); xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE); error = xfs_trans_commit(tp, 0); lsn = ip->i_itemp->ili_last_lsn; xfs_iunlock(ip, XFS_ILOCK_EXCL); } else { /* * Timestamps/size haven't changed since last inode flush or * inode transaction commit. That means either nothing got * written or a transaction committed which caught the updates. * If the latter happened and the transaction hasn't hit the * disk yet, the inode will be still be pinned. If it is, * force the log. */ if (xfs_ipincount(ip)) lsn = ip->i_itemp->ili_last_lsn; xfs_iunlock(ip, XFS_ILOCK_SHARED); } if (!error && lsn) error = _xfs_log_force_lsn(mp, lsn, XFS_LOG_SYNC, &log_flushed); /* * If we only have a single device, and the log force about was * a no-op we might have to flush the data device cache here. * This can only happen for fdatasync/O_DSYNC if we were overwriting * an already allocated file and thus do not have any metadata to * commit. */ if ((mp->m_flags & XFS_MOUNT_BARRIER) && mp->m_logdev_targp == mp->m_ddev_targp && !XFS_IS_REALTIME_INODE(ip) && !log_flushed) xfs_blkdev_issue_flush(mp->m_ddev_targp); return -error; } STATIC ssize_t xfs_file_aio_read( struct kiocb *iocb, const struct iovec *iovp, unsigned long nr_segs, loff_t pos) { struct file *file = iocb->ki_filp; struct inode *inode = file->f_mapping->host; struct xfs_inode *ip = XFS_I(inode); struct xfs_mount *mp = ip->i_mount; size_t size = 0; ssize_t ret = 0; int ioflags = 0; xfs_fsize_t n; unsigned long seg; XFS_STATS_INC(xs_read_calls); BUG_ON(iocb->ki_pos != pos); if (unlikely(file->f_flags & O_DIRECT)) ioflags |= IO_ISDIRECT; if (file->f_mode & FMODE_NOCMTIME) ioflags |= IO_INVIS; /* START copy & waste from filemap.c */ for (seg = 0; seg < nr_segs; seg++) { const struct iovec *iv = &iovp[seg]; /* * If any segment has a negative length, or the cumulative * length ever wraps negative then return -EINVAL. */ size += iv->iov_len; if (unlikely((ssize_t)(size|iv->iov_len) < 0)) return XFS_ERROR(-EINVAL); } /* END copy & waste from filemap.c */ if (unlikely(ioflags & IO_ISDIRECT)) { xfs_buftarg_t *target = XFS_IS_REALTIME_INODE(ip) ? mp->m_rtdev_targp : mp->m_ddev_targp; if ((iocb->ki_pos & target->bt_smask) || (size & target->bt_smask)) { if (iocb->ki_pos == ip->i_size) return 0; return -XFS_ERROR(EINVAL); } } n = XFS_MAXIOFFSET(mp) - iocb->ki_pos; if (n <= 0 || size == 0) return 0; if (n < size) size = n; if (XFS_FORCED_SHUTDOWN(mp)) return -EIO; /* * Locking is a bit tricky here. If we take an exclusive lock * for direct IO, we effectively serialise all new concurrent * read IO to this file and block it behind IO that is currently in * progress because IO in progress holds the IO lock shared. We only * need to hold the lock exclusive to blow away the page cache, so * only take lock exclusively if the page cache needs invalidation. * This allows the normal direct IO case of no page cache pages to * proceeed concurrently without serialisation. */ xfs_rw_ilock(ip, XFS_IOLOCK_SHARED); if ((ioflags & IO_ISDIRECT) && inode->i_mapping->nrpages) { xfs_rw_iunlock(ip, XFS_IOLOCK_SHARED); xfs_rw_ilock(ip, XFS_IOLOCK_EXCL); if (inode->i_mapping->nrpages) { ret = -xfs_flushinval_pages(ip, (iocb->ki_pos & PAGE_CACHE_MASK), -1, FI_REMAPF_LOCKED); if (ret) { xfs_rw_iunlock(ip, XFS_IOLOCK_EXCL); return ret; } } xfs_rw_ilock_demote(ip, XFS_IOLOCK_EXCL); } trace_xfs_file_read(ip, size, iocb->ki_pos, ioflags); ret = generic_file_aio_read(iocb, iovp, nr_segs, iocb->ki_pos); if (ret > 0) XFS_STATS_ADD(xs_read_bytes, ret); xfs_rw_iunlock(ip, XFS_IOLOCK_SHARED); return ret; } STATIC ssize_t xfs_file_splice_read( struct file *infilp, loff_t *ppos, struct pipe_inode_info *pipe, size_t count, unsigned int flags) { struct xfs_inode *ip = XFS_I(infilp->f_mapping->host); int ioflags = 0; ssize_t ret; XFS_STATS_INC(xs_read_calls); if (infilp->f_mode & FMODE_NOCMTIME) ioflags |= IO_INVIS; if (XFS_FORCED_SHUTDOWN(ip->i_mount)) return -EIO; xfs_rw_ilock(ip, XFS_IOLOCK_SHARED); trace_xfs_file_splice_read(ip, count, *ppos, ioflags); ret = generic_file_splice_read(infilp, ppos, pipe, count, flags); if (ret > 0) XFS_STATS_ADD(xs_read_bytes, ret); xfs_rw_iunlock(ip, XFS_IOLOCK_SHARED); return ret; } STATIC void xfs_aio_write_isize_update( struct inode *inode, loff_t *ppos, ssize_t bytes_written) { struct xfs_inode *ip = XFS_I(inode); xfs_fsize_t isize = i_size_read(inode); if (bytes_written > 0) XFS_STATS_ADD(xs_write_bytes, bytes_written); if (unlikely(bytes_written < 0 && bytes_written != -EFAULT && *ppos > isize)) *ppos = isize; if (*ppos > ip->i_size) { xfs_rw_ilock(ip, XFS_ILOCK_EXCL); if (*ppos > ip->i_size) ip->i_size = *ppos; xfs_rw_iunlock(ip, XFS_ILOCK_EXCL); } } /* * If this was a direct or synchronous I/O that failed (such as ENOSPC) then * part of the I/O may have been written to disk before the error occurred. In * this case the on-disk file size may have been adjusted beyond the in-memory * file size and now needs to be truncated back. */ STATIC void xfs_aio_write_newsize_update( struct xfs_inode *ip, xfs_fsize_t new_size) { if (new_size == ip->i_new_size) { xfs_rw_ilock(ip, XFS_ILOCK_EXCL); if (new_size == ip->i_new_size) ip->i_new_size = 0; if (ip->i_d.di_size > ip->i_size) ip->i_d.di_size = ip->i_size; xfs_rw_iunlock(ip, XFS_ILOCK_EXCL); } } /* * xfs_file_splice_write() does not use xfs_rw_ilock() because * generic_file_splice_write() takes the i_mutex itself. This, in theory, * couuld cause lock inversions between the aio_write path and the splice path * if someone is doing concurrent splice(2) based writes and write(2) based * writes to the same inode. The only real way to fix this is to re-implement * the generic code here with correct locking orders. */ STATIC ssize_t xfs_file_splice_write( struct pipe_inode_info *pipe, struct file *outfilp, loff_t *ppos, size_t count, unsigned int flags) { struct inode *inode = outfilp->f_mapping->host; struct xfs_inode *ip = XFS_I(inode); xfs_fsize_t new_size; int ioflags = 0; ssize_t ret; XFS_STATS_INC(xs_write_calls); if (outfilp->f_mode & FMODE_NOCMTIME) ioflags |= IO_INVIS; if (XFS_FORCED_SHUTDOWN(ip->i_mount)) return -EIO; xfs_ilock(ip, XFS_IOLOCK_EXCL); new_size = *ppos + count; xfs_ilock(ip, XFS_ILOCK_EXCL); if (new_size > ip->i_size) ip->i_new_size = new_size; xfs_iunlock(ip, XFS_ILOCK_EXCL); trace_xfs_file_splice_write(ip, count, *ppos, ioflags); ret = generic_file_splice_write(pipe, outfilp, ppos, count, flags); xfs_aio_write_isize_update(inode, ppos, ret); xfs_aio_write_newsize_update(ip, new_size); xfs_iunlock(ip, XFS_IOLOCK_EXCL); return ret; } /* * This routine is called to handle zeroing any space in the last * block of the file that is beyond the EOF. We do this since the * size is being increased without writing anything to that block * and we don't want anyone to read the garbage on the disk. */ STATIC int /* error (positive) */ xfs_zero_last_block( xfs_inode_t *ip, xfs_fsize_t offset, xfs_fsize_t isize) { xfs_fileoff_t last_fsb; xfs_mount_t *mp = ip->i_mount; int nimaps; int zero_offset; int zero_len; int error = 0; xfs_bmbt_irec_t imap; ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL)); zero_offset = XFS_B_FSB_OFFSET(mp, isize); if (zero_offset == 0) { /* * There are no extra bytes in the last block on disk to * zero, so return. */ return 0; } last_fsb = XFS_B_TO_FSBT(mp, isize); nimaps = 1; error = xfs_bmapi_read(ip, last_fsb, 1, &imap, &nimaps, 0); if (error) return error; ASSERT(nimaps > 0); /* * If the block underlying isize is just a hole, then there * is nothing to zero. */ if (imap.br_startblock == HOLESTARTBLOCK) { return 0; } /* * Zero the part of the last block beyond the EOF, and write it * out sync. We need to drop the ilock while we do this so we * don't deadlock when the buffer cache calls back to us. */ xfs_iunlock(ip, XFS_ILOCK_EXCL); zero_len = mp->m_sb.sb_blocksize - zero_offset; if (isize + zero_len > offset) zero_len = offset - isize; error = xfs_iozero(ip, isize, zero_len); xfs_ilock(ip, XFS_ILOCK_EXCL); ASSERT(error >= 0); return error; } /* * Zero any on disk space between the current EOF and the new, * larger EOF. This handles the normal case of zeroing the remainder * of the last block in the file and the unusual case of zeroing blocks * out beyond the size of the file. This second case only happens * with fixed size extents and when the system crashes before the inode * size was updated but after blocks were allocated. If fill is set, * then any holes in the range are filled and zeroed. If not, the holes * are left alone as holes. */ int /* error (positive) */ xfs_zero_eof( xfs_inode_t *ip, xfs_off_t offset, /* starting I/O offset */ xfs_fsize_t isize) /* current inode size */ { xfs_mount_t *mp = ip->i_mount; xfs_fileoff_t start_zero_fsb; xfs_fileoff_t end_zero_fsb; xfs_fileoff_t zero_count_fsb; xfs_fileoff_t last_fsb; xfs_fileoff_t zero_off; xfs_fsize_t zero_len; int nimaps; int error = 0; xfs_bmbt_irec_t imap; ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_IOLOCK_EXCL)); ASSERT(offset > isize); /* * First handle zeroing the block on which isize resides. * We only zero a part of that block so it is handled specially. */ error = xfs_zero_last_block(ip, offset, isize); if (error) { ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_IOLOCK_EXCL)); return error; } /* * Calculate the range between the new size and the old * where blocks needing to be zeroed may exist. To get the * block where the last byte in the file currently resides, * we need to subtract one from the size and truncate back * to a block boundary. We subtract 1 in case the size is * exactly on a block boundary. */ last_fsb = isize ? XFS_B_TO_FSBT(mp, isize - 1) : (xfs_fileoff_t)-1; start_zero_fsb = XFS_B_TO_FSB(mp, (xfs_ufsize_t)isize); end_zero_fsb = XFS_B_TO_FSBT(mp, offset - 1); ASSERT((xfs_sfiloff_t)last_fsb < (xfs_sfiloff_t)start_zero_fsb); if (last_fsb == end_zero_fsb) { /* * The size was only incremented on its last block. * We took care of that above, so just return. */ return 0; } ASSERT(start_zero_fsb <= end_zero_fsb); while (start_zero_fsb <= end_zero_fsb) { nimaps = 1; zero_count_fsb = end_zero_fsb - start_zero_fsb + 1; error = xfs_bmapi_read(ip, start_zero_fsb, zero_count_fsb, &imap, &nimaps, 0); if (error) { ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_IOLOCK_EXCL)); return error; } ASSERT(nimaps > 0); if (imap.br_state == XFS_EXT_UNWRITTEN || imap.br_startblock == HOLESTARTBLOCK) { /* * This loop handles initializing pages that were * partially initialized by the code below this * loop. It basically zeroes the part of the page * that sits on a hole and sets the page as P_HOLE * and calls remapf if it is a mapped file. */ start_zero_fsb = imap.br_startoff + imap.br_blockcount; ASSERT(start_zero_fsb <= (end_zero_fsb + 1)); continue; } /* * There are blocks we need to zero. * Drop the inode lock while we're doing the I/O. * We'll still have the iolock to protect us. */ xfs_iunlock(ip, XFS_ILOCK_EXCL); zero_off = XFS_FSB_TO_B(mp, start_zero_fsb); zero_len = XFS_FSB_TO_B(mp, imap.br_blockcount); if ((zero_off + zero_len) > offset) zero_len = offset - zero_off; error = xfs_iozero(ip, zero_off, zero_len); if (error) { goto out_lock; } start_zero_fsb = imap.br_startoff + imap.br_blockcount; ASSERT(start_zero_fsb <= (end_zero_fsb + 1)); xfs_ilock(ip, XFS_ILOCK_EXCL); } return 0; out_lock: xfs_ilock(ip, XFS_ILOCK_EXCL); ASSERT(error >= 0); return error; } /* * Common pre-write limit and setup checks. * * Returns with iolock held according to @iolock. */ STATIC ssize_t xfs_file_aio_write_checks( struct file *file, loff_t *pos, size_t *count, xfs_fsize_t *new_sizep, int *iolock) { struct inode *inode = file->f_mapping->host; struct xfs_inode *ip = XFS_I(inode); xfs_fsize_t new_size; int error = 0; xfs_rw_ilock(ip, XFS_ILOCK_EXCL); *new_sizep = 0; restart: error = generic_write_checks(file, pos, count, S_ISBLK(inode->i_mode)); if (error) { xfs_rw_iunlock(ip, XFS_ILOCK_EXCL | *iolock); *iolock = 0; return error; } if (likely(!(file->f_mode & FMODE_NOCMTIME))) file_update_time(file); /* * If the offset is beyond the size of the file, we need to zero any * blocks that fall between the existing EOF and the start of this * write. There is no need to issue zeroing if another in-flght IO ends * at or before this one If zeronig is needed and we are currently * holding the iolock shared, we need to update it to exclusive which * involves dropping all locks and relocking to maintain correct locking * order. If we do this, restart the function to ensure all checks and * values are still valid. */ if ((ip->i_new_size && *pos > ip->i_new_size) || (!ip->i_new_size && *pos > ip->i_size)) { if (*iolock == XFS_IOLOCK_SHARED) { xfs_rw_iunlock(ip, XFS_ILOCK_EXCL | *iolock); *iolock = XFS_IOLOCK_EXCL; xfs_rw_ilock(ip, XFS_ILOCK_EXCL | *iolock); goto restart; } error = -xfs_zero_eof(ip, *pos, ip->i_size); } /* * If this IO extends beyond EOF, we may need to update ip->i_new_size. * We have already zeroed space beyond EOF (if necessary). Only update * ip->i_new_size if this IO ends beyond any other in-flight writes. */ new_size = *pos + *count; if (new_size > ip->i_size) { if (new_size > ip->i_new_size) ip->i_new_size = new_size; *new_sizep = new_size; } xfs_rw_iunlock(ip, XFS_ILOCK_EXCL); if (error) return error; /* * If we're writing the file then make sure to clear the setuid and * setgid bits if the process is not being run by root. This keeps * people from modifying setuid and setgid binaries. */ return file_remove_suid(file); } /* * xfs_file_dio_aio_write - handle direct IO writes * * Lock the inode appropriately to prepare for and issue a direct IO write. * By separating it from the buffered write path we remove all the tricky to * follow locking changes and looping. * * If there are cached pages or we're extending the file, we need IOLOCK_EXCL * until we're sure the bytes at the new EOF have been zeroed and/or the cached * pages are flushed out. * * In most cases the direct IO writes will be done holding IOLOCK_SHARED * allowing them to be done in parallel with reads and other direct IO writes. * However, if the IO is not aligned to filesystem blocks, the direct IO layer * needs to do sub-block zeroing and that requires serialisation against other * direct IOs to the same block. In this case we need to serialise the * submission of the unaligned IOs so that we don't get racing block zeroing in * the dio layer. To avoid the problem with aio, we also need to wait for * outstanding IOs to complete so that unwritten extent conversion is completed * before we try to map the overlapping block. This is currently implemented by * hitting it with a big hammer (i.e. inode_dio_wait()). * * Returns with locks held indicated by @iolock and errors indicated by * negative return values. */ STATIC ssize_t xfs_file_dio_aio_write( struct kiocb *iocb, const struct iovec *iovp, unsigned long nr_segs, loff_t pos, size_t ocount, xfs_fsize_t *new_size, int *iolock) { struct file *file = iocb->ki_filp; struct address_space *mapping = file->f_mapping; struct inode *inode = mapping->host; struct xfs_inode *ip = XFS_I(inode); struct xfs_mount *mp = ip->i_mount; ssize_t ret = 0; size_t count = ocount; int unaligned_io = 0; struct xfs_buftarg *target = XFS_IS_REALTIME_INODE(ip) ? mp->m_rtdev_targp : mp->m_ddev_targp; *iolock = 0; if ((pos & target->bt_smask) || (count & target->bt_smask)) return -XFS_ERROR(EINVAL); if ((pos & mp->m_blockmask) || ((pos + count) & mp->m_blockmask)) unaligned_io = 1; /* * We don't need to take an exclusive lock unless there page cache needs * to be invalidated or unaligned IO is being executed. We don't need to * consider the EOF extension case here because * xfs_file_aio_write_checks() will relock the inode as necessary for * EOF zeroing cases and fill out the new inode size as appropriate. */ if (unaligned_io || mapping->nrpages) *iolock = XFS_IOLOCK_EXCL; else *iolock = XFS_IOLOCK_SHARED; xfs_rw_ilock(ip, *iolock); /* * Recheck if there are cached pages that need invalidate after we got * the iolock to protect against other threads adding new pages while * we were waiting for the iolock. */ if (mapping->nrpages && *iolock == XFS_IOLOCK_SHARED) { xfs_rw_iunlock(ip, *iolock); *iolock = XFS_IOLOCK_EXCL; xfs_rw_ilock(ip, *iolock); } ret = xfs_file_aio_write_checks(file, &pos, &count, new_size, iolock); if (ret) return ret; if (mapping->nrpages) { ret = -xfs_flushinval_pages(ip, (pos & PAGE_CACHE_MASK), -1, FI_REMAPF_LOCKED); if (ret) return ret; } /* * If we are doing unaligned IO, wait for all other IO to drain, * otherwise demote the lock if we had to flush cached pages */ if (unaligned_io) inode_dio_wait(inode); else if (*iolock == XFS_IOLOCK_EXCL) { xfs_rw_ilock_demote(ip, XFS_IOLOCK_EXCL); *iolock = XFS_IOLOCK_SHARED; } trace_xfs_file_direct_write(ip, count, iocb->ki_pos, 0); ret = generic_file_direct_write(iocb, iovp, &nr_segs, pos, &iocb->ki_pos, count, ocount); /* No fallback to buffered IO on errors for XFS. */ ASSERT(ret < 0 || ret == count); return ret; } STATIC ssize_t xfs_file_buffered_aio_write( struct kiocb *iocb, const struct iovec *iovp, unsigned long nr_segs, loff_t pos, size_t ocount, xfs_fsize_t *new_size, int *iolock) { struct file *file = iocb->ki_filp; struct address_space *mapping = file->f_mapping; struct inode *inode = mapping->host; struct xfs_inode *ip = XFS_I(inode); ssize_t ret; int enospc = 0; size_t count = ocount; *iolock = XFS_IOLOCK_EXCL; xfs_rw_ilock(ip, *iolock); ret = xfs_file_aio_write_checks(file, &pos, &count, new_size, iolock); if (ret) return ret; /* We can write back this queue in page reclaim */ current->backing_dev_info = mapping->backing_dev_info; write_retry: trace_xfs_file_buffered_write(ip, count, iocb->ki_pos, 0); ret = generic_file_buffered_write(iocb, iovp, nr_segs, pos, &iocb->ki_pos, count, ret); /* * if we just got an ENOSPC, flush the inode now we aren't holding any * page locks and retry *once* */ if (ret == -ENOSPC && !enospc) { ret = -xfs_flush_pages(ip, 0, -1, 0, FI_NONE); if (ret) return ret; enospc = 1; goto write_retry; } current->backing_dev_info = NULL; return ret; } STATIC ssize_t xfs_file_aio_write( struct kiocb *iocb, const struct iovec *iovp, unsigned long nr_segs, loff_t pos) { struct file *file = iocb->ki_filp; struct address_space *mapping = file->f_mapping; struct inode *inode = mapping->host; struct xfs_inode *ip = XFS_I(inode); ssize_t ret; int iolock; size_t ocount = 0; xfs_fsize_t new_size = 0; XFS_STATS_INC(xs_write_calls); BUG_ON(iocb->ki_pos != pos); ret = generic_segment_checks(iovp, &nr_segs, &ocount, VERIFY_READ); if (ret) return ret; if (ocount == 0) return 0; xfs_wait_for_freeze(ip->i_mount, SB_FREEZE_WRITE); if (XFS_FORCED_SHUTDOWN(ip->i_mount)) return -EIO; if (unlikely(file->f_flags & O_DIRECT)) ret = xfs_file_dio_aio_write(iocb, iovp, nr_segs, pos, ocount, &new_size, &iolock); else ret = xfs_file_buffered_aio_write(iocb, iovp, nr_segs, pos, ocount, &new_size, &iolock); xfs_aio_write_isize_update(inode, &iocb->ki_pos, ret); if (ret <= 0) goto out_unlock; /* Handle various SYNC-type writes */ if ((file->f_flags & O_DSYNC) || IS_SYNC(inode)) { loff_t end = pos + ret - 1; int error; xfs_rw_iunlock(ip, iolock); error = xfs_file_fsync(file, pos, end, (file->f_flags & __O_SYNC) ? 0 : 1); xfs_rw_ilock(ip, iolock); if (error) ret = error; } out_unlock: xfs_aio_write_newsize_update(ip, new_size); xfs_rw_iunlock(ip, iolock); return ret; } STATIC long xfs_file_fallocate( struct file *file, int mode, loff_t offset, loff_t len) { struct inode *inode = file->f_path.dentry->d_inode; long error; loff_t new_size = 0; xfs_flock64_t bf; xfs_inode_t *ip = XFS_I(inode); int cmd = XFS_IOC_RESVSP; int attr_flags = XFS_ATTR_NOLOCK; if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE)) return -EOPNOTSUPP; bf.l_whence = 0; bf.l_start = offset; bf.l_len = len; xfs_ilock(ip, XFS_IOLOCK_EXCL); if (mode & FALLOC_FL_PUNCH_HOLE) cmd = XFS_IOC_UNRESVSP; /* check the new inode size is valid before allocating */ if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > i_size_read(inode)) { new_size = offset + len; error = inode_newsize_ok(inode, new_size); if (error) goto out_unlock; } if (file->f_flags & O_DSYNC) attr_flags |= XFS_ATTR_SYNC; error = -xfs_change_file_space(ip, cmd, &bf, 0, attr_flags); if (error) goto out_unlock; /* Change file size if needed */ if (new_size) { struct iattr iattr; iattr.ia_valid = ATTR_SIZE; iattr.ia_size = new_size; error = -xfs_setattr_size(ip, &iattr, XFS_ATTR_NOLOCK); } out_unlock: xfs_iunlock(ip, XFS_IOLOCK_EXCL); return error; } STATIC int xfs_file_open( struct inode *inode, struct file *file) { if (!(file->f_flags & O_LARGEFILE) && i_size_read(inode) > MAX_NON_LFS) return -EFBIG; if (XFS_FORCED_SHUTDOWN(XFS_M(inode->i_sb))) return -EIO; return 0; } STATIC int xfs_dir_open( struct inode *inode, struct file *file) { struct xfs_inode *ip = XFS_I(inode); int mode; int error; error = xfs_file_open(inode, file); if (error) return error; /* * If there are any blocks, read-ahead block 0 as we're almost * certain to have the next operation be a read there. */ mode = xfs_ilock_map_shared(ip); if (ip->i_d.di_nextents > 0) xfs_da_reada_buf(NULL, ip, 0, XFS_DATA_FORK); xfs_iunlock(ip, mode); return 0; } STATIC int xfs_file_release( struct inode *inode, struct file *filp) { return -xfs_release(XFS_I(inode)); } STATIC int xfs_file_readdir( struct file *filp, void *dirent, filldir_t filldir) { struct inode *inode = filp->f_path.dentry->d_inode; xfs_inode_t *ip = XFS_I(inode); int error; size_t bufsize; /* * The Linux API doesn't pass down the total size of the buffer * we read into down to the filesystem. With the filldir concept * it's not needed for correct information, but the XFS dir2 leaf * code wants an estimate of the buffer size to calculate it's * readahead window and size the buffers used for mapping to * physical blocks. * * Try to give it an estimate that's good enough, maybe at some * point we can change the ->readdir prototype to include the * buffer size. For now we use the current glibc buffer size. */ bufsize = (size_t)min_t(loff_t, 32768, ip->i_d.di_size); error = xfs_readdir(ip, dirent, bufsize, (xfs_off_t *)&filp->f_pos, filldir); if (error) return -error; return 0; } STATIC int xfs_file_mmap( struct file *filp, struct vm_area_struct *vma) { vma->vm_ops = &xfs_file_vm_ops; vma->vm_flags |= VM_CAN_NONLINEAR; file_accessed(filp); return 0; } /* * mmap()d file has taken write protection fault and is being made * writable. We can set the page state up correctly for a writable * page, which means we can do correct delalloc accounting (ENOSPC * checking!) and unwritten extent mapping. */ STATIC int xfs_vm_page_mkwrite( struct vm_area_struct *vma, struct vm_fault *vmf) { return block_page_mkwrite(vma, vmf, xfs_get_blocks); } const struct file_operations xfs_file_operations = { .llseek = generic_file_llseek, .read = do_sync_read, .write = do_sync_write, .aio_read = xfs_file_aio_read, .aio_write = xfs_file_aio_write, .splice_read = xfs_file_splice_read, .splice_write = xfs_file_splice_write, .unlocked_ioctl = xfs_file_ioctl, #ifdef CONFIG_COMPAT .compat_ioctl = xfs_file_compat_ioctl, #endif .mmap = xfs_file_mmap, .open = xfs_file_open, .release = xfs_file_release, .fsync = xfs_file_fsync, .fallocate = xfs_file_fallocate, }; const struct file_operations xfs_dir_file_operations = { .open = xfs_dir_open, .read = generic_read_dir, .readdir = xfs_file_readdir, .llseek = generic_file_llseek, .unlocked_ioctl = xfs_file_ioctl, #ifdef CONFIG_COMPAT .compat_ioctl = xfs_file_compat_ioctl, #endif .fsync = xfs_dir_fsync, }; static const struct vm_operations_struct xfs_file_vm_ops = { .fault = filemap_fault, .page_mkwrite = xfs_vm_page_mkwrite, };