/* * linux/kernel/time/clocksource.c * * This file contains the functions which manage clocksource drivers. * * Copyright (C) 2004, 2005 IBM, John Stultz (johnstul@us.ibm.com) * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. * * TODO WishList: * o Allow clocksource drivers to be unregistered */ #include #include #include #include #include /* for spin_unlock_irq() using preempt_count() m68k */ #include #include void timecounter_init(struct timecounter *tc, const struct cyclecounter *cc, u64 start_tstamp) { tc->cc = cc; tc->cycle_last = cc->read(cc); tc->nsec = start_tstamp; } EXPORT_SYMBOL_GPL(timecounter_init); /** * timecounter_read_delta - get nanoseconds since last call of this function * @tc: Pointer to time counter * * When the underlying cycle counter runs over, this will be handled * correctly as long as it does not run over more than once between * calls. * * The first call to this function for a new time counter initializes * the time tracking and returns an undefined result. */ static u64 timecounter_read_delta(struct timecounter *tc) { cycle_t cycle_now, cycle_delta; u64 ns_offset; /* read cycle counter: */ cycle_now = tc->cc->read(tc->cc); /* calculate the delta since the last timecounter_read_delta(): */ cycle_delta = (cycle_now - tc->cycle_last) & tc->cc->mask; /* convert to nanoseconds: */ ns_offset = cyclecounter_cyc2ns(tc->cc, cycle_delta); /* update time stamp of timecounter_read_delta() call: */ tc->cycle_last = cycle_now; return ns_offset; } u64 timecounter_read(struct timecounter *tc) { u64 nsec; /* increment time by nanoseconds since last call */ nsec = timecounter_read_delta(tc); nsec += tc->nsec; tc->nsec = nsec; return nsec; } EXPORT_SYMBOL_GPL(timecounter_read); u64 timecounter_cyc2time(struct timecounter *tc, cycle_t cycle_tstamp) { u64 cycle_delta = (cycle_tstamp - tc->cycle_last) & tc->cc->mask; u64 nsec; /* * Instead of always treating cycle_tstamp as more recent * than tc->cycle_last, detect when it is too far in the * future and treat it as old time stamp instead. */ if (cycle_delta > tc->cc->mask / 2) { cycle_delta = (tc->cycle_last - cycle_tstamp) & tc->cc->mask; nsec = tc->nsec - cyclecounter_cyc2ns(tc->cc, cycle_delta); } else { nsec = cyclecounter_cyc2ns(tc->cc, cycle_delta) + tc->nsec; } return nsec; } EXPORT_SYMBOL_GPL(timecounter_cyc2time); /** * clocks_calc_mult_shift - calculate mult/shift factors for scaled math of clocks * @mult: pointer to mult variable * @shift: pointer to shift variable * @from: frequency to convert from * @to: frequency to convert to * @maxsec: guaranteed runtime conversion range in seconds * * The function evaluates the shift/mult pair for the scaled math * operations of clocksources and clockevents. * * @to and @from are frequency values in HZ. For clock sources @to is * NSEC_PER_SEC == 1GHz and @from is the counter frequency. For clock * event @to is the counter frequency and @from is NSEC_PER_SEC. * * The @maxsec conversion range argument controls the time frame in * seconds which must be covered by the runtime conversion with the * calculated mult and shift factors. This guarantees that no 64bit * overflow happens when the input value of the conversion is * multiplied with the calculated mult factor. Larger ranges may * reduce the conversion accuracy by chosing smaller mult and shift * factors. */ void clocks_calc_mult_shift(u32 *mult, u32 *shift, u32 from, u32 to, u32 maxsec) { u64 tmp; u32 sft, sftacc= 32; /* * Calculate the shift factor which is limiting the conversion * range: */ tmp = ((u64)maxsec * from) >> 32; while (tmp) { tmp >>=1; sftacc--; } /* * Find the conversion shift/mult pair which has the best * accuracy and fits the maxsec conversion range: */ for (sft = 32; sft > 0; sft--) { tmp = (u64) to << sft; tmp += from / 2; do_div(tmp, from); if ((tmp >> sftacc) == 0) break; } *mult = tmp; *shift = sft; } /*[Clocksource internal variables]--------- * curr_clocksource: * currently selected clocksource. * clocksource_list: * linked list with the registered clocksources * clocksource_mutex: * protects manipulations to curr_clocksource and the clocksource_list * override_name: * Name of the user-specified clocksource. */ static struct clocksource *curr_clocksource; static LIST_HEAD(clocksource_list); static DEFINE_MUTEX(clocksource_mutex); static char override_name[32]; static int finished_booting; #ifdef CONFIG_CLOCKSOURCE_WATCHDOG static void clocksource_watchdog_work(struct work_struct *work); static LIST_HEAD(watchdog_list); static struct clocksource *watchdog; static struct timer_list watchdog_timer; static DECLARE_WORK(watchdog_work, clocksource_watchdog_work); static DEFINE_SPINLOCK(watchdog_lock); static int watchdog_running; static atomic_t watchdog_reset_pending; static int clocksource_watchdog_kthread(void *data); static void __clocksource_change_rating(struct clocksource *cs, int rating); /* * Interval: 0.5sec Threshold: 0.0625s */ #define WATCHDOG_INTERVAL (HZ >> 1) #define WATCHDOG_THRESHOLD (NSEC_PER_SEC >> 4) static void clocksource_watchdog_work(struct work_struct *work) { /* * If kthread_run fails the next watchdog scan over the * watchdog_list will find the unstable clock again. */ kthread_run(clocksource_watchdog_kthread, NULL, "kwatchdog"); } static void __clocksource_unstable(struct clocksource *cs) { cs->flags &= ~(CLOCK_SOURCE_VALID_FOR_HRES | CLOCK_SOURCE_WATCHDOG); cs->flags |= CLOCK_SOURCE_UNSTABLE; if (finished_booting) schedule_work(&watchdog_work); } static void clocksource_unstable(struct clocksource *cs, int64_t delta) { printk(KERN_WARNING "Clocksource %s unstable (delta = %Ld ns)\n", cs->name, delta); __clocksource_unstable(cs); } /** * clocksource_mark_unstable - mark clocksource unstable via watchdog * @cs: clocksource to be marked unstable * * This function is called instead of clocksource_change_rating from * cpu hotplug code to avoid a deadlock between the clocksource mutex * and the cpu hotplug mutex. It defers the update of the clocksource * to the watchdog thread. */ void clocksource_mark_unstable(struct clocksource *cs) { unsigned long flags; spin_lock_irqsave(&watchdog_lock, flags); if (!(cs->flags & CLOCK_SOURCE_UNSTABLE)) { if (list_empty(&cs->wd_list)) list_add(&cs->wd_list, &watchdog_list); __clocksource_unstable(cs); } spin_unlock_irqrestore(&watchdog_lock, flags); } static void clocksource_watchdog(unsigned long data) { struct clocksource *cs; cycle_t csnow, wdnow; int64_t wd_nsec, cs_nsec; int next_cpu, reset_pending; spin_lock(&watchdog_lock); if (!watchdog_running) goto out; reset_pending = atomic_read(&watchdog_reset_pending); list_for_each_entry(cs, &watchdog_list, wd_list) { /* Clocksource already marked unstable? */ if (cs->flags & CLOCK_SOURCE_UNSTABLE) { if (finished_booting) schedule_work(&watchdog_work); continue; } local_irq_disable(); csnow = cs->read(cs); wdnow = watchdog->read(watchdog); local_irq_enable(); /* Clocksource initialized ? */ if (!(cs->flags & CLOCK_SOURCE_WATCHDOG) || atomic_read(&watchdog_reset_pending)) { cs->flags |= CLOCK_SOURCE_WATCHDOG; cs->wd_last = wdnow; cs->cs_last = csnow; continue; } wd_nsec = clocksource_cyc2ns((wdnow - cs->wd_last) & watchdog->mask, watchdog->mult, watchdog->shift); cs_nsec = clocksource_cyc2ns((csnow - cs->cs_last) & cs->mask, cs->mult, cs->shift); cs->cs_last = csnow; cs->wd_last = wdnow; if (atomic_read(&watchdog_reset_pending)) continue; /* Check the deviation from the watchdog clocksource. */ if ((abs(cs_nsec - wd_nsec) > WATCHDOG_THRESHOLD)) { clocksource_unstable(cs, cs_nsec - wd_nsec); continue; } if (!(cs->flags & CLOCK_SOURCE_VALID_FOR_HRES) && (cs->flags & CLOCK_SOURCE_IS_CONTINUOUS) && (watchdog->flags & CLOCK_SOURCE_IS_CONTINUOUS)) { cs->flags |= CLOCK_SOURCE_VALID_FOR_HRES; /* * We just marked the clocksource as highres-capable, * notify the rest of the system as well so that we * transition into high-res mode: */ tick_clock_notify(); } } /* * We only clear the watchdog_reset_pending, when we did a * full cycle through all clocksources. */ if (reset_pending) atomic_dec(&watchdog_reset_pending); /* * Cycle through CPUs to check if the CPUs stay synchronized * to each other. */ next_cpu = cpumask_next(raw_smp_processor_id(), cpu_online_mask); if (next_cpu >= nr_cpu_ids) next_cpu = cpumask_first(cpu_online_mask); watchdog_timer.expires += WATCHDOG_INTERVAL; add_timer_on(&watchdog_timer, next_cpu); out: spin_unlock(&watchdog_lock); } static inline void clocksource_start_watchdog(void) { if (watchdog_running || !watchdog || list_empty(&watchdog_list)) return; init_timer(&watchdog_timer); watchdog_timer.function = clocksource_watchdog; watchdog_timer.expires = jiffies + WATCHDOG_INTERVAL; add_timer_on(&watchdog_timer, cpumask_first(cpu_online_mask)); watchdog_running = 1; } static inline void clocksource_stop_watchdog(void) { if (!watchdog_running || (watchdog && !list_empty(&watchdog_list))) return; del_timer(&watchdog_timer); watchdog_running = 0; } static inline void clocksource_reset_watchdog(void) { struct clocksource *cs; list_for_each_entry(cs, &watchdog_list, wd_list) cs->flags &= ~CLOCK_SOURCE_WATCHDOG; } static void clocksource_resume_watchdog(void) { atomic_inc(&watchdog_reset_pending); } static void clocksource_enqueue_watchdog(struct clocksource *cs) { unsigned long flags; spin_lock_irqsave(&watchdog_lock, flags); if (cs->flags & CLOCK_SOURCE_MUST_VERIFY) { /* cs is a clocksource to be watched. */ list_add(&cs->wd_list, &watchdog_list); cs->flags &= ~CLOCK_SOURCE_WATCHDOG; } else { /* cs is a watchdog. */ if (cs->flags & CLOCK_SOURCE_IS_CONTINUOUS) cs->flags |= CLOCK_SOURCE_VALID_FOR_HRES; /* Pick the best watchdog. */ if (!watchdog || cs->rating > watchdog->rating) { watchdog = cs; /* Reset watchdog cycles */ clocksource_reset_watchdog(); } } /* Check if the watchdog timer needs to be started. */ clocksource_start_watchdog(); spin_unlock_irqrestore(&watchdog_lock, flags); } static void clocksource_dequeue_watchdog(struct clocksource *cs) { struct clocksource *tmp; unsigned long flags; spin_lock_irqsave(&watchdog_lock, flags); if (cs->flags & CLOCK_SOURCE_MUST_VERIFY) { /* cs is a watched clocksource. */ list_del_init(&cs->wd_list); } else if (cs == watchdog) { /* Reset watchdog cycles */ clocksource_reset_watchdog(); /* Current watchdog is removed. Find an alternative. */ watchdog = NULL; list_for_each_entry(tmp, &clocksource_list, list) { if (tmp == cs || tmp->flags & CLOCK_SOURCE_MUST_VERIFY) continue; if (!watchdog || tmp->rating > watchdog->rating) watchdog = tmp; } } cs->flags &= ~CLOCK_SOURCE_WATCHDOG; /* Check if the watchdog timer needs to be stopped. */ clocksource_stop_watchdog(); spin_unlock_irqrestore(&watchdog_lock, flags); } static int clocksource_watchdog_kthread(void *data) { struct clocksource *cs, *tmp; unsigned long flags; LIST_HEAD(unstable); mutex_lock(&clocksource_mutex); spin_lock_irqsave(&watchdog_lock, flags); list_for_each_entry_safe(cs, tmp, &watchdog_list, wd_list) if (cs->flags & CLOCK_SOURCE_UNSTABLE) { list_del_init(&cs->wd_list); list_add(&cs->wd_list, &unstable); } /* Check if the watchdog timer needs to be stopped. */ clocksource_stop_watchdog(); spin_unlock_irqrestore(&watchdog_lock, flags); /* Needs to be done outside of watchdog lock */ list_for_each_entry_safe(cs, tmp, &unstable, wd_list) { list_del_init(&cs->wd_list); __clocksource_change_rating(cs, 0); } mutex_unlock(&clocksource_mutex); return 0; } #else /* CONFIG_CLOCKSOURCE_WATCHDOG */ static void clocksource_enqueue_watchdog(struct clocksource *cs) { if (cs->flags & CLOCK_SOURCE_IS_CONTINUOUS) cs->flags |= CLOCK_SOURCE_VALID_FOR_HRES; } static inline void clocksource_dequeue_watchdog(struct clocksource *cs) { } static inline void clocksource_resume_watchdog(void) { } static inline int clocksource_watchdog_kthread(void *data) { return 0; } #endif /* CONFIG_CLOCKSOURCE_WATCHDOG */ /** * clocksource_suspend - suspend the clocksource(s) */ void clocksource_suspend(void) { struct clocksource *cs; list_for_each_entry_reverse(cs, &clocksource_list, list) if (cs->suspend) cs->suspend(cs); } /** * clocksource_resume - resume the clocksource(s) */ void clocksource_resume(void) { struct clocksource *cs; list_for_each_entry(cs, &clocksource_list, list) if (cs->resume) cs->resume(cs); clocksource_resume_watchdog(); } /** * clocksource_touch_watchdog - Update watchdog * * Update the watchdog after exception contexts such as kgdb so as not * to incorrectly trip the watchdog. This might fail when the kernel * was stopped in code which holds watchdog_lock. */ void clocksource_touch_watchdog(void) { clocksource_resume_watchdog(); } /** * clocksource_max_adjustment- Returns max adjustment amount * @cs: Pointer to clocksource * */ static u32 clocksource_max_adjustment(struct clocksource *cs) { u64 ret; /* * We won't try to correct for more than 11% adjustments (110,000 ppm), */ ret = (u64)cs->mult * 11; do_div(ret,100); return (u32)ret; } /** * clocksource_max_deferment - Returns max time the clocksource can be deferred * @cs: Pointer to clocksource * */ static u64 clocksource_max_deferment(struct clocksource *cs) { u64 max_nsecs, max_cycles; /* * Calculate the maximum number of cycles that we can pass to the * cyc2ns function without overflowing a 64-bit signed result. The * maximum number of cycles is equal to ULLONG_MAX/(cs->mult+cs->maxadj) * which is equivalent to the below. * max_cycles < (2^63)/(cs->mult + cs->maxadj) * max_cycles < 2^(log2((2^63)/(cs->mult + cs->maxadj))) * max_cycles < 2^(log2(2^63) - log2(cs->mult + cs->maxadj)) * max_cycles < 2^(63 - log2(cs->mult + cs->maxadj)) * max_cycles < 1 << (63 - log2(cs->mult + cs->maxadj)) * Please note that we add 1 to the result of the log2 to account for * any rounding errors, ensure the above inequality is satisfied and * no overflow will occur. */ max_cycles = 1ULL << (63 - (ilog2(cs->mult + cs->maxadj) + 1)); /* * The actual maximum number of cycles we can defer the clocksource is * determined by the minimum of max_cycles and cs->mask. * Note: Here we subtract the maxadj to make sure we don't sleep for * too long if there's a large negative adjustment. */ max_cycles = min_t(u64, max_cycles, (u64) cs->mask); max_nsecs = clocksource_cyc2ns(max_cycles, cs->mult - cs->maxadj, cs->shift); /* * To ensure that the clocksource does not wrap whilst we are idle, * limit the time the clocksource can be deferred by 12.5%. Please * note a margin of 12.5% is used because this can be computed with * a shift, versus say 10% which would require division. */ return max_nsecs - (max_nsecs >> 3); } #ifndef CONFIG_ARCH_USES_GETTIMEOFFSET /** * clocksource_select - Select the best clocksource available * * Private function. Must hold clocksource_mutex when called. * * Select the clocksource with the best rating, or the clocksource, * which is selected by userspace override. */ static void clocksource_select(void) { struct clocksource *best, *cs; if (!finished_booting || list_empty(&clocksource_list)) return; /* First clocksource on the list has the best rating. */ best = list_first_entry(&clocksource_list, struct clocksource, list); /* Check for the override clocksource. */ list_for_each_entry(cs, &clocksource_list, list) { if (strcmp(cs->name, override_name) != 0) continue; /* * Check to make sure we don't switch to a non-highres * capable clocksource if the tick code is in oneshot * mode (highres or nohz) */ if (!(cs->flags & CLOCK_SOURCE_VALID_FOR_HRES) && tick_oneshot_mode_active()) { /* Override clocksource cannot be used. */ printk(KERN_WARNING "Override clocksource %s is not " "HRT compatible. Cannot switch while in " "HRT/NOHZ mode\n", cs->name); override_name[0] = 0; } else /* Override clocksource can be used. */ best = cs; break; } if (curr_clocksource != best) { printk(KERN_INFO "Switching to clocksource %s\n", best->name); curr_clocksource = best; timekeeping_notify(curr_clocksource); } } #else /* !CONFIG_ARCH_USES_GETTIMEOFFSET */ static inline void clocksource_select(void) { } #endif /* * clocksource_done_booting - Called near the end of core bootup * * Hack to avoid lots of clocksource churn at boot time. * We use fs_initcall because we want this to start before * device_initcall but after subsys_initcall. */ static int __init clocksource_done_booting(void) { mutex_lock(&clocksource_mutex); curr_clocksource = clocksource_default_clock(); mutex_unlock(&clocksource_mutex); finished_booting = 1; /* * Run the watchdog first to eliminate unstable clock sources */ clocksource_watchdog_kthread(NULL); mutex_lock(&clocksource_mutex); clocksource_select(); mutex_unlock(&clocksource_mutex); return 0; } fs_initcall(clocksource_done_booting); /* * Enqueue the clocksource sorted by rating */ static void clocksource_enqueue(struct clocksource *cs) { struct list_head *entry = &clocksource_list; struct clocksource *tmp; list_for_each_entry(tmp, &clocksource_list, list) /* Keep track of the place, where to insert */ if (tmp->rating >= cs->rating) entry = &tmp->list; list_add(&cs->list, entry); } /** * __clocksource_updatefreq_scale - Used update clocksource with new freq * @cs: clocksource to be registered * @scale: Scale factor multiplied against freq to get clocksource hz * @freq: clocksource frequency (cycles per second) divided by scale * * This should only be called from the clocksource->enable() method. * * This *SHOULD NOT* be called directly! Please use the * clocksource_updatefreq_hz() or clocksource_updatefreq_khz helper functions. */ void __clocksource_updatefreq_scale(struct clocksource *cs, u32 scale, u32 freq) { u64 sec; /* * Calc the maximum number of seconds which we can run before * wrapping around. For clocksources which have a mask > 32bit * we need to limit the max sleep time to have a good * conversion precision. 10 minutes is still a reasonable * amount. That results in a shift value of 24 for a * clocksource with mask >= 40bit and f >= 4GHz. That maps to * ~ 0.06ppm granularity for NTP. We apply the same 12.5% * margin as we do in clocksource_max_deferment() */ sec = (cs->mask - (cs->mask >> 3)); do_div(sec, freq); do_div(sec, scale); if (!sec) sec = 1; else if (sec > 600 && cs->mask > UINT_MAX) sec = 600; clocks_calc_mult_shift(&cs->mult, &cs->shift, freq, NSEC_PER_SEC / scale, sec * scale); /* * for clocksources that have large mults, to avoid overflow. * Since mult may be adjusted by ntp, add an safety extra margin * */ cs->maxadj = clocksource_max_adjustment(cs); while ((cs->mult + cs->maxadj < cs->mult) || (cs->mult - cs->maxadj > cs->mult)) { cs->mult >>= 1; cs->shift--; cs->maxadj = clocksource_max_adjustment(cs); } cs->max_idle_ns = clocksource_max_deferment(cs); } EXPORT_SYMBOL_GPL(__clocksource_updatefreq_scale); /** * __clocksource_register_scale - Used to install new clocksources * @cs: clocksource to be registered * @scale: Scale factor multiplied against freq to get clocksource hz * @freq: clocksource frequency (cycles per second) divided by scale * * Returns -EBUSY if registration fails, zero otherwise. * * This *SHOULD NOT* be called directly! Please use the * clocksource_register_hz() or clocksource_register_khz helper functions. */ int __clocksource_register_scale(struct clocksource *cs, u32 scale, u32 freq) { /* Initialize mult/shift and max_idle_ns */ __clocksource_updatefreq_scale(cs, scale, freq); /* Add clocksource to the clcoksource list */ mutex_lock(&clocksource_mutex); clocksource_enqueue(cs); clocksource_enqueue_watchdog(cs); clocksource_select(); mutex_unlock(&clocksource_mutex); return 0; } EXPORT_SYMBOL_GPL(__clocksource_register_scale); /** * clocksource_register - Used to install new clocksources * @cs: clocksource to be registered * * Returns -EBUSY if registration fails, zero otherwise. */ int clocksource_register(struct clocksource *cs) { /* calculate max adjustment for given mult/shift */ cs->maxadj = clocksource_max_adjustment(cs); WARN_ONCE(cs->mult + cs->maxadj < cs->mult, "Clocksource %s might overflow on 11%% adjustment\n", cs->name); /* calculate max idle time permitted for this clocksource */ cs->max_idle_ns = clocksource_max_deferment(cs); mutex_lock(&clocksource_mutex); clocksource_enqueue(cs); clocksource_enqueue_watchdog(cs); clocksource_select(); mutex_unlock(&clocksource_mutex); return 0; } EXPORT_SYMBOL(clocksource_register); static void __clocksource_change_rating(struct clocksource *cs, int rating) { list_del(&cs->list); cs->rating = rating; clocksource_enqueue(cs); clocksource_select(); } /** * clocksource_change_rating - Change the rating of a registered clocksource * @cs: clocksource to be changed * @rating: new rating */ void clocksource_change_rating(struct clocksource *cs, int rating) { mutex_lock(&clocksource_mutex); __clocksource_change_rating(cs, rating); mutex_unlock(&clocksource_mutex); } EXPORT_SYMBOL(clocksource_change_rating); /** * clocksource_unregister - remove a registered clocksource * @cs: clocksource to be unregistered */ void clocksource_unregister(struct clocksource *cs) { mutex_lock(&clocksource_mutex); clocksource_dequeue_watchdog(cs); list_del(&cs->list); clocksource_select(); mutex_unlock(&clocksource_mutex); } EXPORT_SYMBOL(clocksource_unregister); #ifdef CONFIG_SYSFS /** * sysfs_show_current_clocksources - sysfs interface for current clocksource * @dev: unused * @attr: unused * @buf: char buffer to be filled with clocksource list * * Provides sysfs interface for listing current clocksource. */ static ssize_t sysfs_show_current_clocksources(struct device *dev, struct device_attribute *attr, char *buf) { ssize_t count = 0; mutex_lock(&clocksource_mutex); count = snprintf(buf, PAGE_SIZE, "%s\n", curr_clocksource->name); mutex_unlock(&clocksource_mutex); return count; } /** * sysfs_override_clocksource - interface for manually overriding clocksource * @dev: unused * @attr: unused * @buf: name of override clocksource * @count: length of buffer * * Takes input from sysfs interface for manually overriding the default * clocksource selection. */ static ssize_t sysfs_override_clocksource(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { size_t ret = count; /* strings from sysfs write are not 0 terminated! */ if (count >= sizeof(override_name)) return -EINVAL; /* strip of \n: */ if (buf[count-1] == '\n') count--; mutex_lock(&clocksource_mutex); if (count > 0) memcpy(override_name, buf, count); override_name[count] = 0; clocksource_select(); mutex_unlock(&clocksource_mutex); return ret; } /** * sysfs_show_available_clocksources - sysfs interface for listing clocksource * @dev: unused * @attr: unused * @buf: char buffer to be filled with clocksource list * * Provides sysfs interface for listing registered clocksources */ static ssize_t sysfs_show_available_clocksources(struct device *dev, struct device_attribute *attr, char *buf) { struct clocksource *src; ssize_t count = 0; mutex_lock(&clocksource_mutex); list_for_each_entry(src, &clocksource_list, list) { /* * Don't show non-HRES clocksource if the tick code is * in one shot mode (highres=on or nohz=on) */ if (!tick_oneshot_mode_active() || (src->flags & CLOCK_SOURCE_VALID_FOR_HRES)) count += snprintf(buf + count, max((ssize_t)PAGE_SIZE - count, (ssize_t)0), "%s ", src->name); } mutex_unlock(&clocksource_mutex); count += snprintf(buf + count, max((ssize_t)PAGE_SIZE - count, (ssize_t)0), "\n"); return count; } /* * Sysfs setup bits: */ static DEVICE_ATTR(current_clocksource, 0644, sysfs_show_current_clocksources, sysfs_override_clocksource); static DEVICE_ATTR(available_clocksource, 0444, sysfs_show_available_clocksources, NULL); static struct bus_type clocksource_subsys = { .name = "clocksource", .dev_name = "clocksource", }; static struct device device_clocksource = { .id = 0, .bus = &clocksource_subsys, }; static int __init init_clocksource_sysfs(void) { int error = subsys_system_register(&clocksource_subsys, NULL); if (!error) error = device_register(&device_clocksource); if (!error) error = device_create_file( &device_clocksource, &dev_attr_current_clocksource); if (!error) error = device_create_file( &device_clocksource, &dev_attr_available_clocksource); return error; } device_initcall(init_clocksource_sysfs); #endif /* CONFIG_SYSFS */ /** * boot_override_clocksource - boot clock override * @str: override name * * Takes a clocksource= boot argument and uses it * as the clocksource override name. */ static int __init boot_override_clocksource(char* str) { mutex_lock(&clocksource_mutex); if (str) strlcpy(override_name, str, sizeof(override_name)); mutex_unlock(&clocksource_mutex); return 1; } __setup("clocksource=", boot_override_clocksource); /** * boot_override_clock - Compatibility layer for deprecated boot option * @str: override name * * DEPRECATED! Takes a clock= boot argument and uses it * as the clocksource override name */ static int __init boot_override_clock(char* str) { if (!strcmp(str, "pmtmr")) { printk("Warning: clock=pmtmr is deprecated. " "Use clocksource=acpi_pm.\n"); return boot_override_clocksource("acpi_pm"); } printk("Warning! clock= boot option is deprecated. " "Use clocksource=xyz\n"); return boot_override_clocksource(str); } __setup("clock=", boot_override_clock);