aboutsummaryrefslogtreecommitdiff
path: root/arch/arm/include/asm/mcpm.h
blob: 627761fce780ed9790807eee4dc805869980396f (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
/*
 * arch/arm/include/asm/mcpm.h
 *
 * Created by:  Nicolas Pitre, April 2012
 * Copyright:   (C) 2012-2013  Linaro Limited
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License version 2 as
 * published by the Free Software Foundation.
 */

#ifndef MCPM_H
#define MCPM_H

/*
 * Maximum number of possible clusters / CPUs per cluster.
 *
 * This should be sufficient for quite a while, while keeping the
 * (assembly) code simpler.  When this starts to grow then we'll have
 * to consider dynamic allocation.
 */
#define MAX_CPUS_PER_CLUSTER	4
#define MAX_NR_CLUSTERS		2

#ifndef __ASSEMBLY__

/*
 * Platform specific code should use this symbol to set up secondary
 * entry location for processors to use when released from reset.
 */
extern void mcpm_entry_point(void);

/*
 * This is used to indicate where the given CPU from given cluster should
 * branch once it is ready to re-enter the kernel using ptr, or NULL if it
 * should be gated.  A gated CPU is held in a WFE loop until its vector
 * becomes non NULL.
 */
void mcpm_set_entry_vector(unsigned cpu, unsigned cluster, void *ptr);

/*
 * CPU/cluster power operations API for higher subsystems to use.
 */

/**
 * mcpm_cpu_power_up - make given CPU in given cluster runable
 *
 * @cpu: CPU number within given cluster
 * @cluster: cluster number for the CPU
 *
 * The identified CPU is brought out of reset.  If the cluster was powered
 * down then it is brought up as well, taking care not to let the other CPUs
 * in the cluster run, and ensuring appropriate cluster setup.
 *
 * Caller must ensure the appropriate entry vector is initialized with
 * mcpm_set_entry_vector() prior to calling this.
 *
 * This must be called in a sleepable context.  However, the implementation
 * is strongly encouraged to return early and let the operation happen
 * asynchronously, especially when significant delays are expected.
 *
 * If the operation cannot be performed then an error code is returned.
 */
int mcpm_cpu_power_up(unsigned int cpu, unsigned int cluster);

/**
 * mcpm_cpu_power_down - power the calling CPU down
 *
 * The calling CPU is powered down.
 *
 * If this CPU is found to be the "last man standing" in the cluster
 * then the cluster is prepared for power-down too.
 *
 * This must be called with interrupts disabled.
 *
 * This does not return.  Re-entry in the kernel is expected via
 * mcpm_entry_point.
 */
void mcpm_cpu_power_down(void);

/**
 * mcpm_cpu_suspend - bring the calling CPU in a suspended state
 *
 * @expected_residency: duration in microseconds the CPU is expected
 *			to remain suspended, or 0 if unknown/infinity.
 *
 * The calling CPU is suspended.  The expected residency argument is used
 * as a hint by the platform specific backend to implement the appropriate
 * sleep state level according to the knowledge it has on wake-up latency
 * for the given hardware.
 *
 * If this CPU is found to be the "last man standing" in the cluster
 * then the cluster may be prepared for power-down too, if the expected
 * residency makes it worthwhile.
 *
 * This must be called with interrupts disabled.
 *
 * This does not return.  Re-entry in the kernel is expected via
 * mcpm_entry_point.
 */
void mcpm_cpu_suspend(u64 expected_residency);

/**
 * mcpm_cpu_powered_up - housekeeping workafter a CPU has been powered up
 *
 * This lets the platform specific backend code perform needed housekeeping
 * work.  This must be called by the newly activated CPU as soon as it is
 * fully operational in kernel space, before it enables interrupts.
 *
 * If the operation cannot be performed then an error code is returned.
 */
int mcpm_cpu_powered_up(void);

/*
 * Platform specific methods used in the implementation of the above API.
 */
struct mcpm_platform_ops {
	int (*power_up)(unsigned int cpu, unsigned int cluster);
	void (*power_down)(void);
	void (*suspend)(u64);
	void (*powered_up)(void);
};

/**
 * mcpm_platform_register - register platform specific power methods
 *
 * @ops: mcpm_platform_ops structure to register
 *
 * An error is returned if the registration has been done previously.
 */
int __init mcpm_platform_register(const struct mcpm_platform_ops *ops);

#endif /* ! __ASSEMBLY__ */
#endif