aboutsummaryrefslogtreecommitdiff
path: root/drivers/gpu/arm/midgard/mali_kbase_mmu.c
blob: 4aedadbaf45d6e8b835a401acfff6f49526b91b4 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
/*
 *
 * (C) COPYRIGHT ARM Limited. All rights reserved.
 *
 * This program is free software and is provided to you under the terms of the
 * GNU General Public License version 2 as published by the Free Software
 * Foundation, and any use by you of this program is subject to the terms
 * of such GNU licence.
 *
 * A copy of the licence is included with the program, and can also be obtained
 * from Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor,
 * Boston, MA  02110-1301, USA.
 *
 */





/**
 * @file mali_kbase_mmu.c
 * Base kernel MMU management.
 */

/* #define DEBUG    1 */
#include <mali_kbase.h>
#include <mali_midg_regmap.h>
#include <mali_kbase_gator.h>
#include <mali_kbase_debug.h>

#define beenthere(kctx, f, a...)  KBASE_LOG(1, kctx->kbdev->dev, "%s:" f, __func__, ##a)

#include <mali_kbase_defs.h>
#include <mali_kbase_hw.h>

#define KBASE_MMU_PAGE_ENTRIES 512

/*
 * Definitions:
 * - PGD: Page Directory.
 * - PTE: Page Table Entry. A 64bit value pointing to the next
 *        level of translation
 * - ATE: Address Transation Entry. A 64bit value pointing to
 *        a 4kB physical page.
 */

static void kbase_mmu_report_fault_and_kill(kbase_context *kctx, kbase_as *as);
static u64 lock_region(kbase_device *kbdev, u64 pfn, size_t num_pages);

/* Helper Function to perform assignment of page table entries, to ensure the use of
 * strd, which is required on LPAE systems.
 */

static inline void page_table_entry_set( kbase_device * kbdev, u64 * pte, u64 phy )
{
#ifdef CONFIG_64BIT
	*pte = phy;
#elif defined(CONFIG_ARM)
	/*
	 *
	 * In order to prevent the compiler keeping cached copies of memory, we have to explicitly
	 * say that we have updated memory.
	 *
	 * Note: We could manually move the data ourselves into R0 and R1 by specifying
	 * register variables that are explicitly given registers assignments, the down side of
	 * this is that we have to assume cpu endianess.  To avoid this we can use the ldrd to read the
	 * data from memory into R0 and R1 which will respect the cpu endianess, we then use strd to
	 * make the 64 bit assignment to the page table entry.
	 *
	 */

	asm	volatile("ldrd r0, r1, [%[ptemp]]\n\t"
				"strd r0, r1, [%[pte]]\n\t"
				: "=m" (*pte)
				: [ptemp] "r" (&phy), [pte] "r" (pte), "m" (phy)
				: "r0", "r1" );
#else
#error "64-bit atomic write must be implemented for your architecture"
#endif
}

static void ksync_kern_vrange_gpu(phys_addr_t paddr, void *vaddr, size_t size)
{
	kbase_sync_to_memory(paddr, vaddr, size);
}

static size_t make_multiple(size_t minimum, size_t multiple)
{
	size_t remainder = minimum % multiple;
	if (remainder == 0)
		return minimum;
	else
		return minimum + multiple - remainder;
}

static void mmu_mask_reenable(kbase_device *kbdev, kbase_context *kctx, kbase_as *as)
{
	unsigned long flags;
	u32 mask;
	spin_lock_irqsave(&kbdev->mmu_mask_change, flags);
	mask = kbase_reg_read(kbdev, MMU_REG(MMU_IRQ_MASK), kctx);
	mask |= ((1UL << as->number) | (1UL << (MMU_REGS_BUS_ERROR_FLAG(as->number))));
	kbase_reg_write(kbdev, MMU_REG(MMU_IRQ_MASK), mask, kctx);
	spin_unlock_irqrestore(&kbdev->mmu_mask_change, flags);
}

static void page_fault_worker(struct work_struct *data)
{
	u64 fault_pfn;
	size_t new_pages;
	size_t fault_rel_pfn;
	kbase_as *faulting_as;
	int as_no;
	kbase_context *kctx;
	kbase_device *kbdev;
	kbase_va_region *region;
	mali_error err;

	faulting_as = container_of(data, kbase_as, work_pagefault);
	fault_pfn = faulting_as->fault_addr >> PAGE_SHIFT;
	as_no = faulting_as->number;

	kbdev = container_of(faulting_as, kbase_device, as[as_no]);

	/* Grab the context that was already refcounted in kbase_mmu_interrupt().
	 * Therefore, it cannot be scheduled out of this AS until we explicitly release it
	 *
	 * NOTE: NULL can be returned here if we're gracefully handling a spurious interrupt */
	kctx = kbasep_js_runpool_lookup_ctx_noretain(kbdev, as_no);

	if (kctx == NULL) {
		/* Only handle this if not already suspended */
		if ( !kbase_pm_context_active_handle_suspend(kbdev, KBASE_PM_SUSPEND_HANDLER_DONT_REACTIVATE)) {
			/* Address space has no context, terminate the work */
			u32 reg;

			/* AS transaction begin */
			mutex_lock(&faulting_as->transaction_mutex);
			reg = kbase_reg_read(kbdev, MMU_AS_REG(as_no, ASn_TRANSTAB_LO), NULL);
			reg = (reg & (~(u32) MMU_TRANSTAB_ADRMODE_MASK)) | ASn_TRANSTAB_ADRMODE_UNMAPPED;
			kbase_reg_write(kbdev, MMU_AS_REG(as_no, ASn_TRANSTAB_LO), reg, NULL);
			kbase_reg_write(kbdev, MMU_AS_REG(as_no, ASn_COMMAND), ASn_COMMAND_UPDATE, NULL);
			mutex_unlock(&faulting_as->transaction_mutex);
			/* AS transaction end */

			mmu_mask_reenable(kbdev, NULL, faulting_as);
			kbase_pm_context_idle(kbdev);
		}
		return;
	}

	KBASE_DEBUG_ASSERT(kctx->kbdev == kbdev);

	kbase_gpu_vm_lock(kctx);

	/* find the region object for this VA */
	region = kbase_region_tracker_find_region_enclosing_address(kctx, faulting_as->fault_addr);
	if (NULL == region || (GROWABLE_FLAGS_REQUIRED != (region->flags & GROWABLE_FLAGS_MASK))) {
		kbase_gpu_vm_unlock(kctx);
		/* failed to find the region or mismatch of the flags */
		kbase_mmu_report_fault_and_kill(kctx, faulting_as);
		goto fault_done;
	}

	if ((((faulting_as->fault_status & ASn_FAULTSTATUS_ACCESS_TYPE_MASK) == ASn_FAULTSTATUS_ACCESS_TYPE_READ) && !(region->flags & KBASE_REG_GPU_RD)) || (((faulting_as->fault_status & ASn_FAULTSTATUS_ACCESS_TYPE_MASK) == ASn_FAULTSTATUS_ACCESS_TYPE_WRITE) && !(region->flags & KBASE_REG_GPU_WR)) || (((faulting_as->fault_status & ASn_FAULTSTATUS_ACCESS_TYPE_MASK) == ASn_FAULTSTATUS_ACCESS_TYPE_EX) && (region->flags & KBASE_REG_GPU_NX))) {
		dev_warn(kbdev->dev, "Access permissions don't match: region->flags=0x%lx", region->flags);
		kbase_gpu_vm_unlock(kctx);
		kbase_mmu_report_fault_and_kill(kctx, faulting_as);
		goto fault_done;
	}

	/* find the size we need to grow it by */
	/* we know the result fit in a size_t due to kbase_region_tracker_find_region_enclosing_address
	 * validating the fault_adress to be within a size_t from the start_pfn */
	fault_rel_pfn = fault_pfn - region->start_pfn;

	if (fault_rel_pfn < kbase_reg_current_backed_size(region)) {
		dev_warn(kbdev->dev, "Page fault in allocated region of growable TMEM: Ignoring");
		mmu_mask_reenable(kbdev, kctx, faulting_as);
		kbase_gpu_vm_unlock(kctx);
		goto fault_done;
	}

	new_pages = make_multiple(fault_rel_pfn - kbase_reg_current_backed_size(region) + 1, region->extent);
	if (new_pages + kbase_reg_current_backed_size(region) > region->nr_pages) {
		/* cap to max vsize */
		new_pages = region->nr_pages - kbase_reg_current_backed_size(region);
	}

	if (0 == new_pages) {
		/* Duplicate of a fault we've already handled, nothing to do */
		mmu_mask_reenable(kbdev, kctx, faulting_as);
		kbase_gpu_vm_unlock(kctx);
		goto fault_done;
	}

	if (MALI_ERROR_NONE == kbase_alloc_phy_pages_helper(region->alloc, new_pages)) {
		/* alloc success */
		mali_addr64 lock_addr;
		KBASE_DEBUG_ASSERT(kbase_reg_current_backed_size(region) <= region->nr_pages);

		/* AS transaction begin */
		mutex_lock(&faulting_as->transaction_mutex);

		/* Lock the VA region we're about to update */
		lock_addr = lock_region(kbdev, faulting_as->fault_addr >> PAGE_SHIFT, new_pages);
		kbase_reg_write(kbdev, MMU_AS_REG(as_no, ASn_LOCKADDR_LO), lock_addr & 0xFFFFFFFFUL, kctx);
		kbase_reg_write(kbdev, MMU_AS_REG(as_no, ASn_LOCKADDR_HI), lock_addr >> 32, kctx);
		kbase_reg_write(kbdev, MMU_AS_REG(as_no, ASn_COMMAND), ASn_COMMAND_LOCK, kctx);
		if (kbase_hw_has_issue(kbdev, BASE_HW_ISSUE_T76X_3285)) {
			kbase_reg_write(kbdev, MMU_REG(MMU_IRQ_CLEAR), (1UL << as_no), NULL);
			kbase_reg_write(kbdev, MMU_AS_REG(as_no, ASn_COMMAND), ASn_COMMAND_LOCK, kctx);
		}

		/* set up the new pages */
		err = kbase_mmu_insert_pages(kctx, region->start_pfn + kbase_reg_current_backed_size(region) - new_pages, &kbase_get_phy_pages(region)[kbase_reg_current_backed_size(region) - new_pages], new_pages, region->flags);
		if (MALI_ERROR_NONE != err) {
			/* failed to insert pages, handle as a normal PF */
			mutex_unlock(&faulting_as->transaction_mutex);
			kbase_gpu_vm_unlock(kctx);
			kbase_free_phy_pages_helper(region->alloc, new_pages);
			/* The locked VA region will be unlocked and the cache invalidated in here */
			kbase_mmu_report_fault_and_kill(kctx, faulting_as);
			goto fault_done;
		}
#ifdef CONFIG_MALI_GATOR_SUPPORT
		kbase_trace_mali_page_fault_insert_pages(as_no, new_pages);
#endif				/* CONFIG_MALI_GATOR_SUPPORT */

		/* flush L2 and unlock the VA (resumes the MMU) */
		if (kbase_hw_has_issue(kbdev, BASE_HW_ISSUE_6367))
			kbase_reg_write(kbdev, MMU_AS_REG(as_no, ASn_COMMAND), ASn_COMMAND_FLUSH, kctx);
		else
			kbase_reg_write(kbdev, MMU_AS_REG(as_no, ASn_COMMAND), ASn_COMMAND_FLUSH_PT, kctx);

		/* wait for the flush to complete */
		while (kbase_reg_read(kbdev, MMU_AS_REG(as_no, ASn_STATUS), kctx) & 1)
			;

		if (kbase_hw_has_issue(kbdev, BASE_HW_ISSUE_9630)) {
			/* Issue an UNLOCK command to ensure that valid page tables are re-read by the GPU after an update.
			   Note that, the FLUSH command should perform all the actions necessary, however the bus logs show
			   that if multiple page faults occur within an 8 page region the MMU does not always re-read the
			   updated page table entries for later faults or is only partially read, it subsequently raises the
			   page fault IRQ for the same addresses, the unlock ensures that the MMU cache is flushed, so updates
			   can be re-read.  As the region is now unlocked we need to issue 2 UNLOCK commands in order to flush the
			   MMU/uTLB, see PRLAM-8812.
			 */
			kbase_reg_write(kctx->kbdev, MMU_AS_REG(kctx->as_nr, ASn_COMMAND), ASn_COMMAND_UNLOCK, kctx);
			kbase_reg_write(kctx->kbdev, MMU_AS_REG(kctx->as_nr, ASn_COMMAND), ASn_COMMAND_UNLOCK, kctx);
		}

		mutex_unlock(&faulting_as->transaction_mutex);
		/* AS transaction end */

		/* reenable this in the mask */
		mmu_mask_reenable(kbdev, kctx, faulting_as);
		kbase_gpu_vm_unlock(kctx);
	} else {
		/* failed to extend, handle as a normal PF */
		kbase_gpu_vm_unlock(kctx);
		kbase_mmu_report_fault_and_kill(kctx, faulting_as);
	}

 fault_done:
	/* By this point, the fault was handled in some way, so release the ctx refcount */
	kbasep_js_runpool_release_ctx(kbdev, kctx);
}

phys_addr_t kbase_mmu_alloc_pgd(kbase_context *kctx)
{
	phys_addr_t pgd;
	u64 *page;
	int i;

	KBASE_DEBUG_ASSERT(NULL != kctx);
	kbase_atomic_add_pages(1, &kctx->used_pages);
	kbase_atomic_add_pages(1, &kctx->kbdev->memdev.used_pages);

	if (MALI_ERROR_NONE != kbase_mem_allocator_alloc(kctx->pgd_allocator, 1, &pgd))
		goto sub_pages;

	page = kmap(pfn_to_page(PFN_DOWN(pgd)));
	if (NULL == page)
		goto alloc_free;

	kbase_process_page_usage_inc(kctx, 1);

	for (i = 0; i < KBASE_MMU_PAGE_ENTRIES; i++)
		page_table_entry_set( kctx->kbdev, &page[i], ENTRY_IS_INVAL );

	/* Clean the full page */
	ksync_kern_vrange_gpu(pgd, page, KBASE_MMU_PAGE_ENTRIES * sizeof(u64));
	kunmap(pfn_to_page(PFN_DOWN(pgd)));
	return pgd;

alloc_free:
	kbase_mem_allocator_free(kctx->pgd_allocator, 1, &pgd, MALI_FALSE);
sub_pages:
	kbase_atomic_sub_pages(1, &kctx->used_pages);
	kbase_atomic_sub_pages(1, &kctx->kbdev->memdev.used_pages);

	return 0;
}

KBASE_EXPORT_TEST_API(kbase_mmu_alloc_pgd)

static phys_addr_t mmu_pte_to_phy_addr(u64 entry)
{
	if (!(entry & 1))
		return 0;

	return entry & ~0xFFF;
}

static u64 mmu_phyaddr_to_pte(phys_addr_t phy)
{
	return (phy & ~0xFFF) | ENTRY_IS_PTE;
}

static u64 mmu_phyaddr_to_ate(phys_addr_t phy, u64 flags)
{
	return (phy & ~0xFFF) | (flags & ENTRY_FLAGS_MASK) | ENTRY_IS_ATE;
}

/* Given PGD PFN for level N, return PGD PFN for level N+1 */
static phys_addr_t mmu_get_next_pgd(kbase_context *kctx, phys_addr_t pgd, u64 vpfn, int level)
{
	u64 *page;
	phys_addr_t target_pgd;

	KBASE_DEBUG_ASSERT(pgd);
	KBASE_DEBUG_ASSERT(NULL != kctx);

	lockdep_assert_held(&kctx->reg_lock);

	/*
	 * Architecture spec defines level-0 as being the top-most.
	 * This is a bit unfortunate here, but we keep the same convention.
	 */
	vpfn >>= (3 - level) * 9;
	vpfn &= 0x1FF;

	page = kmap(pfn_to_page(PFN_DOWN(pgd)));
	if (NULL == page) {
		dev_warn(kctx->kbdev->dev, "mmu_get_next_pgd: kmap failure\n");
		return 0;
	}

	target_pgd = mmu_pte_to_phy_addr(page[vpfn]);

	if (!target_pgd) {
		target_pgd = kbase_mmu_alloc_pgd(kctx);
		if (!target_pgd) {
			dev_warn(kctx->kbdev->dev, "mmu_get_next_pgd: kbase_mmu_alloc_pgd failure\n");
			kunmap(pfn_to_page(PFN_DOWN(pgd)));
			return 0;
		}

		page_table_entry_set( kctx->kbdev, &page[vpfn], mmu_phyaddr_to_pte(target_pgd) );

		ksync_kern_vrange_gpu(pgd + (vpfn * sizeof(u64)), page + vpfn, sizeof(u64));
		/* Rely on the caller to update the address space flags. */
	}

	kunmap(pfn_to_page(PFN_DOWN(pgd)));
	return target_pgd;
}

static phys_addr_t mmu_get_bottom_pgd(kbase_context *kctx, u64 vpfn)
{
	phys_addr_t pgd;
	int l;

	pgd = kctx->pgd;

	for (l = MIDGARD_MMU_TOPLEVEL; l < 3; l++) {
		pgd = mmu_get_next_pgd(kctx, pgd, vpfn, l);
		/* Handle failure condition */
		if (!pgd) {
			dev_warn(kctx->kbdev->dev, "mmu_get_bottom_pgd: mmu_get_next_pgd failure\n");
			return 0;
		}
	}

	return pgd;
}

static phys_addr_t mmu_insert_pages_recover_get_next_pgd(kbase_context *kctx, phys_addr_t pgd, u64 vpfn, int level)
{
	u64 *page;
	phys_addr_t target_pgd;

	KBASE_DEBUG_ASSERT(pgd);
	KBASE_DEBUG_ASSERT(NULL != kctx);

	lockdep_assert_held(&kctx->reg_lock);

	/*
	 * Architecture spec defines level-0 as being the top-most.
	 * This is a bit unfortunate here, but we keep the same convention.
	 */
	vpfn >>= (3 - level) * 9;
	vpfn &= 0x1FF;

	page = kmap_atomic(pfn_to_page(PFN_DOWN(pgd)));
	/* kmap_atomic should NEVER fail */
	KBASE_DEBUG_ASSERT(NULL != page);

	target_pgd = mmu_pte_to_phy_addr(page[vpfn]);
	/* As we are recovering from what has already been set up, we should have a target_pgd */
	KBASE_DEBUG_ASSERT(0 != target_pgd);

	kunmap_atomic(page);
	return target_pgd;
}

static phys_addr_t mmu_insert_pages_recover_get_bottom_pgd(kbase_context *kctx, u64 vpfn)
{
	phys_addr_t pgd;
	int l;

	pgd = kctx->pgd;

	for (l = MIDGARD_MMU_TOPLEVEL; l < 3; l++) {
		pgd = mmu_insert_pages_recover_get_next_pgd(kctx, pgd, vpfn, l);
		/* Should never fail */
		KBASE_DEBUG_ASSERT(0 != pgd);
	}

	return pgd;
}

static void mmu_insert_pages_failure_recovery(kbase_context *kctx, u64 vpfn,
					      size_t nr)
{
	phys_addr_t pgd;
	u64 *pgd_page;

	KBASE_DEBUG_ASSERT(NULL != kctx);
	KBASE_DEBUG_ASSERT(0 != vpfn);
	/* 64-bit address range is the max */
	KBASE_DEBUG_ASSERT(vpfn <= (UINT64_MAX / PAGE_SIZE));

	lockdep_assert_held(&kctx->reg_lock);

	while (nr) {
		unsigned int i;
		unsigned int index = vpfn & 0x1FF;
		unsigned int count = KBASE_MMU_PAGE_ENTRIES - index;

		if (count > nr)
			count = nr;

		pgd = mmu_insert_pages_recover_get_bottom_pgd(kctx, vpfn);
		KBASE_DEBUG_ASSERT(0 != pgd);

		pgd_page = kmap_atomic(pfn_to_page(PFN_DOWN(pgd)));
		KBASE_DEBUG_ASSERT(NULL != pgd_page);

		/* Invalidate the entries we added */
		for (i = 0; i < count; i++)
			page_table_entry_set(kctx->kbdev, &pgd_page[index + i],
					     ENTRY_IS_INVAL);

		vpfn += count;
		nr -= count;

		ksync_kern_vrange_gpu(pgd + (index * sizeof(u64)),
				      pgd_page + index, count * sizeof(u64));

		kunmap_atomic(pgd_page);
	}
}

/**
 * Map KBASE_REG flags to MMU flags
 */
static u64 kbase_mmu_get_mmu_flags(unsigned long flags)
{
	u64 mmu_flags;

	/* store mem_attr index as 4:2 (macro called ensures 3 bits already) */
	mmu_flags = KBASE_REG_MEMATTR_VALUE(flags) << 2;

	/* write perm if requested */
	mmu_flags |= (flags & KBASE_REG_GPU_WR) ? ENTRY_WR_BIT : 0;
	/* read perm if requested */
	mmu_flags |= (flags & KBASE_REG_GPU_RD) ? ENTRY_RD_BIT : 0;
	/* nx if requested */
	mmu_flags |= (flags & KBASE_REG_GPU_NX) ? ENTRY_NX_BIT : 0;

	if (flags & KBASE_REG_SHARE_BOTH) {
		/* inner and outer shareable */
		mmu_flags |= SHARE_BOTH_BITS;
	} else if (flags & KBASE_REG_SHARE_IN) {
		/* inner shareable coherency */
		mmu_flags |= SHARE_INNER_BITS;
	}

	return mmu_flags;
}

/*
 * Map the single page 'phys' 'nr' of times, starting at GPU PFN 'vpfn'
 */
mali_error kbase_mmu_insert_single_page(kbase_context *kctx, u64 vpfn,
					phys_addr_t phys, size_t nr,
					unsigned long flags)
{
	phys_addr_t pgd;
	u64 *pgd_page;
	u64 pte_entry;
	/* In case the insert_single_page only partially completes we need to be
	 * able to recover */
	mali_bool recover_required = MALI_FALSE;
	u64 recover_vpfn = vpfn;
	size_t recover_count = 0;

	KBASE_DEBUG_ASSERT(NULL != kctx);
	KBASE_DEBUG_ASSERT(0 != vpfn);
	/* 64-bit address range is the max */
	KBASE_DEBUG_ASSERT(vpfn <= (UINT64_MAX / PAGE_SIZE));

	lockdep_assert_held(&kctx->reg_lock);

	/* the one entry we'll populate everywhere */
	pte_entry = mmu_phyaddr_to_ate(phys, kbase_mmu_get_mmu_flags(flags));

	while (nr) {
		unsigned int i;
		unsigned int index = vpfn & 0x1FF;
		unsigned int count = KBASE_MMU_PAGE_ENTRIES - index;

		if (count > nr)
			count = nr;

		/*
		 * Repeatedly calling mmu_get_bottom_pte() is clearly
		 * suboptimal. We don't have to re-parse the whole tree
		 * each time (just cache the l0-l2 sequence).
		 * On the other hand, it's only a gain when we map more than
		 * 256 pages at once (on average). Do we really care?
		 */
		pgd = mmu_get_bottom_pgd(kctx, vpfn);
		if (!pgd) {
			dev_warn(kctx->kbdev->dev,
					       "kbase_mmu_insert_pages: "
					       "mmu_get_bottom_pgd failure\n");
			if (recover_required) {
				/* Invalidate the pages we have partially
				 * completed */
				mmu_insert_pages_failure_recovery(kctx,
								  recover_vpfn,
								  recover_count);
			}
			return MALI_ERROR_FUNCTION_FAILED;
		}

		pgd_page = kmap(pfn_to_page(PFN_DOWN(pgd)));
		if (!pgd_page) {
			dev_warn(kctx->kbdev->dev,
					       "kbase_mmu_insert_pages: "
					       "kmap failure\n");
			if (recover_required) {
				/* Invalidate the pages we have partially
				 * completed */
				mmu_insert_pages_failure_recovery(kctx,
								  recover_vpfn,
								  recover_count);
			}
			return MALI_ERROR_OUT_OF_MEMORY;
		}

		for (i = 0; i < count; i++) {
			unsigned int ofs = index + i;
			KBASE_DEBUG_ASSERT(0 == (pgd_page[ofs] & 1UL));
			page_table_entry_set(kctx->kbdev, &pgd_page[ofs],
					     pte_entry);
		}

		vpfn += count;
		nr -= count;

		ksync_kern_vrange_gpu(pgd + (index * sizeof(u64)),
				      pgd_page + index, count * sizeof(u64));

		kunmap(pfn_to_page(PFN_DOWN(pgd)));
		/* We have started modifying the page table.
		 * If further pages need inserting and fail we need to undo what
		 * has already taken place */
		recover_required = MALI_TRUE;
		recover_count += count;
	}
	return MALI_ERROR_NONE;
}

/*
 * Map 'nr' pages pointed to by 'phys' at GPU PFN 'vpfn'
 */
mali_error kbase_mmu_insert_pages(kbase_context *kctx, u64 vpfn,
				  phys_addr_t *phys, size_t nr,
				  unsigned long flags)
{
	phys_addr_t pgd;
	u64 *pgd_page;
	u64 mmu_flags = 0;
	/* In case the insert_pages only partially completes we need to be able
	 * to recover */
	mali_bool recover_required = MALI_FALSE;
	u64 recover_vpfn = vpfn;
	size_t recover_count = 0;

	KBASE_DEBUG_ASSERT(NULL != kctx);
	KBASE_DEBUG_ASSERT(0 != vpfn);
	/* 64-bit address range is the max */
	KBASE_DEBUG_ASSERT(vpfn <= (UINT64_MAX / PAGE_SIZE));

	lockdep_assert_held(&kctx->reg_lock);

	mmu_flags = kbase_mmu_get_mmu_flags(flags);

	while (nr) {
		unsigned int i;
		unsigned int index = vpfn & 0x1FF;
		unsigned int count = KBASE_MMU_PAGE_ENTRIES - index;

		if (count > nr)
			count = nr;

		/*
		 * Repeatedly calling mmu_get_bottom_pte() is clearly
		 * suboptimal. We don't have to re-parse the whole tree
		 * each time (just cache the l0-l2 sequence).
		 * On the other hand, it's only a gain when we map more than
		 * 256 pages at once (on average). Do we really care?
		 */
		pgd = mmu_get_bottom_pgd(kctx, vpfn);
		if (!pgd) {
			dev_warn(kctx->kbdev->dev,
					       "kbase_mmu_insert_pages: "
					       "mmu_get_bottom_pgd failure\n");
			if (recover_required) {
				/* Invalidate the pages we have partially
				 * completed */
				mmu_insert_pages_failure_recovery(kctx,
								  recover_vpfn,
								  recover_count);
			}
			return MALI_ERROR_FUNCTION_FAILED;
		}

		pgd_page = kmap(pfn_to_page(PFN_DOWN(pgd)));
		if (!pgd_page) {
			dev_warn(kctx->kbdev->dev,
					       "kbase_mmu_insert_pages: "
					       "kmap failure\n");
			if (recover_required) {
				/* Invalidate the pages we have partially
				 * completed */
				mmu_insert_pages_failure_recovery(kctx,
								  recover_vpfn,
								  recover_count);
			}
			return MALI_ERROR_OUT_OF_MEMORY;
		}

		for (i = 0; i < count; i++) {
			unsigned int ofs = index + i;
			KBASE_DEBUG_ASSERT(0 == (pgd_page[ofs] & 1UL));
			page_table_entry_set(kctx->kbdev, &pgd_page[ofs],
					     mmu_phyaddr_to_ate(phys[i],
								mmu_flags)
					     );
		}

		phys += count;
		vpfn += count;
		nr -= count;

		ksync_kern_vrange_gpu(pgd + (index * sizeof(u64)),
				      pgd_page + index, count * sizeof(u64));

		kunmap(pfn_to_page(PFN_DOWN(pgd)));
		/* We have started modifying the page table. If further pages
		 * need inserting and fail we need to undo what has already
		 * taken place */
		recover_required = MALI_TRUE;
		recover_count += count;
	}
	return MALI_ERROR_NONE;
}

KBASE_EXPORT_TEST_API(kbase_mmu_insert_pages)

/**
 * This function is responsible for validating the MMU PTs
 * triggering reguired flushes.
 *
 * * IMPORTANT: This uses kbasep_js_runpool_release_ctx() when the context is
 * currently scheduled into the runpool, and so potentially uses a lot of locks.
 * These locks must be taken in the correct order with respect to others
 * already held by the caller. Refer to kbasep_js_runpool_release_ctx() for more
 * information.
 */
static void kbase_mmu_flush(kbase_context *kctx, u64 vpfn, size_t nr)
{
	kbase_device *kbdev;
	mali_bool ctx_is_in_runpool;

	KBASE_DEBUG_ASSERT(NULL != kctx);

	kbdev = kctx->kbdev;

	/* We must flush if we're currently running jobs. At the very least, we need to retain the
	 * context to ensure it doesn't schedule out whilst we're trying to flush it */
	ctx_is_in_runpool = kbasep_js_runpool_retain_ctx(kbdev, kctx);

	if (ctx_is_in_runpool) {
		KBASE_DEBUG_ASSERT(kctx->as_nr != KBASEP_AS_NR_INVALID);

		/* Second level check is to try to only do this when jobs are running. The refcount is
		 * a heuristic for this. */
		if (kbdev->js_data.runpool_irq.per_as_data[kctx->as_nr].as_busy_refcount >= 2) {
			/* Lock the VA region we're about to update */
			u64 lock_addr = lock_region(kbdev, vpfn, nr);
			unsigned int max_loops = KBASE_AS_FLUSH_MAX_LOOPS;

			/* AS transaction begin */
			mutex_lock(&kbdev->as[kctx->as_nr].transaction_mutex);
			kbase_reg_write(kctx->kbdev, MMU_AS_REG(kctx->as_nr, ASn_LOCKADDR_LO), lock_addr & 0xFFFFFFFFUL, kctx);
			kbase_reg_write(kctx->kbdev, MMU_AS_REG(kctx->as_nr, ASn_LOCKADDR_HI), lock_addr >> 32, kctx);
			kbase_reg_write(kctx->kbdev, MMU_AS_REG(kctx->as_nr, ASn_COMMAND), ASn_COMMAND_LOCK, kctx);

			/* flush L2 and unlock the VA */
			if (kbase_hw_has_issue(kbdev, BASE_HW_ISSUE_6367))
				kbase_reg_write(kctx->kbdev, MMU_AS_REG(kctx->as_nr, ASn_COMMAND), ASn_COMMAND_FLUSH, kctx);
			else
				kbase_reg_write(kctx->kbdev, MMU_AS_REG(kctx->as_nr, ASn_COMMAND), ASn_COMMAND_FLUSH_MEM, kctx);

			/* wait for the flush to complete */
			while (--max_loops && kbase_reg_read(kctx->kbdev, MMU_AS_REG(kctx->as_nr, ASn_STATUS), kctx) & ASn_STATUS_FLUSH_ACTIVE)
				;

			if (!max_loops) {
				/* Flush failed to complete, assume the GPU has hung and perform a reset to recover */
				dev_err(kbdev->dev, "Flush for GPU page table update did not complete. Issueing GPU soft-reset to recover\n");
				if (kbase_prepare_to_reset_gpu(kbdev))
					kbase_reset_gpu(kbdev);
			}

			if (kbase_hw_has_issue(kbdev, BASE_HW_ISSUE_9630)) {
				/* Issue an UNLOCK command to ensure that valid page tables are re-read by the GPU after an update.
				   Note that, the FLUSH command should perform all the actions necessary, however the bus logs show
				   that if multiple page faults occur within an 8 page region the MMU does not always re-read the
				   updated page table entries for later faults or is only partially read, it subsequently raises the
				   page fault IRQ for the same addresses, the unlock ensures that the MMU cache is flushed, so updates
				   can be re-read.  As the region is now unlocked we need to issue 2 UNLOCK commands in order to flush the
				   MMU/uTLB, see PRLAM-8812.
				 */
				kbase_reg_write(kctx->kbdev, MMU_AS_REG(kctx->as_nr, ASn_COMMAND), ASn_COMMAND_UNLOCK, kctx);
				kbase_reg_write(kctx->kbdev, MMU_AS_REG(kctx->as_nr, ASn_COMMAND), ASn_COMMAND_UNLOCK, kctx);
			}

			mutex_unlock(&kbdev->as[kctx->as_nr].transaction_mutex);
			/* AS transaction end */
		}
		kbasep_js_runpool_release_ctx(kbdev, kctx);
	}
}

/*
 * We actually only discard the ATE, and not the page table
 * pages. There is a potential DoS here, as we'll leak memory by
 * having PTEs that are potentially unused.  Will require physical
 * page accounting, so MMU pages are part of the process allocation.
 *
 * IMPORTANT: This uses kbasep_js_runpool_release_ctx() when the context is
 * currently scheduled into the runpool, and so potentially uses a lot of locks.
 * These locks must be taken in the correct order with respect to others
 * already held by the caller. Refer to kbasep_js_runpool_release_ctx() for more
 * information.
 */
mali_error kbase_mmu_teardown_pages(kbase_context *kctx, u64 vpfn, size_t nr)
{
	phys_addr_t pgd;
	u64 *pgd_page;
	kbase_device *kbdev;
	size_t requested_nr = nr;

	KBASE_DEBUG_ASSERT(NULL != kctx);
	beenthere(kctx, "kctx %p vpfn %lx nr %d", (void *)kctx, (unsigned long)vpfn, nr);

	lockdep_assert_held(&kctx->reg_lock);

	if (0 == nr) {
		/* early out if nothing to do */
		return MALI_ERROR_NONE;
	}

	kbdev = kctx->kbdev;

	while (nr) {
		unsigned int i;
		unsigned int index = vpfn & 0x1FF;
		unsigned int count = KBASE_MMU_PAGE_ENTRIES - index;
		if (count > nr)
			count = nr;

		pgd = mmu_get_bottom_pgd(kctx, vpfn);
		if (!pgd) {
			dev_warn(kbdev->dev, "kbase_mmu_teardown_pages: mmu_get_bottom_pgd failure\n");
			return MALI_ERROR_FUNCTION_FAILED;
		}

		pgd_page = kmap(pfn_to_page(PFN_DOWN(pgd)));
		if (!pgd_page) {
			dev_warn(kbdev->dev, "kbase_mmu_teardown_pages: kmap failure\n");
			return MALI_ERROR_OUT_OF_MEMORY;
		}

		for (i = 0; i < count; i++) {
			page_table_entry_set( kctx->kbdev, &pgd_page[index + i], ENTRY_IS_INVAL );
		}

		vpfn += count;
		nr -= count;

		ksync_kern_vrange_gpu(pgd + (index * sizeof(u64)), pgd_page + index, count * sizeof(u64));

		kunmap(pfn_to_page(PFN_DOWN(pgd)));
	}

	kbase_mmu_flush(kctx,vpfn,requested_nr);
	return MALI_ERROR_NONE;
}

KBASE_EXPORT_TEST_API(kbase_mmu_teardown_pages)

/**
 * Update the entries for specified number of pages pointed to by 'phys' at GPU PFN 'vpfn'.
 * This call is being triggered as a response to the changes of the mem attributes
 *
 * @pre : The caller is responsible for validating the memory attributes
 *
 * IMPORTANT: This uses kbasep_js_runpool_release_ctx() when the context is
 * currently scheduled into the runpool, and so potentially uses a lot of locks.
 * These locks must be taken in the correct order with respect to others
 * already held by the caller. Refer to kbasep_js_runpool_release_ctx() for more
 * information.
 */
mali_error kbase_mmu_update_pages(kbase_context* kctx, u64 vpfn, phys_addr_t* phys, size_t nr, unsigned long flags)
{
	phys_addr_t pgd;
	u64* pgd_page;
	u64 mmu_flags = 0;
	size_t requested_nr = nr;

	KBASE_DEBUG_ASSERT(NULL != kctx);
	KBASE_DEBUG_ASSERT(0 != vpfn);
	KBASE_DEBUG_ASSERT(vpfn <= (UINT64_MAX / PAGE_SIZE));

	lockdep_assert_held(&kctx->reg_lock);

	mmu_flags = kbase_mmu_get_mmu_flags(flags);

	dev_warn(kctx->kbdev->dev, "kbase_mmu_update_pages(): updating page share flags "\
			"on GPU PFN 0x%llx from phys %p, %zu pages", 
			vpfn, phys, nr);


	while(nr)
	{
		unsigned int i;
		unsigned int index = vpfn & 0x1FF;
		size_t count = KBASE_MMU_PAGE_ENTRIES - index;
		if (count > nr)
			count = nr;

		pgd = mmu_get_bottom_pgd(kctx, vpfn);
		if (!pgd) {
			dev_warn(kctx->kbdev->dev, "mmu_get_bottom_pgd failure\n");
			return MALI_ERROR_FUNCTION_FAILED;
		}

		pgd_page = kmap(pfn_to_page(PFN_DOWN(pgd)));
		if (!pgd_page) {
			dev_warn(kctx->kbdev->dev, "kmap failure\n");
			return MALI_ERROR_OUT_OF_MEMORY;
		}

		for (i = 0; i < count; i++) {
			page_table_entry_set( kctx->kbdev, &pgd_page[index + i],  mmu_phyaddr_to_ate(phys[i], mmu_flags)  );
		}

		phys += count;
		vpfn += count;
		nr -= count;

		ksync_kern_vrange_gpu(pgd + (index * sizeof(u64)), pgd_page + index, count * sizeof(u64));

		kunmap(pfn_to_page(PFN_DOWN(pgd)));
	}

	kbase_mmu_flush(kctx,vpfn,requested_nr);

	return MALI_ERROR_NONE;
}

static int mmu_pte_is_valid(u64 pte)
{
	return ((pte & 3) == ENTRY_IS_ATE);
}

/* This is a debug feature only */
static void mmu_check_unused(kbase_context *kctx, phys_addr_t pgd)
{
	u64 *page;
	int i;

	page = kmap_atomic(pfn_to_page(PFN_DOWN(pgd)));
	/* kmap_atomic should NEVER fail. */
	KBASE_DEBUG_ASSERT(NULL != page);

	for (i = 0; i < KBASE_MMU_PAGE_ENTRIES; i++) {
		if (mmu_pte_is_valid(page[i]))
			beenthere(kctx, "live pte %016lx", (unsigned long)page[i]);
	}
	kunmap_atomic(page);
}

static void mmu_teardown_level(kbase_context *kctx, phys_addr_t pgd, int level, int zap, u64 *pgd_page_buffer)
{
	phys_addr_t target_pgd;
	u64 *pgd_page;
	int i;

	KBASE_DEBUG_ASSERT(NULL != kctx);
	lockdep_assert_held(&kctx->reg_lock);

	pgd_page = kmap_atomic(pfn_to_page(PFN_DOWN(pgd)));
	/* kmap_atomic should NEVER fail. */
	KBASE_DEBUG_ASSERT(NULL != pgd_page);
	/* Copy the page to our preallocated buffer so that we can minimize kmap_atomic usage */
	memcpy(pgd_page_buffer, pgd_page, PAGE_SIZE);
	kunmap_atomic(pgd_page);
	pgd_page = pgd_page_buffer;

	for (i = 0; i < KBASE_MMU_PAGE_ENTRIES; i++) {
		target_pgd = mmu_pte_to_phy_addr(pgd_page[i]);

		if (target_pgd) {
			if (level < 2) {
				mmu_teardown_level(kctx, target_pgd, level + 1, zap, pgd_page_buffer + (PAGE_SIZE / sizeof(u64)));
			} else {
				/*
				 * So target_pte is a level-3 page.
				 * As a leaf, it is safe to free it.
				 * Unless we have live pages attached to it!
				 */
				mmu_check_unused(kctx, target_pgd);
			}

			beenthere(kctx, "pte %lx level %d", (unsigned long)target_pgd, level + 1);
			if (zap) {
				kbase_mem_allocator_free(kctx->pgd_allocator, 1, &target_pgd, MALI_TRUE);
				kbase_process_page_usage_dec(kctx, 1 );
				kbase_atomic_sub_pages(1, &kctx->used_pages);
				kbase_atomic_sub_pages(1, &kctx->kbdev->memdev.used_pages);
			}
		}
	}
}

mali_error kbase_mmu_init(kbase_context *kctx)
{
	KBASE_DEBUG_ASSERT(NULL != kctx);
	KBASE_DEBUG_ASSERT(NULL == kctx->mmu_teardown_pages);

	/* Preallocate MMU depth of four pages for mmu_teardown_level to use */
	kctx->mmu_teardown_pages = kmalloc(PAGE_SIZE * 4, GFP_KERNEL);

	kctx->mem_attrs = (ASn_MEMATTR_IMPL_DEF_CACHE_POLICY <<
			   (ASn_MEMATTR_INDEX_IMPL_DEF_CACHE_POLICY * 8)) |
			  (ASn_MEMATTR_FORCE_TO_CACHE_ALL    <<
			   (ASn_MEMATTR_INDEX_FORCE_TO_CACHE_ALL * 8)) |
			  (ASn_MEMATTR_WRITE_ALLOC           <<
			   (ASn_MEMATTR_INDEX_WRITE_ALLOC * 8)) |
			  0; /* The other indices are unused for now */

	if (NULL == kctx->mmu_teardown_pages)
		return MALI_ERROR_OUT_OF_MEMORY;

	return MALI_ERROR_NONE;
}

void kbase_mmu_term(kbase_context *kctx)
{
	KBASE_DEBUG_ASSERT(NULL != kctx);
	KBASE_DEBUG_ASSERT(NULL != kctx->mmu_teardown_pages);

	kfree(kctx->mmu_teardown_pages);
	kctx->mmu_teardown_pages = NULL;
}

void kbase_mmu_free_pgd(kbase_context *kctx)
{
	KBASE_DEBUG_ASSERT(NULL != kctx);
	KBASE_DEBUG_ASSERT(NULL != kctx->mmu_teardown_pages);

	lockdep_assert_held(&kctx->reg_lock);

	mmu_teardown_level(kctx, kctx->pgd, MIDGARD_MMU_TOPLEVEL, 1, kctx->mmu_teardown_pages);

	beenthere(kctx, "pgd %lx", (unsigned long)kctx->pgd);
	kbase_mem_allocator_free(kctx->pgd_allocator, 1, &kctx->pgd, MALI_TRUE);
	kbase_process_page_usage_dec(kctx, 1 );
	kbase_atomic_sub_pages(1, &kctx->used_pages);
	kbase_atomic_sub_pages(1, &kctx->kbdev->memdev.used_pages);
}

KBASE_EXPORT_TEST_API(kbase_mmu_free_pgd)

static size_t kbasep_mmu_dump_level(kbase_context *kctx, phys_addr_t pgd, int level, char ** const buffer, size_t *size_left)
{
	phys_addr_t target_pgd;
	u64 *pgd_page;
	int i;
	size_t size = KBASE_MMU_PAGE_ENTRIES * sizeof(u64) + sizeof(u64);
	size_t dump_size;

	KBASE_DEBUG_ASSERT(NULL != kctx);
	lockdep_assert_held(&kctx->reg_lock);

	pgd_page = kmap(pfn_to_page(PFN_DOWN(pgd)));
	if (!pgd_page) {
		dev_warn(kctx->kbdev->dev, "kbasep_mmu_dump_level: kmap failure\n");
		return 0;
	}

	if (*size_left >= size) {
		/* A modified physical address that contains the page table level */
		u64 m_pgd = pgd | level;

		/* Put the modified physical address in the output buffer */
		memcpy(*buffer, &m_pgd, sizeof(m_pgd));
		*buffer += sizeof(m_pgd);

		/* Followed by the page table itself */
		memcpy(*buffer, pgd_page, sizeof(u64) * KBASE_MMU_PAGE_ENTRIES);
		*buffer += sizeof(u64) * KBASE_MMU_PAGE_ENTRIES;

		*size_left -= size;
	}

	for (i = 0; i < KBASE_MMU_PAGE_ENTRIES; i++) {
		if ((pgd_page[i] & ENTRY_IS_PTE) == ENTRY_IS_PTE) {
			target_pgd = mmu_pte_to_phy_addr(pgd_page[i]);

			dump_size = kbasep_mmu_dump_level(kctx, target_pgd, level + 1, buffer, size_left);
			if (!dump_size) {
				kunmap(pfn_to_page(PFN_DOWN(pgd)));
				return 0;
			}
			size += dump_size;
		}
	}

	kunmap(pfn_to_page(PFN_DOWN(pgd)));

	return size;
}

void *kbase_mmu_dump(kbase_context *kctx, int nr_pages)
{
	void *kaddr;
	size_t size_left;

	KBASE_DEBUG_ASSERT(kctx);

	lockdep_assert_held(&kctx->reg_lock);

	if (0 == nr_pages) {
		/* can't find in a 0 sized buffer, early out */
		return NULL;
	}

	size_left = nr_pages * PAGE_SIZE;

	KBASE_DEBUG_ASSERT(0 != size_left);
	kaddr = vmalloc_user(size_left);

	if (kaddr) {
		u64 end_marker = 0xFFULL;
		char *buffer = (char *)kaddr;

		size_t size = kbasep_mmu_dump_level(kctx, kctx->pgd, MIDGARD_MMU_TOPLEVEL, &buffer, &size_left);
		if (!size) {
			vfree(kaddr);
			return NULL;
		}

		/* Add on the size for the end marker */
		size += sizeof(u64);

		if (size > nr_pages * PAGE_SIZE || size_left < sizeof(u64)) {
			/* The buffer isn't big enough - free the memory and return failure */
			vfree(kaddr);
			return NULL;
		}

		/* Add the end marker */
		memcpy(buffer, &end_marker, sizeof(u64));
	}

	return kaddr;
}
KBASE_EXPORT_TEST_API(kbase_mmu_dump)

static u64 lock_region(kbase_device *kbdev, u64 pfn, size_t num_pages)
{
	u64 region;

	/* can't lock a zero sized range */
	KBASE_DEBUG_ASSERT(num_pages);

	region = pfn << PAGE_SHIFT;
	/*
	 * fls returns (given the ASSERT above):
	 * 32-bit: 1 .. 32
	 * 64-bit: 1 .. 32
	 *
	 * 32-bit: 10 + fls(num_pages)
	 * results in the range (11 .. 42)
	 * 64-bit: 10 + fls(num_pages)
	 * results in the range (11 .. 42)
	 */

	/* gracefully handle num_pages being zero */
	if (0 == num_pages) {
		region |= 11;
	} else {
		u8 region_width;
		region_width = 10 + fls(num_pages);
		if (num_pages != (1ul << (region_width - 11))) {
			/* not pow2, so must go up to the next pow2 */
			region_width += 1;
		}
		KBASE_DEBUG_ASSERT(region_width <= KBASE_LOCK_REGION_MAX_SIZE);
		KBASE_DEBUG_ASSERT(region_width >= KBASE_LOCK_REGION_MIN_SIZE);
		region |= region_width;
	}

	return region;
}

static void bus_fault_worker(struct work_struct *data)
{
	kbase_as *faulting_as;
	int as_no;
	kbase_context *kctx;
	kbase_device *kbdev;
	u32 reg;
	mali_bool reset_status = MALI_FALSE;

	faulting_as = container_of(data, kbase_as, work_busfault);
	as_no = faulting_as->number;

	kbdev = container_of(faulting_as, kbase_device, as[as_no]);

	/* Grab the context that was already refcounted in kbase_mmu_interrupt().
	 * Therefore, it cannot be scheduled out of this AS until we explicitly release it
	 *
	 * NOTE: NULL can be returned here if we're gracefully handling a spurious interrupt */
	kctx = kbasep_js_runpool_lookup_ctx_noretain(kbdev, as_no);

	if (kbase_hw_has_issue(kbdev, BASE_HW_ISSUE_8245)) {
		/* Due to H/W issue 8245 we need to reset the GPU after using UNMAPPED mode.
		 * We start the reset before switching to UNMAPPED to ensure that unrelated jobs
		 * are evicted from the GPU before the switch.
		 */
		dev_err(kbdev->dev, "GPU bus error occurred. For this GPU version we now soft-reset as part of bus error recovery\n");
		reset_status = kbase_prepare_to_reset_gpu(kbdev);
	}

	/* NOTE: If GPU already powered off for suspend, we don't need to switch to unmapped */
	if (!kbase_pm_context_active_handle_suspend(kbdev, KBASE_PM_SUSPEND_HANDLER_DONT_REACTIVATE)) {
		/* switch to UNMAPPED mode, will abort all jobs and stop any hw counter dumping */
		/* AS transaction begin */
		mutex_lock(&kbdev->as[as_no].transaction_mutex);

		reg = kbase_reg_read(kbdev, MMU_AS_REG(as_no, ASn_TRANSTAB_LO), kctx);
		reg &= ~3;
		kbase_reg_write(kbdev, MMU_AS_REG(as_no, ASn_TRANSTAB_LO), reg, kctx);
		kbase_reg_write(kbdev, MMU_AS_REG(as_no, ASn_COMMAND), ASn_COMMAND_UPDATE, kctx);
		
		mutex_unlock(&kbdev->as[as_no].transaction_mutex);
		/* AS transaction end */

		mmu_mask_reenable(kbdev, kctx, faulting_as);
		kbase_pm_context_idle(kbdev);
	}

	if (kbase_hw_has_issue(kbdev, BASE_HW_ISSUE_8245) && reset_status)
		kbase_reset_gpu(kbdev);

	/* By this point, the fault was handled in some way, so release the ctx refcount */
	if (kctx != NULL)
		kbasep_js_runpool_release_ctx(kbdev, kctx);
}

void kbase_mmu_interrupt(kbase_device *kbdev, u32 irq_stat)
{
	unsigned long flags;
	const int num_as = 16;
	const int busfault_shift = 16;
	const int pf_shift = 0;
	const unsigned long mask = (1UL << num_as) - 1;
	kbasep_js_device_data *js_devdata;
	u32 new_mask;
	u32 tmp;
	u32 bf_bits = (irq_stat >> busfault_shift) & mask;	/* bus faults */
	/* Ignore ASes with both pf and bf */
	u32 pf_bits = ((irq_stat >> pf_shift) & mask) & ~bf_bits;	/* page faults */

	KBASE_DEBUG_ASSERT(NULL != kbdev);

	js_devdata = &kbdev->js_data;

	/* remember current mask */
	spin_lock_irqsave(&kbdev->mmu_mask_change, flags);
	new_mask = kbase_reg_read(kbdev, MMU_REG(MMU_IRQ_MASK), NULL);
	/* mask interrupts for now */
	kbase_reg_write(kbdev, MMU_REG(MMU_IRQ_MASK), 0, NULL);
	spin_unlock_irqrestore(&kbdev->mmu_mask_change, flags);

	while (bf_bits) {
		/* the while logic ensures we have a bit set, no need to check for not-found here */
		int as_no = ffs(bf_bits) - 1;
		kbase_as *as = &kbdev->as[as_no];
		kbase_context *kctx;

		/* Refcount the kctx ASAP - it shouldn't disappear anyway, since Bus/Page faults
		 * _should_ only occur whilst jobs are running, and a job causing the Bus/Page fault
		 * shouldn't complete until the MMU is updated */
		kctx = kbasep_js_runpool_lookup_ctx(kbdev, as_no);

		/* mark as handled */
		bf_bits &= ~(1UL << as_no);

		/* find faulting address & status */
		as->fault_addr = ((u64)kbase_reg_read(kbdev, MMU_AS_REG(as_no, ASn_FAULTADDRESS_HI), kctx) << 32) |
		                       kbase_reg_read(kbdev, MMU_AS_REG(as_no, ASn_FAULTADDRESS_LO), kctx);
		as->fault_status = kbase_reg_read(kbdev, MMU_AS_REG(as_no, ASn_FAULTSTATUS), kctx);

		/* Clear the internal JM mask first before clearing the internal MMU mask */
		kbase_reg_write(kbdev, MMU_REG(MMU_IRQ_CLEAR), 1UL << MMU_REGS_BUS_ERROR_FLAG(as_no), kctx);

		if (kctx) {
			/* hw counters dumping in progress, signal the other thread that it failed */
			if ((kbdev->hwcnt.kctx == kctx) && (kbdev->hwcnt.state == KBASE_INSTR_STATE_DUMPING))
				kbdev->hwcnt.state = KBASE_INSTR_STATE_FAULT;

			/* Stop the kctx from submitting more jobs and cause it to be scheduled
			 * out/rescheduled when all references to it are released */
			spin_lock_irqsave(&js_devdata->runpool_irq.lock, flags);
			kbasep_js_clear_submit_allowed(js_devdata, kctx);
			spin_unlock_irqrestore(&js_devdata->runpool_irq.lock, flags);

			dev_warn(kbdev->dev, "Bus error in AS%d at 0x%016llx\n", as_no, as->fault_addr);
		} else {
			dev_warn(kbdev->dev, "Bus error in AS%d at 0x%016llx with no context present! " "Suprious IRQ or SW Design Error?\n", as_no, as->fault_addr);
		}

		/* remove the queued BFs from the mask */
		new_mask &= ~(1UL << (as_no + num_as));

		/* We need to switch to UNMAPPED mode - but we do this in a worker so that we can sleep */
		KBASE_DEBUG_ASSERT(0 == object_is_on_stack(&as->work_busfault));
		INIT_WORK(&as->work_busfault, bus_fault_worker);
		queue_work(as->pf_wq, &as->work_busfault);
	}

	/*
	 * pf_bits is non-zero if we have at least one AS with a page fault and no bus fault.
	 * Handle the PFs in our worker thread.
	 */
	while (pf_bits) {
		/* the while logic ensures we have a bit set, no need to check for not-found here */
		int as_no = ffs(pf_bits) - 1;
		kbase_as *as = &kbdev->as[as_no];
		kbase_context *kctx;

		/* Refcount the kctx ASAP - it shouldn't disappear anyway, since Bus/Page faults
		 * _should_ only occur whilst jobs are running, and a job causing the Bus/Page fault
		 * shouldn't complete until the MMU is updated */
		kctx = kbasep_js_runpool_lookup_ctx(kbdev, as_no);

		/* mark as handled */
		pf_bits &= ~(1UL << as_no);

		/* find faulting address & status */
		as->fault_addr = ((u64)kbase_reg_read(kbdev, MMU_AS_REG(as_no, ASn_FAULTADDRESS_HI), kctx) << 32) |
		                       kbase_reg_read(kbdev, MMU_AS_REG(as_no, ASn_FAULTADDRESS_LO), kctx);
		as->fault_status = kbase_reg_read(kbdev, MMU_AS_REG(as_no, ASn_FAULTSTATUS), kctx);

		/* Clear the internal JM mask first before clearing the internal MMU mask */
		kbase_reg_write(kbdev, MMU_REG(MMU_IRQ_CLEAR), 1UL << MMU_REGS_PAGE_FAULT_FLAG(as_no), kctx);

		if (kctx == NULL)
			dev_warn(kbdev->dev, "Page fault in AS%d at 0x%016llx with no context present! " "Suprious IRQ or SW Design Error?\n", as_no, as->fault_addr);

		/* remove the queued PFs from the mask */
		new_mask &= ~((1UL << as_no) | (1UL << (as_no + num_as)));

		/* queue work pending for this AS */
		KBASE_DEBUG_ASSERT(0 == object_is_on_stack(&as->work_pagefault));
		INIT_WORK(&as->work_pagefault, page_fault_worker);
		queue_work(as->pf_wq, &as->work_pagefault);
	}

	/* reenable interrupts */
	spin_lock_irqsave(&kbdev->mmu_mask_change, flags);
	tmp = kbase_reg_read(kbdev, MMU_REG(MMU_IRQ_MASK), NULL);
	new_mask |= tmp;
	kbase_reg_write(kbdev, MMU_REG(MMU_IRQ_MASK), new_mask, NULL);
	spin_unlock_irqrestore(&kbdev->mmu_mask_change, flags);
}

KBASE_EXPORT_TEST_API(kbase_mmu_interrupt)

const char *kbase_exception_name(u32 exception_code)
{
	const char *e;

	switch (exception_code) {
		/* Non-Fault Status code */
	case 0x00:
		e = "NOT_STARTED/IDLE/OK";
		break;
	case 0x01:
		e = "DONE";
		break;
	case 0x02:
		e = "INTERRUPTED";
		break;
	case 0x03:
		e = "STOPPED";
		break;
	case 0x04:
		e = "TERMINATED";
		break;
	case 0x08:
		e = "ACTIVE";
		break;
		/* Job exceptions */
	case 0x40:
		e = "JOB_CONFIG_FAULT";
		break;
	case 0x41:
		e = "JOB_POWER_FAULT";
		break;
	case 0x42:
		e = "JOB_READ_FAULT";
		break;
	case 0x43:
		e = "JOB_WRITE_FAULT";
		break;
	case 0x44:
		e = "JOB_AFFINITY_FAULT";
		break;
	case 0x48:
		e = "JOB_BUS_FAULT";
		break;
	case 0x50:
		e = "INSTR_INVALID_PC";
		break;
	case 0x51:
		e = "INSTR_INVALID_ENC";
		break;
	case 0x52:
		e = "INSTR_TYPE_MISMATCH";
		break;
	case 0x53:
		e = "INSTR_OPERAND_FAULT";
		break;
	case 0x54:
		e = "INSTR_TLS_FAULT";
		break;
	case 0x55:
		e = "INSTR_BARRIER_FAULT";
		break;
	case 0x56:
		e = "INSTR_ALIGN_FAULT";
		break;
	case 0x58:
		e = "DATA_INVALID_FAULT";
		break;
	case 0x59:
		e = "TILE_RANGE_FAULT";
		break;
	case 0x5A:
		e = "ADDR_RANGE_FAULT";
		break;
	case 0x60:
		e = "OUT_OF_MEMORY";
		break;
		/* GPU exceptions */
	case 0x80:
		e = "DELAYED_BUS_FAULT";
		break;
	case 0x81:
		e = "SHAREABILITY_FAULT";
		break;
		/* MMU exceptions */
	case 0xC0:
	case 0xC1:
	case 0xC2:
	case 0xC3:
	case 0xC4:
	case 0xC5:
	case 0xC6:
	case 0xC7:
		e = "TRANSLATION_FAULT";
		break;
	case 0xC8:
		e = "PERMISSION_FAULT";
		break;
	case 0xD0:
	case 0xD1:
	case 0xD2:
	case 0xD3:
	case 0xD4:
	case 0xD5:
	case 0xD6:
	case 0xD7:
		e = "TRANSTAB_BUS_FAULT";
		break;
	case 0xD8:
		e = "ACCESS_FLAG";
		break;
	default:
		e = "UNKNOWN";
		break;
	};

	return e;
}

/**
 * The caller must ensure it's retained the ctx to prevent it from being scheduled out whilst it's being worked on.
 */
static void kbase_mmu_report_fault_and_kill(kbase_context *kctx, kbase_as *as)
{
	unsigned long flags;
	u32 reg;
	int exception_type;
	int access_type;
	int source_id;
	int as_no;
	kbase_device *kbdev;
	kbasep_js_device_data *js_devdata;
	mali_bool reset_status = MALI_FALSE;
	static const char * const access_type_names[] = { "RESERVED", "EXECUTE", "READ", "WRITE" };

	KBASE_DEBUG_ASSERT(as);
	KBASE_DEBUG_ASSERT(kctx);

	as_no = as->number;
	kbdev = kctx->kbdev;
	js_devdata = &kbdev->js_data;

	/* ASSERT that the context won't leave the runpool */
	KBASE_DEBUG_ASSERT(kbasep_js_debug_check_ctx_refcount(kbdev, kctx) > 0);

	/* decode the fault status */
	exception_type = as->fault_status & 0xFF;
	access_type = (as->fault_status >> 8) & 0x3;
	source_id = (as->fault_status >> 16);

	/* terminal fault, print info about the fault */
	dev_err(kbdev->dev, "Unhandled Page fault in AS%d at VA 0x%016llX\n"
	                    "raw fault status 0x%X\n"
	                    "decoded fault status: %s\n"
	                    "exception type 0x%X: %s\n"
	                    "access type 0x%X: %s\n"
	                    "source id 0x%X\n",
	                    as_no, as->fault_addr,
	                    as->fault_status,
	                    (as->fault_status & (1 << 10) ? "DECODER FAULT" : "SLAVE FAULT"),
	                    exception_type, kbase_exception_name(exception_type),
	                    access_type, access_type_names[access_type],
	                    source_id);

	/* hardware counters dump fault handling */
	if ((kbdev->hwcnt.kctx) && (kbdev->hwcnt.kctx->as_nr == as_no) && (kbdev->hwcnt.state == KBASE_INSTR_STATE_DUMPING)) {
		unsigned int num_core_groups = kbdev->gpu_props.num_core_groups;
		if ((as->fault_addr >= kbdev->hwcnt.addr) && (as->fault_addr < (kbdev->hwcnt.addr + (num_core_groups * 2048))))
			kbdev->hwcnt.state = KBASE_INSTR_STATE_FAULT;
	}

	/* Stop the kctx from submitting more jobs and cause it to be scheduled
	 * out/rescheduled - this will occur on releasing the context's refcount */
	spin_lock_irqsave(&js_devdata->runpool_irq.lock, flags);
	kbasep_js_clear_submit_allowed(js_devdata, kctx);
	spin_unlock_irqrestore(&js_devdata->runpool_irq.lock, flags);

	/* Kill any running jobs from the context. Submit is disallowed, so no more jobs from this
	 * context can appear in the job slots from this point on */
	kbase_job_kill_jobs_from_context(kctx);
	/* AS transaction begin */
	mutex_lock(&as->transaction_mutex);

	if (kbase_hw_has_issue(kbdev, BASE_HW_ISSUE_8245)) {
		/* Due to H/W issue 8245 we need to reset the GPU after using UNMAPPED mode.
		 * We start the reset before switching to UNMAPPED to ensure that unrelated jobs
		 * are evicted from the GPU before the switch.
		 */
		dev_err(kbdev->dev, "Unhandled page fault. For this GPU version we now soft-reset the GPU as part of page fault recovery.");
		reset_status = kbase_prepare_to_reset_gpu(kbdev);
	}

	/* switch to UNMAPPED mode, will abort all jobs and stop any hw counter dumping */
	reg = kbase_reg_read(kbdev, MMU_AS_REG(as_no, ASn_TRANSTAB_LO), kctx);
	reg &= ~3;
	kbase_reg_write(kbdev, MMU_AS_REG(as_no, ASn_TRANSTAB_LO), reg, kctx);
	kbase_reg_write(kbdev, MMU_AS_REG(as_no, ASn_COMMAND), ASn_COMMAND_UPDATE, kctx);

	mutex_unlock(&as->transaction_mutex);
	/* AS transaction end */
	mmu_mask_reenable(kbdev, kctx, as);

	if (kbase_hw_has_issue(kbdev, BASE_HW_ISSUE_8245) && reset_status)
		kbase_reset_gpu(kbdev);
}

void kbasep_as_do_poke(struct work_struct *work)
{
	kbase_as *as;
	kbase_device *kbdev;
	unsigned long flags;

	KBASE_DEBUG_ASSERT(work);
	as = container_of(work, kbase_as, poke_work);
	kbdev = container_of(as, kbase_device, as[as->number]);
	KBASE_DEBUG_ASSERT(as->poke_state & KBASE_AS_POKE_STATE_IN_FLIGHT);

	/* GPU power will already be active by virtue of the caller holding a JS
	 * reference on the address space, and will not release it until this worker
	 * has finished */

	/* AS transaction begin */
	mutex_lock(&as->transaction_mutex);
	/* Force a uTLB invalidate */
	kbase_reg_write(kbdev, MMU_AS_REG(as->number, ASn_COMMAND), ASn_COMMAND_UNLOCK, NULL);
	mutex_unlock(&as->transaction_mutex);
	/* AS transaction end */

	spin_lock_irqsave(&kbdev->js_data.runpool_irq.lock, flags);
	if (as->poke_refcount &&
		!(as->poke_state & KBASE_AS_POKE_STATE_KILLING_POKE)) {
		/* Only queue up the timer if we need it, and we're not trying to kill it */
		hrtimer_start(&as->poke_timer, HR_TIMER_DELAY_MSEC(5), HRTIMER_MODE_REL);
	}
	spin_unlock_irqrestore(&kbdev->js_data.runpool_irq.lock, flags);

}

enum hrtimer_restart kbasep_as_poke_timer_callback(struct hrtimer *timer)
{
	kbase_as *as;
	int queue_work_ret;

	KBASE_DEBUG_ASSERT(NULL != timer);
	as = container_of(timer, kbase_as, poke_timer);
	KBASE_DEBUG_ASSERT(as->poke_state & KBASE_AS_POKE_STATE_IN_FLIGHT);

	queue_work_ret = queue_work(as->poke_wq, &as->poke_work);
	KBASE_DEBUG_ASSERT(queue_work_ret);
	return HRTIMER_NORESTART;
}

/**
 * Retain the poking timer on an atom's context (if the atom hasn't already
 * done so), and start the timer (if it's not already started).
 *
 * This must only be called on a context that's scheduled in, and an atom
 * that's running on the GPU.
 *
 * The caller must hold kbasep_js_device_data::runpool_irq::lock
 *
 * This can be called safely from atomic context
 */
void kbase_as_poking_timer_retain_atom(kbase_device *kbdev, kbase_context *kctx, kbase_jd_atom *katom)
{
	kbase_as *as;
	KBASE_DEBUG_ASSERT(kbdev);
	KBASE_DEBUG_ASSERT(kctx);
	KBASE_DEBUG_ASSERT(katom);
	KBASE_DEBUG_ASSERT(kctx->as_nr != KBASEP_AS_NR_INVALID);
	lockdep_assert_held(&kbdev->js_data.runpool_irq.lock);

	if (katom->poking)
		return;

	katom->poking = 1;

	/* It's safe to work on the as/as_nr without an explicit reference,
	 * because the caller holds the runpool_irq lock, and the atom itself
	 * was also running and had already taken a reference  */
	as = &kbdev->as[kctx->as_nr];

	if (++(as->poke_refcount) == 1) {
		/* First refcount for poke needed: check if not already in flight */
		if (!as->poke_state) {
			/* need to start poking */
			as->poke_state |= KBASE_AS_POKE_STATE_IN_FLIGHT;
			queue_work(as->poke_wq, &as->poke_work);
		}
	}
}

/**
 * If an atom holds a poking timer, release it and wait for it to finish
 *
 * This must only be called on a context that's scheduled in, and an atom
 * that still has a JS reference on the context
 *
 * This must \b not be called from atomic context, since it can sleep.
 */
void kbase_as_poking_timer_release_atom(kbase_device *kbdev, kbase_context *kctx, kbase_jd_atom *katom)
{
	kbase_as *as;
	unsigned long flags;

	KBASE_DEBUG_ASSERT(kbdev);
	KBASE_DEBUG_ASSERT(kctx);
	KBASE_DEBUG_ASSERT(katom);
	KBASE_DEBUG_ASSERT(kctx->as_nr != KBASEP_AS_NR_INVALID);

	if (!katom->poking)
		return;

	as = &kbdev->as[kctx->as_nr];

	spin_lock_irqsave(&kbdev->js_data.runpool_irq.lock, flags);
	KBASE_DEBUG_ASSERT(as->poke_refcount > 0);
	KBASE_DEBUG_ASSERT(as->poke_state & KBASE_AS_POKE_STATE_IN_FLIGHT);

	if (--(as->poke_refcount) == 0) {
		as->poke_state |= KBASE_AS_POKE_STATE_KILLING_POKE;
		spin_unlock_irqrestore(&kbdev->js_data.runpool_irq.lock, flags);

		hrtimer_cancel(&as->poke_timer);
		flush_workqueue(as->poke_wq);

		spin_lock_irqsave(&kbdev->js_data.runpool_irq.lock, flags);

		/* Re-check whether it's still needed */
		if (as->poke_refcount) {
			int queue_work_ret;
			/* Poking still needed:
			 * - Another retain will not be starting the timer or queueing work,
			 * because it's still marked as in-flight
			 * - The hrtimer has finished, and has not started a new timer or
			 * queued work because it's been marked as killing
			 *
			 * So whatever happens now, just queue the work again */
			as->poke_state &= ~((kbase_as_poke_state)KBASE_AS_POKE_STATE_KILLING_POKE);
			queue_work_ret = queue_work(as->poke_wq, &as->poke_work);
			KBASE_DEBUG_ASSERT(queue_work_ret);
		} else {
			/* It isn't - so mark it as not in flight, and not killing */
			as->poke_state = 0u;

			/* The poke associated with the atom has now finished. If this is
			 * also the last atom on the context, then we can guarentee no more
			 * pokes (and thus no more poking register accesses) will occur on
			 * the context until new atoms are run */
		}
	}
	spin_unlock_irqrestore(&kbdev->js_data.runpool_irq.lock, flags);

	katom->poking = 0;
}