aboutsummaryrefslogtreecommitdiff
path: root/fs/minix/bitmap.c
blob: 4bc50dac8e979faf4f299d1538d5462329191fa1 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
/*
 *  linux/fs/minix/bitmap.c
 *
 *  Copyright (C) 1991, 1992  Linus Torvalds
 */

/*
 * Modified for 680x0 by Hamish Macdonald
 * Fixed for 680x0 by Andreas Schwab
 */

/* bitmap.c contains the code that handles the inode and block bitmaps */

#include "minix.h"
#include <linux/buffer_head.h>
#include <linux/bitops.h>
#include <linux/sched.h>

static DEFINE_SPINLOCK(bitmap_lock);

/*
 * bitmap consists of blocks filled with 16bit words
 * bit set == busy, bit clear == free
 * endianness is a mess, but for counting zero bits it really doesn't matter...
 */
static __u32 count_free(struct buffer_head *map[], unsigned blocksize, __u32 numbits)
{
	__u32 sum = 0;
	unsigned blocks = DIV_ROUND_UP(numbits, blocksize * 8);

	while (blocks--) {
		unsigned words = blocksize / 2;
		__u16 *p = (__u16 *)(*map++)->b_data;
		while (words--)
			sum += 16 - hweight16(*p++);
	}

	return sum;
}

void minix_free_block(struct inode *inode, unsigned long block)
{
	struct super_block *sb = inode->i_sb;
	struct minix_sb_info *sbi = minix_sb(sb);
	struct buffer_head *bh;
	int k = sb->s_blocksize_bits + 3;
	unsigned long bit, zone;

	if (block < sbi->s_firstdatazone || block >= sbi->s_nzones) {
		printk("Trying to free block not in datazone\n");
		return;
	}
	zone = block - sbi->s_firstdatazone + 1;
	bit = zone & ((1<<k) - 1);
	zone >>= k;
	if (zone >= sbi->s_zmap_blocks) {
		printk("minix_free_block: nonexistent bitmap buffer\n");
		return;
	}
	bh = sbi->s_zmap[zone];
	spin_lock(&bitmap_lock);
	if (!minix_test_and_clear_bit(bit, bh->b_data))
		printk("minix_free_block (%s:%lu): bit already cleared\n",
		       sb->s_id, block);
	spin_unlock(&bitmap_lock);
	mark_buffer_dirty(bh);
	return;
}

int minix_new_block(struct inode * inode)
{
	struct minix_sb_info *sbi = minix_sb(inode->i_sb);
	int bits_per_zone = 8 * inode->i_sb->s_blocksize;
	int i;

	for (i = 0; i < sbi->s_zmap_blocks; i++) {
		struct buffer_head *bh = sbi->s_zmap[i];
		int j;

		spin_lock(&bitmap_lock);
		j = minix_find_first_zero_bit(bh->b_data, bits_per_zone);
		if (j < bits_per_zone) {
			minix_set_bit(j, bh->b_data);
			spin_unlock(&bitmap_lock);
			mark_buffer_dirty(bh);
			j += i * bits_per_zone + sbi->s_firstdatazone-1;
			if (j < sbi->s_firstdatazone || j >= sbi->s_nzones)
				break;
			return j;
		}
		spin_unlock(&bitmap_lock);
	}
	return 0;
}

unsigned long minix_count_free_blocks(struct super_block *sb)
{
	struct minix_sb_info *sbi = minix_sb(sb);
	u32 bits = sbi->s_nzones - (sbi->s_firstdatazone + 1);

	return (count_free(sbi->s_zmap, sb->s_blocksize, bits)
		<< sbi->s_log_zone_size);
}

struct minix_inode *
minix_V1_raw_inode(struct super_block *sb, ino_t ino, struct buffer_head **bh)
{
	int block;
	struct minix_sb_info *sbi = minix_sb(sb);
	struct minix_inode *p;

	if (!ino || ino > sbi->s_ninodes) {
		printk("Bad inode number on dev %s: %ld is out of range\n",
		       sb->s_id, (long)ino);
		return NULL;
	}
	ino--;
	block = 2 + sbi->s_imap_blocks + sbi->s_zmap_blocks +
		 ino / MINIX_INODES_PER_BLOCK;
	*bh = sb_bread(sb, block);
	if (!*bh) {
		printk("Unable to read inode block\n");
		return NULL;
	}
	p = (void *)(*bh)->b_data;
	return p + ino % MINIX_INODES_PER_BLOCK;
}

struct minix2_inode *
minix_V2_raw_inode(struct super_block *sb, ino_t ino, struct buffer_head **bh)
{
	int block;
	struct minix_sb_info *sbi = minix_sb(sb);
	struct minix2_inode *p;
	int minix2_inodes_per_block = sb->s_blocksize / sizeof(struct minix2_inode);

	*bh = NULL;
	if (!ino || ino > sbi->s_ninodes) {
		printk("Bad inode number on dev %s: %ld is out of range\n",
		       sb->s_id, (long)ino);
		return NULL;
	}
	ino--;
	block = 2 + sbi->s_imap_blocks + sbi->s_zmap_blocks +
		 ino / minix2_inodes_per_block;
	*bh = sb_bread(sb, block);
	if (!*bh) {
		printk("Unable to read inode block\n");
		return NULL;
	}
	p = (void *)(*bh)->b_data;
	return p + ino % minix2_inodes_per_block;
}

/* Clear the link count and mode of a deleted inode on disk. */

static void minix_clear_inode(struct inode *inode)
{
	struct buffer_head *bh = NULL;

	if (INODE_VERSION(inode) == MINIX_V1) {
		struct minix_inode *raw_inode;
		raw_inode = minix_V1_raw_inode(inode->i_sb, inode->i_ino, &bh);
		if (raw_inode) {
			raw_inode->i_nlinks = 0;
			raw_inode->i_mode = 0;
		}
	} else {
		struct minix2_inode *raw_inode;
		raw_inode = minix_V2_raw_inode(inode->i_sb, inode->i_ino, &bh);
		if (raw_inode) {
			raw_inode->i_nlinks = 0;
			raw_inode->i_mode = 0;
		}
	}
	if (bh) {
		mark_buffer_dirty(bh);
		brelse (bh);
	}
}

void minix_free_inode(struct inode * inode)
{
	struct super_block *sb = inode->i_sb;
	struct minix_sb_info *sbi = minix_sb(inode->i_sb);
	struct buffer_head *bh;
	int k = sb->s_blocksize_bits + 3;
	unsigned long ino, bit;

	ino = inode->i_ino;
	if (ino < 1 || ino > sbi->s_ninodes) {
		printk("minix_free_inode: inode 0 or nonexistent inode\n");
		return;
	}
	bit = ino & ((1<<k) - 1);
	ino >>= k;
	if (ino >= sbi->s_imap_blocks) {
		printk("minix_free_inode: nonexistent imap in superblock\n");
		return;
	}

	minix_clear_inode(inode);	/* clear on-disk copy */

	bh = sbi->s_imap[ino];
	spin_lock(&bitmap_lock);
	if (!minix_test_and_clear_bit(bit, bh->b_data))
		printk("minix_free_inode: bit %lu already cleared\n", bit);
	spin_unlock(&bitmap_lock);
	mark_buffer_dirty(bh);
}

struct inode *minix_new_inode(const struct inode *dir, umode_t mode, int *error)
{
	struct super_block *sb = dir->i_sb;
	struct minix_sb_info *sbi = minix_sb(sb);
	struct inode *inode = new_inode(sb);
	struct buffer_head * bh;
	int bits_per_zone = 8 * sb->s_blocksize;
	unsigned long j;
	int i;

	if (!inode) {
		*error = -ENOMEM;
		return NULL;
	}
	j = bits_per_zone;
	bh = NULL;
	*error = -ENOSPC;
	spin_lock(&bitmap_lock);
	for (i = 0; i < sbi->s_imap_blocks; i++) {
		bh = sbi->s_imap[i];
		j = minix_find_first_zero_bit(bh->b_data, bits_per_zone);
		if (j < bits_per_zone)
			break;
	}
	if (!bh || j >= bits_per_zone) {
		spin_unlock(&bitmap_lock);
		iput(inode);
		return NULL;
	}
	if (minix_test_and_set_bit(j, bh->b_data)) {	/* shouldn't happen */
		spin_unlock(&bitmap_lock);
		printk("minix_new_inode: bit already set\n");
		iput(inode);
		return NULL;
	}
	spin_unlock(&bitmap_lock);
	mark_buffer_dirty(bh);
	j += i * bits_per_zone;
	if (!j || j > sbi->s_ninodes) {
		iput(inode);
		return NULL;
	}
	inode_init_owner(inode, dir, mode);
	inode->i_ino = j;
	inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME_SEC;
	inode->i_blocks = 0;
	memset(&minix_i(inode)->u, 0, sizeof(minix_i(inode)->u));
	insert_inode_hash(inode);
	mark_inode_dirty(inode);

	*error = 0;
	return inode;
}

unsigned long minix_count_free_inodes(struct super_block *sb)
{
	struct minix_sb_info *sbi = minix_sb(sb);
	u32 bits = sbi->s_ninodes + 1;

	return count_free(sbi->s_imap, sb->s_blocksize, bits);
}