/* * Copyright (c) 2017, ARM Limited and Contributors. All rights reserved. * * SPDX-License-Identifier: BSD-3-Clause */ #include #include #include #include #include #include #include #include #include #include "cactus.h" #include "cactus_helpers.h" #include "cactus_tests.h" /* This is filled at runtime. */ static uintptr_t cactus_tests_start; static uintptr_t cactus_tests_end; static uintptr_t cactus_tests_size; /* * Given the required instruction and data access permissions, * create a memory access controls value that is formatted as expected * by the SP_MEMORY_ATTRIBUTES_SET_AARCH64 SMC. */ static inline uint32_t mem_access_perm(int instr_access_perm, int data_access_perm) { return instr_access_perm | ((data_access_perm & SP_MEMORY_ATTRIBUTES_ACCESS_MASK) << SP_MEMORY_ATTRIBUTES_ACCESS_SHIFT); } /* * Send an SP_MEMORY_ATTRIBUTES_SET_AARCH64 SVC with the given arguments. * Return the return value of the SVC. */ static int32_t request_mem_attr_changes(uintptr_t base_address, int pages_count, uint32_t memory_access_controls) { INFO("Requesting memory attributes change\n"); INFO(" Start address : %p\n", (void *) base_address); INFO(" Number of pages: %i\n", pages_count); INFO(" Attributes : 0x%x\n", memory_access_controls); svc_args svc_values = { SP_MEMORY_ATTRIBUTES_SET_AARCH64, base_address, pages_count, memory_access_controls }; return cactus_svc(&svc_values); } /* * Send an SP_MEMORY_ATTRIBUTES_GET_AARCH64 SVC with the given arguments. * Return the return value of the SVC. */ static int32_t request_get_mem_attr(uintptr_t base_address) { INFO("Requesting memory attributes\n"); INFO(" Base address : %p\n", (void *) base_address); svc_args svc_values = { SP_MEMORY_ATTRIBUTES_GET_AARCH64, base_address }; return cactus_svc(&svc_values); } /* * This function expects a base address and number of pages identifying the * extents of some memory region mapped as non-executable, read-only. * * 1) It changes its data access permissions to read-write. * 2) It checks this memory can now be written to. * 3) It restores the original data access permissions. * * If any check fails, it loops forever. It could also trigger a permission * fault while trying to write to the memory. */ static void mem_attr_changes_unittest(uintptr_t addr, int pages_count) { int32_t ret; uintptr_t end_addr = addr + pages_count * PAGE_SIZE; uint32_t old_attr, new_attr; char test_desc[50]; snprintf(test_desc, sizeof(test_desc), "RO -> RW (%i page(s) from address 0x%lx)", pages_count, addr); announce_test_start(test_desc); /* * Ensure we don't change the attributes of some random memory * location */ assert(addr >= cactus_tests_start); assert(end_addr < (cactus_tests_start + cactus_tests_size)); old_attr = mem_access_perm(SP_MEMORY_ATTRIBUTES_NON_EXEC, SP_MEMORY_ATTRIBUTES_ACCESS_RO); /* Memory was read-only, let's try changing that to RW */ new_attr = mem_access_perm(SP_MEMORY_ATTRIBUTES_NON_EXEC, SP_MEMORY_ATTRIBUTES_ACCESS_RW); ret = request_mem_attr_changes(addr, pages_count, new_attr); expect(ret, SPM_SUCCESS); printf("Successfully changed memory attributes\n"); /* The attributes should be the ones we have just written. */ ret = request_get_mem_attr(addr); expect(ret, new_attr); /* If it worked, we should be able to write to this memory now! */ for (unsigned char *data = (unsigned char *) addr; (uintptr_t) data != end_addr; ++data) { *data = 42; } printf("Successfully wrote to the memory\n"); /* Let's revert back to the original attributes for the next test */ ret = request_mem_attr_changes(addr, pages_count, old_attr); expect(ret, SPM_SUCCESS); printf("Successfully restored the old attributes\n"); /* The attributes should be the original ones again. */ ret = request_get_mem_attr(addr); expect(ret, old_attr); announce_test_end(test_desc); } /* * Exercise the ability of the Trusted Firmware to change the data access * permissions and instruction execution permissions of some memory region. */ void mem_attr_changes_tests(const secure_partition_boot_info_t *boot_info) { uint32_t attributes; int32_t ret; uintptr_t addr; cactus_tests_start = CACTUS_BSS_END; cactus_tests_end = boot_info->sp_image_base + boot_info->sp_image_size; cactus_tests_size = cactus_tests_end - cactus_tests_start; const char *test_sect_desc = "memory attributes changes"; announce_test_section_start(test_sect_desc); /* * Start with error cases, i.e. requests that are expected to be denied */ const char *test_desc1 = "Read-write, executable"; announce_test_start(test_desc1); attributes = mem_access_perm(SP_MEMORY_ATTRIBUTES_EXEC, SP_MEMORY_ATTRIBUTES_ACCESS_RW); ret = request_mem_attr_changes(CACTUS_RWDATA_START, 1, attributes); expect(ret, SPM_INVALID_PARAMETER); announce_test_end(test_desc1); const char *test_desc2 = "Size == 0"; announce_test_start(test_desc2); attributes = mem_access_perm(SP_MEMORY_ATTRIBUTES_NON_EXEC, SP_MEMORY_ATTRIBUTES_ACCESS_RW); ret = request_mem_attr_changes(CACTUS_RWDATA_START, 0, attributes); expect(ret, SPM_INVALID_PARAMETER); announce_test_end(test_desc2); const char *test_desc3 = "Unaligned address"; announce_test_start(test_desc3); attributes = mem_access_perm(SP_MEMORY_ATTRIBUTES_NON_EXEC, SP_MEMORY_ATTRIBUTES_ACCESS_RW); /* Choose an address not aligned to a page boundary. */ addr = cactus_tests_start + 5; ret = request_mem_attr_changes(addr, 1, attributes); expect(ret, SPM_INVALID_PARAMETER); announce_test_end(test_desc3); const char *test_desc4 = "Unmapped memory region"; announce_test_start(test_desc4); addr = boot_info->sp_mem_limit + 2 * PAGE_SIZE; attributes = mem_access_perm(SP_MEMORY_ATTRIBUTES_NON_EXEC, SP_MEMORY_ATTRIBUTES_ACCESS_RW); ret = request_mem_attr_changes(addr, 3, attributes); expect(ret, SPM_INVALID_PARAMETER); announce_test_end(test_desc4); const char *test_desc5 = "Partially unmapped memory region"; announce_test_start(test_desc5); addr = boot_info->sp_mem_base - 2 * PAGE_SIZE; attributes = mem_access_perm(SP_MEMORY_ATTRIBUTES_NON_EXEC, SP_MEMORY_ATTRIBUTES_ACCESS_RW); ret = request_mem_attr_changes(addr, 6, attributes); expect(ret, SPM_INVALID_PARAMETER); announce_test_end(test_desc5); const char *test_desc6 = "Memory region mapped with the wrong granularity"; announce_test_start(test_desc6); /* * This address is usually mapped at a 2 MiB granularity. By using as * test address the block after the console we make sure that in case * the attributes of the block actually changed, the console would work * and we would get the error message. */ addr = ((uintptr_t)PLAT_ARM_UART_BASE + 0x200000ULL) & ~(0x200000ULL - 1ULL); attributes = mem_access_perm(SP_MEMORY_ATTRIBUTES_NON_EXEC, SP_MEMORY_ATTRIBUTES_ACCESS_RW); ret = request_mem_attr_changes(addr, 1, attributes); expect(ret, SPM_INVALID_PARAMETER); announce_test_end(test_desc6); const char *test_desc7 = "Try some valid memory change requests"; announce_test_start(test_desc7); for (unsigned int i = 0; i < 20; ++i) { /* * Choose some random address in the pool of memory reserved * for these tests. */ const int pages_max = cactus_tests_size / PAGE_SIZE; int pages_count = bound_rand(1, pages_max); addr = bound_rand( cactus_tests_start, cactus_tests_end - (pages_count * PAGE_SIZE)); /* Align to PAGE_SIZE. */ addr &= ~(PAGE_SIZE - 1); mem_attr_changes_unittest(addr, pages_count); } announce_test_end(test_desc7); announce_test_section_end(test_sect_desc); }