/* semaphore kernel services */ /* * Copyright (c) 1997-2010, 2012-2015 Wind River Systems, Inc. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * 1) Redistributions of source code must retain the above copyright notice, * this list of conditions and the following disclaimer. * * 2) Redistributions in binary form must reproduce the above copyright notice, * this list of conditions and the following disclaimer in the documentation * and/or other materials provided with the distribution. * * 3) Neither the name of Wind River Systems nor the names of its contributors * may be used to endorse or promote products derived from this software without * specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. */ /* includes */ #include #include #include #include /******************************************************************************* * * signal_semaphore - common code for signaling a semaphore * * RETURNS: N/A */ static void signal_semaphore(int n, struct sem_struct *S) { struct k_args *A, *X, *Y; #ifdef CONFIG_OBJECT_MONITOR S->Count += n; #endif S->Level += n; A = S->Waiters; Y = NULL; while (A && S->Level) { X = A->Forw; #ifdef CONFIG_SYS_CLOCK_EXISTS if (A->Comm == WAITSREQ || A->Comm == WAITSTMO) #else if (A->Comm == WAITSREQ) #endif { S->Level--; if (Y) Y->Forw = X; else S->Waiters = X; #ifdef CONFIG_SYS_CLOCK_EXISTS if (A->Time.timer) { force_timeout(A); A->Comm = WAITSRPL; } else { #endif A->Time.rcode = RC_OK; reset_state_bit(A->Ctxt.proc, TF_SEMA); #ifdef CONFIG_SYS_CLOCK_EXISTS } #endif } else if (A->Comm == WAITMREQ) { S->Level--; A->Comm = WAITMRDY; GETARGS(Y); *Y = *A; SENDARGS(Y); Y = A; } else Y = A; A = X; } } /******************************************************************************* * * _k_sem_group_wait - finish handling incomplete waits on semaphores * * RETURNS: N/A */ void _k_sem_group_wait(struct k_args *R) { struct k_args *A = R->Ctxt.args; FREEARGS(R); if (--(A->Args.s1.nsem) == 0) reset_state_bit(A->Ctxt.proc, TF_LIST); } /******************************************************************************* * * _k_sem_group_wait_cancel - handle cancellation of a semaphore involved in a * semaphore group wait request * * This routine only applies to semaphore group wait requests. It is invoked * for each semaphore in the semaphore group that "lost" the semaphore group * wait request. * * RETURNS: N/A */ void _k_sem_group_wait_cancel(struct k_args *A) { struct sem_struct *S = _k_sem_list + OBJ_INDEX(A->Args.s1.sema); struct k_args *X = S->Waiters; struct k_args *Y = NULL; while (X && (X->Prio <= A->Prio)) { if (X->Ctxt.args == A->Ctxt.args) { if (Y) Y->Forw = X->Forw; else S->Waiters = X->Forw; if (X->Comm == WAITMREQ || X->Comm == WAITMRDY) { if (X->Comm == WAITMRDY) { /* obtain struct k_args of waiting task */ struct k_args *waitTaskArgs = X->Ctxt.args; /* * Determine if the wait cancellation request is being * processed after the state of the 'Waiters' packet state * has been updated to WAITMRDY, but before the WAITMRDY * packet has been processed. This will occur if a WAITMTMO * timer expiry occurs between the update of the packet state * and the processing of the WAITMRDY packet. */ if (unlikely(waitTaskArgs->Args.s1 .sema == ENDLIST)) waitTaskArgs->Args.s1.sema = A->Args.s1.sema; else signal_semaphore(1, S); } _k_sem_group_wait(X); } else FREEARGS(X); /* ERROR */ FREEARGS(A); return; } else { Y = X; X = X->Forw; } } A->Forw = X; if (Y) Y->Forw = A; else S->Waiters = A; } /******************************************************************************* * * _k_sem_group_wait_accept - handle acceptance of the ready semaphore request * * This routine only applies to semaphore group wait requests. It handles * the request for the one semaphore in the group that "wins" the semaphore * group wait request. * * RETURNS: N/A */ void _k_sem_group_wait_accept(struct k_args *A) { struct sem_struct *S = _k_sem_list + OBJ_INDEX(A->Args.s1.sema); struct k_args *X = S->Waiters; struct k_args *Y = NULL; while (X && (X->Prio <= A->Prio)) { if (X->Ctxt.args == A->Ctxt.args) { if (Y) Y->Forw = X->Forw; else S->Waiters = X->Forw; if (X->Comm == WAITMRDY) { _k_sem_group_wait(X); } else FREEARGS(X); /* ERROR */ FREEARGS(A); return; } else { Y = X; X = X->Forw; } } /* ERROR */ } /******************************************************************************* * * _k_sem_group_wait_timeout - handle semaphore group timeout request * * RETURNS: N/A */ void _k_sem_group_wait_timeout(struct k_args *A) { ksem_t *L; #ifdef CONFIG_SYS_CLOCK_EXISTS if (A->Time.timer) FREETIMER(A->Time.timer); #endif L = A->Args.s1.list; while (*L != ENDLIST) { struct k_args *R; GETARGS(R); R->Prio = A->Prio; R->Comm = (K_COMM)((*L == A->Args.s1.sema) ? WAITMACC : WAITMCAN); R->Ctxt.args = A; R->Args.s1.sema = *L++; SENDARGS(R); } } /******************************************************************************* * * _k_sem_group_ready - handle semaphore ready request * * This routine only applies to semaphore group wait requests. It identifies * the one semaphore in the group that "won" the semaphore group wait request * before triggering the semaphore group timeout handler. * * RETURNS: N/A */ void _k_sem_group_ready(struct k_args *R) { struct k_args *A = R->Ctxt.args; if (A->Args.s1.sema == ENDLIST) { A->Args.s1.sema = R->Args.s1.sema; A->Comm = WAITMTMO; #ifdef CONFIG_SYS_CLOCK_EXISTS if (A->Time.timer) force_timeout(A); else #endif _k_sem_group_wait_timeout(A); } FREEARGS(R); } /******************************************************************************* * * _k_sem_wait_reply - reply to a semaphore wait request * * RETURNS: N/A */ void _k_sem_wait_reply(struct k_args *A) { #ifdef CONFIG_SYS_CLOCK_EXISTS if (A->Time.timer) FREETIMER(A->Time.timer); if (A->Comm == WAITSTMO) { REMOVE_ELM(A); A->Time.rcode = RC_TIME; } else #endif A->Time.rcode = RC_OK; reset_state_bit(A->Ctxt.proc, TF_SEMA); } /******************************************************************************* * * _k_sem_group_wait_request - handle internal wait request on a semaphore involved in a * semaphore group wait request * * RETURNS: N/A */ void _k_sem_group_wait_request(struct k_args *A) { struct sem_struct *S = _k_sem_list + OBJ_INDEX(A->Args.s1.sema); struct k_args *X = S->Waiters; struct k_args *Y = NULL; while (X && (X->Prio <= A->Prio)) { if (X->Ctxt.args == A->Ctxt.args) { if (Y) Y->Forw = X->Forw; else S->Waiters = X->Forw; if (X->Comm == WAITMCAN) { _k_sem_group_wait(X); } else FREEARGS(X); /* ERROR */ FREEARGS(A); return; } else { Y = X; X = X->Forw; } } A->Forw = X; if (Y) Y->Forw = A; else S->Waiters = A; signal_semaphore(0, S); } /******************************************************************************* * * _k_sem_group_wait_any - handle semaphore group wait request * * This routine splits the single semaphore group wait request into several * internal wait requests--one for each semaphore in the group. * * RETURNS: N/A */ void _k_sem_group_wait_any(struct k_args *A) { ksem_t *L; L = A->Args.s1.list; A->Args.s1.sema = ENDLIST; A->Args.s1.nsem = 0; if (*L == ENDLIST) return; while (*L != ENDLIST) { struct k_args *R; GETARGS(R); R->Prio = _k_current_task->Prio; R->Comm = WAITMREQ; R->Ctxt.args = A; R->Args.s1.sema = *L++; SENDARGS(R); (A->Args.s1.nsem)++; } A->Ctxt.proc = _k_current_task; set_state_bit(_k_current_task, TF_LIST); #ifdef CONFIG_SYS_CLOCK_EXISTS if (A->Time.ticks != TICKS_NONE) { if (A->Time.ticks == TICKS_UNLIMITED) A->Time.timer = NULL; else { A->Comm = WAITMTMO; enlist_timeout(A); } } #endif } /******************************************************************************* * * _k_sem_wait_request - handle semaphore test and wait request * * RETURNS: N/A */ void _k_sem_wait_request(struct k_args *A) { struct sem_struct *S; uint32_t Sid; Sid = A->Args.s1.sema; S = _k_sem_list + OBJ_INDEX(Sid); if (S->Level) { S->Level--; A->Time.rcode = RC_OK; } else if (A->Time.ticks != TICKS_NONE) { A->Ctxt.proc = _k_current_task; A->Prio = _k_current_task->Prio; set_state_bit(_k_current_task, TF_SEMA); INSERT_ELM(S->Waiters, A); #ifdef CONFIG_SYS_CLOCK_EXISTS if (A->Time.ticks == TICKS_UNLIMITED) A->Time.timer = NULL; else { A->Comm = WAITSTMO; enlist_timeout(A); } #endif return; } else A->Time.rcode = RC_FAIL; } /******************************************************************************* * * _task_sem_take - test a semaphore * * This routine tests a semaphore to see if it has been signaled. If the signal * count is greater than zero, it is decremented. * * RETURNS: RC_OK, RC_FAIL, RC_TIME on success, failure, timeout respectively */ int _task_sem_take(ksem_t sema, /* semaphore to test */ int32_t time /* maximum number of ticks to wait */ ) { struct k_args A; A.Comm = WAITSREQ; A.Time.ticks = time; A.Args.s1.sema = sema; KERNEL_ENTRY(&A); return A.Time.rcode; } /******************************************************************************* * * _task_sem_group_take - test multiple semaphores * * This routine tests a group of semaphores. A semaphore group is an array of * semaphore names terminated by the predefined constant ENDLIST. * * It returns the ID of the first semaphore in the group whose signal count is * greater than zero, and decrements the signal count. * * RETURNS: N/A */ ksem_t _task_sem_group_take(ksemg_t group, /* group of semaphores to test */ int32_t time /* maximum number of ticks to wait */ ) { struct k_args A; A.Comm = WAITMANY; A.Prio = _k_current_task->Prio; A.Time.ticks = time; A.Args.s1.list = group; KERNEL_ENTRY(&A); return A.Args.s1.sema; } /******************************************************************************* * * _k_sem_signal - handle semaphore signal request * * RETURNS: N/A */ void _k_sem_signal(struct k_args *A) { uint32_t Sid = A->Args.s1.sema; signal_semaphore(1, _k_sem_list + OBJ_INDEX(Sid)); } /******************************************************************************* * * _k_sem_group_signal - handle signal semaphore group request * * RETURNS: N/A */ void _k_sem_group_signal(struct k_args *A) { ksem_t *L = A->Args.s1.list; while ((A->Args.s1.sema = *L++) != ENDLIST) _k_sem_signal(A); } /******************************************************************************* * * task_sem_give - signal a semaphore * * This routine signals the specified semaphore. * * RETURNS: N/A */ void task_sem_give(ksem_t sema /* semaphore to signal */ ) { struct k_args A; A.Comm = SIGNALS; A.Args.s1.sema = sema; KERNEL_ENTRY(&A); } /******************************************************************************* * * task_sem_group_give - signal a group of semaphores * * This routine signals a group of semaphores. A semaphore group is an array of * semaphore names terminated by the predefined constant ENDLIST. * * If the semaphore list of waiting tasks is empty, the signal count is * incremented, otherwise the highest priority waiting task is released. * * Using task_sem_group_give() is faster than using multiple single signals, * and ensures all signals take place before other tasks run. * * RETURNS: N/A */ void task_sem_group_give(ksemg_t group /* group of semaphores to signal */ ) { struct k_args A; A.Comm = SIGNALM; A.Args.s1.list = group; KERNEL_ENTRY(&A); } /******************************************************************************* * * fiber_sem_give - signal a semaphore from a fiber * * This routine (to only be called from a fiber) signals a semaphore. It * requires a statically allocated command packet (from a command packet set) * that is implicitly released once the command packet has been processed. * To signal a semaphore from a task, task_sem_give() should be used instead. * * RETURNS: N/A */ FUNC_ALIAS(isr_sem_give, fiber_sem_give, void); /******************************************************************************* * * isr_sem_give - signal a semaphore from an ISR * * This routine (to only be called from an ISR) signals a semaphore. It * requires a statically allocated command packet (from a command packet set) * that is implicitly released once the command packet has been processed. * To signal a semaphore from a task, task_sem_give() should be used instead. * * RETURNS: N/A */ void isr_sem_give(ksem_t sema, /* semaphore to signal */ struct cmd_pkt_set *pSet /* ptr to command packet set */ ) { struct k_args *pCommand; /* ptr to command packet */ /* * The cmdPkt_t data structure was designed to work seamlessly with the * struct k_args data structure and it is thus safe (and expected) to typecast * the return value of _cmd_pkt_get() to "struct k_args *". */ pCommand = (struct k_args *)_cmd_pkt_get(pSet); pCommand->Comm = SIGNALS; pCommand->Args.s1.sema = sema; nano_isr_stack_push(&_k_command_stack, (uint32_t)pCommand); } /******************************************************************************* * * _k_sem_reset - handle semaphore reset request * * RETURNS: N/A */ void _k_sem_reset(struct k_args *A) { uint32_t Sid = A->Args.s1.sema; _k_sem_list[OBJ_INDEX(Sid)].Level = 0; } /******************************************************************************* * * _k_sem_group_reset - handle semaphore group reset request * * RETURNS: N/A */ void _k_sem_group_reset(struct k_args *A) { ksem_t *L = A->Args.s1.list; while ((A->Args.s1.sema = *L++) != ENDLIST) _k_sem_reset(A); } /******************************************************************************* * * task_sem_reset - reset semaphore count to zero * * This routine resets the signal count of the specified semaphore to zero. * * RETURNS: N/A */ void task_sem_reset(ksem_t sema /* semaphore to reset */ ) { struct k_args A; A.Comm = RESETS; A.Args.s1.sema = sema; KERNEL_ENTRY(&A); } /******************************************************************************* * * task_sem_group_reset - reset a group of semaphores * * This routine resets the signal count for a group of semaphores. A semaphore * group is an array of semaphore names terminated by the predefined constant * ENDLIST. * * RETURNS: N/A */ void task_sem_group_reset(ksemg_t group /* group of semaphores to reset */ ) { struct k_args A; A.Comm = RESETM; A.Args.s1.list = group; KERNEL_ENTRY(&A); } /******************************************************************************* * * _k_sem_inquiry - handle semaphore inquiry request * * RETURNS: N/A */ void _k_sem_inquiry(struct k_args *A) { struct sem_struct *S; uint32_t Sid; Sid = A->Args.s1.sema; S = _k_sem_list + OBJ_INDEX(Sid); A->Time.rcode = S->Level; } /******************************************************************************* * * task_sem_count_get - read the semaphore signal count * * This routine reads the signal count of the specified semaphore. * * RETURNS: signal count */ int task_sem_count_get(ksem_t sema /* semaphore to query */ ) { struct k_args A; A.Comm = INQSEMA; A.Args.s1.sema = sema; KERNEL_ENTRY(&A); return A.Time.rcode; }