aboutsummaryrefslogtreecommitdiff
path: root/Documentation/PCI
diff options
context:
space:
mode:
Diffstat (limited to 'Documentation/PCI')
-rw-r--r--Documentation/PCI/00-INDEX10
-rw-r--r--Documentation/PCI/MSI-HOWTO.txt471
-rw-r--r--Documentation/PCI/PCIEBUS-HOWTO.txt33
-rw-r--r--Documentation/PCI/endpoint/function/binding/pci-test.txt17
-rw-r--r--Documentation/PCI/endpoint/pci-endpoint-cfs.txt105
-rw-r--r--Documentation/PCI/endpoint/pci-endpoint.txt215
-rw-r--r--Documentation/PCI/endpoint/pci-test-function.txt66
-rw-r--r--Documentation/PCI/endpoint/pci-test-howto.txt179
-rw-r--r--Documentation/PCI/pci-error-recovery.txt36
-rw-r--r--Documentation/PCI/pci-iov-howto.txt12
-rw-r--r--Documentation/PCI/pci.txt25
-rw-r--r--Documentation/PCI/pcieaer-howto.txt28
12 files changed, 719 insertions, 478 deletions
diff --git a/Documentation/PCI/00-INDEX b/Documentation/PCI/00-INDEX
index 147231f1613e..00c9a90b6f38 100644
--- a/Documentation/PCI/00-INDEX
+++ b/Documentation/PCI/00-INDEX
@@ -12,3 +12,13 @@ pci.txt
- info on the PCI subsystem for device driver authors
pcieaer-howto.txt
- the PCI Express Advanced Error Reporting Driver Guide HOWTO
+endpoint/pci-endpoint.txt
+ - guide to add endpoint controller driver and endpoint function driver.
+endpoint/pci-endpoint-cfs.txt
+ - guide to use configfs to configure the PCI endpoint function.
+endpoint/pci-test-function.txt
+ - specification of *PCI test* function device.
+endpoint/pci-test-howto.txt
+ - userguide for PCI endpoint test function.
+endpoint/function/binding/
+ - binding documentation for PCI endpoint function
diff --git a/Documentation/PCI/MSI-HOWTO.txt b/Documentation/PCI/MSI-HOWTO.txt
index 1179850f453c..618e13d5e276 100644
--- a/Documentation/PCI/MSI-HOWTO.txt
+++ b/Documentation/PCI/MSI-HOWTO.txt
@@ -78,422 +78,105 @@ CONFIG_PCI_MSI option.
4.2 Using MSI
-Most of the hard work is done for the driver in the PCI layer. It simply
-has to request that the PCI layer set up the MSI capability for this
+Most of the hard work is done for the driver in the PCI layer. The driver
+simply has to request that the PCI layer set up the MSI capability for this
device.
-4.2.1 pci_enable_msi
+To automatically use MSI or MSI-X interrupt vectors, use the following
+function:
-int pci_enable_msi(struct pci_dev *dev)
+ int pci_alloc_irq_vectors(struct pci_dev *dev, unsigned int min_vecs,
+ unsigned int max_vecs, unsigned int flags);
-A successful call allocates ONE interrupt to the device, regardless
-of how many MSIs the device supports. The device is switched from
-pin-based interrupt mode to MSI mode. The dev->irq number is changed
-to a new number which represents the message signaled interrupt;
-consequently, this function should be called before the driver calls
-request_irq(), because an MSI is delivered via a vector that is
-different from the vector of a pin-based interrupt.
+which allocates up to max_vecs interrupt vectors for a PCI device. It
+returns the number of vectors allocated or a negative error. If the device
+has a requirements for a minimum number of vectors the driver can pass a
+min_vecs argument set to this limit, and the PCI core will return -ENOSPC
+if it can't meet the minimum number of vectors.
-4.2.2 pci_enable_msi_range
+The flags argument is used to specify which type of interrupt can be used
+by the device and the driver (PCI_IRQ_LEGACY, PCI_IRQ_MSI, PCI_IRQ_MSIX).
+A convenient short-hand (PCI_IRQ_ALL_TYPES) is also available to ask for
+any possible kind of interrupt. If the PCI_IRQ_AFFINITY flag is set,
+pci_alloc_irq_vectors() will spread the interrupts around the available CPUs.
-int pci_enable_msi_range(struct pci_dev *dev, int minvec, int maxvec)
+To get the Linux IRQ numbers passed to request_irq() and free_irq() and the
+vectors, use the following function:
-This function allows a device driver to request any number of MSI
-interrupts within specified range from 'minvec' to 'maxvec'.
+ int pci_irq_vector(struct pci_dev *dev, unsigned int nr);
-If this function returns a positive number it indicates the number of
-MSI interrupts that have been successfully allocated. In this case
-the device is switched from pin-based interrupt mode to MSI mode and
-updates dev->irq to be the lowest of the new interrupts assigned to it.
-The other interrupts assigned to the device are in the range dev->irq
-to dev->irq + returned value - 1. Device driver can use the returned
-number of successfully allocated MSI interrupts to further allocate
-and initialize device resources.
+Any allocated resources should be freed before removing the device using
+the following function:
-If this function returns a negative number, it indicates an error and
-the driver should not attempt to request any more MSI interrupts for
-this device.
+ void pci_free_irq_vectors(struct pci_dev *dev);
-This function should be called before the driver calls request_irq(),
-because MSI interrupts are delivered via vectors that are different
-from the vector of a pin-based interrupt.
+If a device supports both MSI-X and MSI capabilities, this API will use the
+MSI-X facilities in preference to the MSI facilities. MSI-X supports any
+number of interrupts between 1 and 2048. In contrast, MSI is restricted to
+a maximum of 32 interrupts (and must be a power of two). In addition, the
+MSI interrupt vectors must be allocated consecutively, so the system might
+not be able to allocate as many vectors for MSI as it could for MSI-X. On
+some platforms, MSI interrupts must all be targeted at the same set of CPUs
+whereas MSI-X interrupts can all be targeted at different CPUs.
-It is ideal if drivers can cope with a variable number of MSI interrupts;
-there are many reasons why the platform may not be able to provide the
-exact number that a driver asks for.
+If a device supports neither MSI-X or MSI it will fall back to a single
+legacy IRQ vector.
-There could be devices that can not operate with just any number of MSI
-interrupts within a range. See chapter 4.3.1.3 to get the idea how to
-handle such devices for MSI-X - the same logic applies to MSI.
+The typical usage of MSI or MSI-X interrupts is to allocate as many vectors
+as possible, likely up to the limit supported by the device. If nvec is
+larger than the number supported by the device it will automatically be
+capped to the supported limit, so there is no need to query the number of
+vectors supported beforehand:
-4.2.1.1 Maximum possible number of MSI interrupts
-
-The typical usage of MSI interrupts is to allocate as many vectors as
-possible, likely up to the limit returned by pci_msi_vec_count() function:
-
-static int foo_driver_enable_msi(struct pci_dev *pdev, int nvec)
-{
- return pci_enable_msi_range(pdev, 1, nvec);
-}
-
-Note the value of 'minvec' parameter is 1. As 'minvec' is inclusive,
-the value of 0 would be meaningless and could result in error.
-
-Some devices have a minimal limit on number of MSI interrupts.
-In this case the function could look like this:
-
-static int foo_driver_enable_msi(struct pci_dev *pdev, int nvec)
-{
- return pci_enable_msi_range(pdev, FOO_DRIVER_MINIMUM_NVEC, nvec);
-}
-
-4.2.1.2 Exact number of MSI interrupts
+ nvec = pci_alloc_irq_vectors(pdev, 1, nvec, PCI_IRQ_ALL_TYPES)
+ if (nvec < 0)
+ goto out_err;
If a driver is unable or unwilling to deal with a variable number of MSI
-interrupts it could request a particular number of interrupts by passing
-that number to pci_enable_msi_range() function as both 'minvec' and 'maxvec'
-parameters:
-
-static int foo_driver_enable_msi(struct pci_dev *pdev, int nvec)
-{
- return pci_enable_msi_range(pdev, nvec, nvec);
-}
-
-Note, unlike pci_enable_msi_exact() function, which could be also used to
-enable a particular number of MSI-X interrupts, pci_enable_msi_range()
-returns either a negative errno or 'nvec' (not negative errno or 0 - as
-pci_enable_msi_exact() does).
-
-4.2.1.3 Single MSI mode
-
-The most notorious example of the request type described above is
-enabling the single MSI mode for a device. It could be done by passing
-two 1s as 'minvec' and 'maxvec':
-
-static int foo_driver_enable_single_msi(struct pci_dev *pdev)
-{
- return pci_enable_msi_range(pdev, 1, 1);
-}
-
-Note, unlike pci_enable_msi() function, which could be also used to
-enable the single MSI mode, pci_enable_msi_range() returns either a
-negative errno or 1 (not negative errno or 0 - as pci_enable_msi()
-does).
-
-4.2.3 pci_enable_msi_exact
-
-int pci_enable_msi_exact(struct pci_dev *dev, int nvec)
-
-This variation on pci_enable_msi_range() call allows a device driver to
-request exactly 'nvec' MSIs.
-
-If this function returns a negative number, it indicates an error and
-the driver should not attempt to request any more MSI interrupts for
-this device.
-
-By contrast with pci_enable_msi_range() function, pci_enable_msi_exact()
-returns zero in case of success, which indicates MSI interrupts have been
-successfully allocated.
-
-4.2.4 pci_disable_msi
-
-void pci_disable_msi(struct pci_dev *dev)
-
-This function should be used to undo the effect of pci_enable_msi_range().
-Calling it restores dev->irq to the pin-based interrupt number and frees
-the previously allocated MSIs. The interrupts may subsequently be assigned
-to another device, so drivers should not cache the value of dev->irq.
-
-Before calling this function, a device driver must always call free_irq()
-on any interrupt for which it previously called request_irq().
-Failure to do so results in a BUG_ON(), leaving the device with
-MSI enabled and thus leaking its vector.
-
-4.2.4 pci_msi_vec_count
-
-int pci_msi_vec_count(struct pci_dev *dev)
-
-This function could be used to retrieve the number of MSI vectors the
-device requested (via the Multiple Message Capable register). The MSI
-specification only allows the returned value to be a power of two,
-up to a maximum of 2^5 (32).
-
-If this function returns a negative number, it indicates the device is
-not capable of sending MSIs.
-
-If this function returns a positive number, it indicates the maximum
-number of MSI interrupt vectors that could be allocated.
-
-4.3 Using MSI-X
-
-The MSI-X capability is much more flexible than the MSI capability.
-It supports up to 2048 interrupts, each of which can be controlled
-independently. To support this flexibility, drivers must use an array of
-`struct msix_entry':
-
-struct msix_entry {
- u16 vector; /* kernel uses to write alloc vector */
- u16 entry; /* driver uses to specify entry */
-};
-
-This allows for the device to use these interrupts in a sparse fashion;
-for example, it could use interrupts 3 and 1027 and yet allocate only a
-two-element array. The driver is expected to fill in the 'entry' value
-in each element of the array to indicate for which entries the kernel
-should assign interrupts; it is invalid to fill in two entries with the
-same number.
-
-4.3.1 pci_enable_msix_range
-
-int pci_enable_msix_range(struct pci_dev *dev, struct msix_entry *entries,
- int minvec, int maxvec)
-
-Calling this function asks the PCI subsystem to allocate any number of
-MSI-X interrupts within specified range from 'minvec' to 'maxvec'.
-The 'entries' argument is a pointer to an array of msix_entry structs
-which should be at least 'maxvec' entries in size.
-
-On success, the device is switched into MSI-X mode and the function
-returns the number of MSI-X interrupts that have been successfully
-allocated. In this case the 'vector' member in entries numbered from
-0 to the returned value - 1 is populated with the interrupt number;
-the driver should then call request_irq() for each 'vector' that it
-decides to use. The device driver is responsible for keeping track of the
-interrupts assigned to the MSI-X vectors so it can free them again later.
-Device driver can use the returned number of successfully allocated MSI-X
-interrupts to further allocate and initialize device resources.
-
-If this function returns a negative number, it indicates an error and
-the driver should not attempt to allocate any more MSI-X interrupts for
-this device.
-
-This function, in contrast with pci_enable_msi_range(), does not adjust
-dev->irq. The device will not generate interrupts for this interrupt
-number once MSI-X is enabled.
-
-Device drivers should normally call this function once per device
-during the initialization phase.
-
-It is ideal if drivers can cope with a variable number of MSI-X interrupts;
-there are many reasons why the platform may not be able to provide the
-exact number that a driver asks for.
-
-There could be devices that can not operate with just any number of MSI-X
-interrupts within a range. E.g., an network adapter might need let's say
-four vectors per each queue it provides. Therefore, a number of MSI-X
-interrupts allocated should be a multiple of four. In this case interface
-pci_enable_msix_range() can not be used alone to request MSI-X interrupts
-(since it can allocate any number within the range, without any notion of
-the multiple of four) and the device driver should master a custom logic
-to request the required number of MSI-X interrupts.
-
-4.3.1.1 Maximum possible number of MSI-X interrupts
-
-The typical usage of MSI-X interrupts is to allocate as many vectors as
-possible, likely up to the limit returned by pci_msix_vec_count() function:
-
-static int foo_driver_enable_msix(struct foo_adapter *adapter, int nvec)
-{
- return pci_enable_msix_range(adapter->pdev, adapter->msix_entries,
- 1, nvec);
-}
-
-Note the value of 'minvec' parameter is 1. As 'minvec' is inclusive,
-the value of 0 would be meaningless and could result in error.
-
-Some devices have a minimal limit on number of MSI-X interrupts.
-In this case the function could look like this:
-
-static int foo_driver_enable_msix(struct foo_adapter *adapter, int nvec)
-{
- return pci_enable_msix_range(adapter->pdev, adapter->msix_entries,
- FOO_DRIVER_MINIMUM_NVEC, nvec);
-}
-
-4.3.1.2 Exact number of MSI-X interrupts
-
-If a driver is unable or unwilling to deal with a variable number of MSI-X
-interrupts it could request a particular number of interrupts by passing
-that number to pci_enable_msix_range() function as both 'minvec' and 'maxvec'
-parameters:
-
-static int foo_driver_enable_msix(struct foo_adapter *adapter, int nvec)
-{
- return pci_enable_msix_range(adapter->pdev, adapter->msix_entries,
- nvec, nvec);
-}
-
-Note, unlike pci_enable_msix_exact() function, which could be also used to
-enable a particular number of MSI-X interrupts, pci_enable_msix_range()
-returns either a negative errno or 'nvec' (not negative errno or 0 - as
-pci_enable_msix_exact() does).
-
-4.3.1.3 Specific requirements to the number of MSI-X interrupts
-
-As noted above, there could be devices that can not operate with just any
-number of MSI-X interrupts within a range. E.g., let's assume a device that
-is only capable sending the number of MSI-X interrupts which is a power of
-two. A routine that enables MSI-X mode for such device might look like this:
-
-/*
- * Assume 'minvec' and 'maxvec' are non-zero
- */
-static int foo_driver_enable_msix(struct foo_adapter *adapter,
- int minvec, int maxvec)
-{
- int rc;
-
- minvec = roundup_pow_of_two(minvec);
- maxvec = rounddown_pow_of_two(maxvec);
-
- if (minvec > maxvec)
- return -ERANGE;
-
-retry:
- rc = pci_enable_msix_range(adapter->pdev, adapter->msix_entries,
- maxvec, maxvec);
- /*
- * -ENOSPC is the only error code allowed to be analyzed
- */
- if (rc == -ENOSPC) {
- if (maxvec == 1)
- return -ENOSPC;
-
- maxvec /= 2;
-
- if (minvec > maxvec)
- return -ENOSPC;
-
- goto retry;
- }
-
- return rc;
-}
-
-Note how pci_enable_msix_range() return value is analyzed for a fallback -
-any error code other than -ENOSPC indicates a fatal error and should not
-be retried.
-
-4.3.2 pci_enable_msix_exact
-
-int pci_enable_msix_exact(struct pci_dev *dev,
- struct msix_entry *entries, int nvec)
-
-This variation on pci_enable_msix_range() call allows a device driver to
-request exactly 'nvec' MSI-Xs.
-
-If this function returns a negative number, it indicates an error and
-the driver should not attempt to allocate any more MSI-X interrupts for
-this device.
-
-By contrast with pci_enable_msix_range() function, pci_enable_msix_exact()
-returns zero in case of success, which indicates MSI-X interrupts have been
-successfully allocated.
-
-Another version of a routine that enables MSI-X mode for a device with
-specific requirements described in chapter 4.3.1.3 might look like this:
-
-/*
- * Assume 'minvec' and 'maxvec' are non-zero
- */
-static int foo_driver_enable_msix(struct foo_adapter *adapter,
- int minvec, int maxvec)
-{
- int rc;
-
- minvec = roundup_pow_of_two(minvec);
- maxvec = rounddown_pow_of_two(maxvec);
-
- if (minvec > maxvec)
- return -ERANGE;
-
-retry:
- rc = pci_enable_msix_exact(adapter->pdev,
- adapter->msix_entries, maxvec);
-
- /*
- * -ENOSPC is the only error code allowed to be analyzed
- */
- if (rc == -ENOSPC) {
- if (maxvec == 1)
- return -ENOSPC;
-
- maxvec /= 2;
-
- if (minvec > maxvec)
- return -ENOSPC;
-
- goto retry;
- } else if (rc < 0) {
- return rc;
- }
-
- return maxvec;
-}
-
-4.3.3 pci_disable_msix
-
-void pci_disable_msix(struct pci_dev *dev)
-
-This function should be used to undo the effect of pci_enable_msix_range().
-It frees the previously allocated MSI-X interrupts. The interrupts may
-subsequently be assigned to another device, so drivers should not cache
-the value of the 'vector' elements over a call to pci_disable_msix().
-
-Before calling this function, a device driver must always call free_irq()
-on any interrupt for which it previously called request_irq().
-Failure to do so results in a BUG_ON(), leaving the device with
-MSI-X enabled and thus leaking its vector.
-
-4.3.3 The MSI-X Table
-
-The MSI-X capability specifies a BAR and offset within that BAR for the
-MSI-X Table. This address is mapped by the PCI subsystem, and should not
-be accessed directly by the device driver. If the driver wishes to
-mask or unmask an interrupt, it should call disable_irq() / enable_irq().
+interrupts it can request a particular number of interrupts by passing that
+number to pci_alloc_irq_vectors() function as both 'min_vecs' and
+'max_vecs' parameters:
-4.3.4 pci_msix_vec_count
+ ret = pci_alloc_irq_vectors(pdev, nvec, nvec, PCI_IRQ_ALL_TYPES);
+ if (ret < 0)
+ goto out_err;
-int pci_msix_vec_count(struct pci_dev *dev)
+The most notorious example of the request type described above is enabling
+the single MSI mode for a device. It could be done by passing two 1s as
+'min_vecs' and 'max_vecs':
-This function could be used to retrieve number of entries in the device
-MSI-X table.
+ ret = pci_alloc_irq_vectors(pdev, 1, 1, PCI_IRQ_ALL_TYPES);
+ if (ret < 0)
+ goto out_err;
-If this function returns a negative number, it indicates the device is
-not capable of sending MSI-Xs.
+Some devices might not support using legacy line interrupts, in which case
+the driver can specify that only MSI or MSI-X is acceptable:
-If this function returns a positive number, it indicates the maximum
-number of MSI-X interrupt vectors that could be allocated.
+ nvec = pci_alloc_irq_vectors(pdev, 1, nvec, PCI_IRQ_MSI | PCI_IRQ_MSIX);
+ if (nvec < 0)
+ goto out_err;
-4.4 Handling devices implementing both MSI and MSI-X capabilities
+4.3 Legacy APIs
-If a device implements both MSI and MSI-X capabilities, it can
-run in either MSI mode or MSI-X mode, but not both simultaneously.
-This is a requirement of the PCI spec, and it is enforced by the
-PCI layer. Calling pci_enable_msi_range() when MSI-X is already
-enabled or pci_enable_msix_range() when MSI is already enabled
-results in an error. If a device driver wishes to switch between MSI
-and MSI-X at runtime, it must first quiesce the device, then switch
-it back to pin-interrupt mode, before calling pci_enable_msi_range()
-or pci_enable_msix_range() and resuming operation. This is not expected
-to be a common operation but may be useful for debugging or testing
-during development.
+The following old APIs to enable and disable MSI or MSI-X interrupts should
+not be used in new code:
-4.5 Considerations when using MSIs
+ pci_enable_msi() /* deprecated */
+ pci_disable_msi() /* deprecated */
+ pci_enable_msix_range() /* deprecated */
+ pci_enable_msix_exact() /* deprecated */
+ pci_disable_msix() /* deprecated */
-4.5.1 Choosing between MSI-X and MSI
+Additionally there are APIs to provide the number of supported MSI or MSI-X
+vectors: pci_msi_vec_count() and pci_msix_vec_count(). In general these
+should be avoided in favor of letting pci_alloc_irq_vectors() cap the
+number of vectors. If you have a legitimate special use case for the count
+of vectors we might have to revisit that decision and add a
+pci_nr_irq_vectors() helper that handles MSI and MSI-X transparently.
-If your device supports both MSI-X and MSI capabilities, you should use
-the MSI-X facilities in preference to the MSI facilities. As mentioned
-above, MSI-X supports any number of interrupts between 1 and 2048.
-In contrast, MSI is restricted to a maximum of 32 interrupts (and
-must be a power of two). In addition, the MSI interrupt vectors must
-be allocated consecutively, so the system might not be able to allocate
-as many vectors for MSI as it could for MSI-X. On some platforms, MSI
-interrupts must all be targeted at the same set of CPUs whereas MSI-X
-interrupts can all be targeted at different CPUs.
+4.4 Considerations when using MSIs
-4.5.2 Spinlocks
+4.4.1 Spinlocks
Most device drivers have a per-device spinlock which is taken in the
interrupt handler. With pin-based interrupts or a single MSI, it is not
@@ -503,9 +186,9 @@ must disable interrupts while the lock is held. If the device sends
a different interrupt, the driver will deadlock trying to recursively
acquire the spinlock. Such deadlocks can be avoided by using
spin_lock_irqsave() or spin_lock_irq() which disable local interrupts
-and acquire the lock (see Documentation/DocBook/kernel-locking).
+and acquire the lock (see Documentation/kernel-hacking/locking.rst).
-4.6 How to tell whether MSI/MSI-X is enabled on a device
+4.5 How to tell whether MSI/MSI-X is enabled on a device
Using 'lspci -v' (as root) may show some devices with "MSI", "Message
Signalled Interrupts" or "MSI-X" capabilities. Each of these capabilities
@@ -583,5 +266,5 @@ or disabled (0). If 0 is found in any of the msi_bus files belonging
to bridges between the PCI root and the device, MSIs are disabled.
It is also worth checking the device driver to see whether it supports MSIs.
-For example, it may contain calls to pci_enable_msi_range() or
-pci_enable_msix_range().
+For example, it may contain calls to pci_irq_alloc_vectors() with the
+PCI_IRQ_MSI or PCI_IRQ_MSIX flags.
diff --git a/Documentation/PCI/PCIEBUS-HOWTO.txt b/Documentation/PCI/PCIEBUS-HOWTO.txt
index 6bd5f372adec..15f0bb3b5045 100644
--- a/Documentation/PCI/PCIEBUS-HOWTO.txt
+++ b/Documentation/PCI/PCIEBUS-HOWTO.txt
@@ -161,21 +161,13 @@ Since all service drivers of a PCI-PCI Bridge Port device are
allowed to run simultaneously, below lists a few of possible resource
conflicts with proposed solutions.
-6.1 MSI Vector Resource
-
-The MSI capability structure enables a device software driver to call
-pci_enable_msi to request MSI based interrupts. Once MSI interrupts
-are enabled on a device, it stays in this mode until a device driver
-calls pci_disable_msi to disable MSI interrupts and revert back to
-INTx emulation mode. Since service drivers of the same PCI-PCI Bridge
-port share the same physical device, if an individual service driver
-calls pci_enable_msi/pci_disable_msi it may result unpredictable
-behavior. For example, two service drivers run simultaneously on the
-same physical Root Port. Both service drivers call pci_enable_msi to
-request MSI based interrupts. A service driver may not know whether
-any other service drivers have run on this Root Port. If either one
-of them calls pci_disable_msi, it puts the other service driver
-in a wrong interrupt mode.
+6.1 MSI and MSI-X Vector Resource
+
+Once MSI or MSI-X interrupts are enabled on a device, it stays in this
+mode until they are disabled again. Since service drivers of the same
+PCI-PCI Bridge port share the same physical device, if an individual
+service driver enables or disables MSI/MSI-X mode it may result
+unpredictable behavior.
To avoid this situation all service drivers are not permitted to
switch interrupt mode on its device. The PCI Express Port Bus driver
@@ -187,17 +179,6 @@ driver. Service drivers should use (struct pcie_device*)dev->irq to
call request_irq/free_irq. In addition, the interrupt mode is stored
in the field interrupt_mode of struct pcie_device.
-6.2 MSI-X Vector Resources
-
-Similar to the MSI a device driver for an MSI-X capable device can
-call pci_enable_msix to request MSI-X interrupts. All service drivers
-are not permitted to switch interrupt mode on its device. The PCI
-Express Port Bus driver is responsible for determining the interrupt
-mode and this should be transparent to service drivers. Any attempt
-by service driver to call pci_enable_msix/pci_disable_msix may
-result unpredictable behavior. Service drivers should use
-(struct pcie_device*)dev->irq and call request_irq/free_irq.
-
6.3 PCI Memory/IO Mapped Regions
Service drivers for PCI Express Power Management (PME), Advanced
diff --git a/Documentation/PCI/endpoint/function/binding/pci-test.txt b/Documentation/PCI/endpoint/function/binding/pci-test.txt
new file mode 100644
index 000000000000..3b68b955fb50
--- /dev/null
+++ b/Documentation/PCI/endpoint/function/binding/pci-test.txt
@@ -0,0 +1,17 @@
+PCI TEST ENDPOINT FUNCTION
+
+name: Should be "pci_epf_test" to bind to the pci_epf_test driver.
+
+Configurable Fields:
+vendorid : should be 0x104c
+deviceid : should be 0xb500 for DRA74x and 0xb501 for DRA72x
+revid : don't care
+progif_code : don't care
+subclass_code : don't care
+baseclass_code : should be 0xff
+cache_line_size : don't care
+subsys_vendor_id : don't care
+subsys_id : don't care
+interrupt_pin : Should be 1 - INTA, 2 - INTB, 3 - INTC, 4 -INTD
+msi_interrupts : Should be 1 to 32 depending on the number of MSI interrupts
+ to test
diff --git a/Documentation/PCI/endpoint/pci-endpoint-cfs.txt b/Documentation/PCI/endpoint/pci-endpoint-cfs.txt
new file mode 100644
index 000000000000..d740f29960a4
--- /dev/null
+++ b/Documentation/PCI/endpoint/pci-endpoint-cfs.txt
@@ -0,0 +1,105 @@
+ CONFIGURING PCI ENDPOINT USING CONFIGFS
+ Kishon Vijay Abraham I <kishon@ti.com>
+
+The PCI Endpoint Core exposes configfs entry (pci_ep) to configure the
+PCI endpoint function and to bind the endpoint function
+with the endpoint controller. (For introducing other mechanisms to
+configure the PCI Endpoint Function refer to [1]).
+
+*) Mounting configfs
+
+The PCI Endpoint Core layer creates pci_ep directory in the mounted configfs
+directory. configfs can be mounted using the following command.
+
+ mount -t configfs none /sys/kernel/config
+
+*) Directory Structure
+
+The pci_ep configfs has two directories at its root: controllers and
+functions. Every EPC device present in the system will have an entry in
+the *controllers* directory and and every EPF driver present in the system
+will have an entry in the *functions* directory.
+
+/sys/kernel/config/pci_ep/
+ .. controllers/
+ .. functions/
+
+*) Creating EPF Device
+
+Every registered EPF driver will be listed in controllers directory. The
+entries corresponding to EPF driver will be created by the EPF core.
+
+/sys/kernel/config/pci_ep/functions/
+ .. <EPF Driver1>/
+ ... <EPF Device 11>/
+ ... <EPF Device 21>/
+ .. <EPF Driver2>/
+ ... <EPF Device 12>/
+ ... <EPF Device 22>/
+
+In order to create a <EPF device> of the type probed by <EPF Driver>, the
+user has to create a directory inside <EPF DriverN>.
+
+Every <EPF device> directory consists of the following entries that can be
+used to configure the standard configuration header of the endpoint function.
+(These entries are created by the framework when any new <EPF Device> is
+created)
+
+ .. <EPF Driver1>/
+ ... <EPF Device 11>/
+ ... vendorid
+ ... deviceid
+ ... revid
+ ... progif_code
+ ... subclass_code
+ ... baseclass_code
+ ... cache_line_size
+ ... subsys_vendor_id
+ ... subsys_id
+ ... interrupt_pin
+
+*) EPC Device
+
+Every registered EPC device will be listed in controllers directory. The
+entries corresponding to EPC device will be created by the EPC core.
+
+/sys/kernel/config/pci_ep/controllers/
+ .. <EPC Device1>/
+ ... <Symlink EPF Device11>/
+ ... <Symlink EPF Device12>/
+ ... start
+ .. <EPC Device2>/
+ ... <Symlink EPF Device21>/
+ ... <Symlink EPF Device22>/
+ ... start
+
+The <EPC Device> directory will have a list of symbolic links to
+<EPF Device>. These symbolic links should be created by the user to
+represent the functions present in the endpoint device.
+
+The <EPC Device> directory will also have a *start* field. Once
+"1" is written to this field, the endpoint device will be ready to
+establish the link with the host. This is usually done after
+all the EPF devices are created and linked with the EPC device.
+
+
+ | controllers/
+ | <Directory: EPC name>/
+ | <Symbolic Link: Function>
+ | start
+ | functions/
+ | <Directory: EPF driver>/
+ | <Directory: EPF device>/
+ | vendorid
+ | deviceid
+ | revid
+ | progif_code
+ | subclass_code
+ | baseclass_code
+ | cache_line_size
+ | subsys_vendor_id
+ | subsys_id
+ | interrupt_pin
+ | function
+
+[1] -> Documentation/PCI/endpoint/pci-endpoint.txt
diff --git a/Documentation/PCI/endpoint/pci-endpoint.txt b/Documentation/PCI/endpoint/pci-endpoint.txt
new file mode 100644
index 000000000000..9b1d66829290
--- /dev/null
+++ b/Documentation/PCI/endpoint/pci-endpoint.txt
@@ -0,0 +1,215 @@
+ PCI ENDPOINT FRAMEWORK
+ Kishon Vijay Abraham I <kishon@ti.com>
+
+This document is a guide to use the PCI Endpoint Framework in order to create
+endpoint controller driver, endpoint function driver, and using configfs
+interface to bind the function driver to the controller driver.
+
+1. Introduction
+
+Linux has a comprehensive PCI subsystem to support PCI controllers that
+operates in Root Complex mode. The subsystem has capability to scan PCI bus,
+assign memory resources and IRQ resources, load PCI driver (based on
+vendor ID, device ID), support other services like hot-plug, power management,
+advanced error reporting and virtual channels.
+
+However the PCI controller IP integrated in some SoCs is capable of operating
+either in Root Complex mode or Endpoint mode. PCI Endpoint Framework will
+add endpoint mode support in Linux. This will help to run Linux in an
+EP system which can have a wide variety of use cases from testing or
+validation, co-processor accelerator, etc.
+
+2. PCI Endpoint Core
+
+The PCI Endpoint Core layer comprises 3 components: the Endpoint Controller
+library, the Endpoint Function library, and the configfs layer to bind the
+endpoint function with the endpoint controller.
+
+2.1 PCI Endpoint Controller(EPC) Library
+
+The EPC library provides APIs to be used by the controller that can operate
+in endpoint mode. It also provides APIs to be used by function driver/library
+in order to implement a particular endpoint function.
+
+2.1.1 APIs for the PCI controller Driver
+
+This section lists the APIs that the PCI Endpoint core provides to be used
+by the PCI controller driver.
+
+*) devm_pci_epc_create()/pci_epc_create()
+
+ The PCI controller driver should implement the following ops:
+ * write_header: ops to populate configuration space header
+ * set_bar: ops to configure the BAR
+ * clear_bar: ops to reset the BAR
+ * alloc_addr_space: ops to allocate in PCI controller address space
+ * free_addr_space: ops to free the allocated address space
+ * raise_irq: ops to raise a legacy or MSI interrupt
+ * start: ops to start the PCI link
+ * stop: ops to stop the PCI link
+
+ The PCI controller driver can then create a new EPC device by invoking
+ devm_pci_epc_create()/pci_epc_create().
+
+*) devm_pci_epc_destroy()/pci_epc_destroy()
+
+ The PCI controller driver can destroy the EPC device created by either
+ devm_pci_epc_create() or pci_epc_create() using devm_pci_epc_destroy() or
+ pci_epc_destroy().
+
+*) pci_epc_linkup()
+
+ In order to notify all the function devices that the EPC device to which
+ they are linked has established a link with the host, the PCI controller
+ driver should invoke pci_epc_linkup().
+
+*) pci_epc_mem_init()
+
+ Initialize the pci_epc_mem structure used for allocating EPC addr space.
+
+*) pci_epc_mem_exit()
+
+ Cleanup the pci_epc_mem structure allocated during pci_epc_mem_init().
+
+2.1.2 APIs for the PCI Endpoint Function Driver
+
+This section lists the APIs that the PCI Endpoint core provides to be used
+by the PCI endpoint function driver.
+
+*) pci_epc_write_header()
+
+ The PCI endpoint function driver should use pci_epc_write_header() to
+ write the standard configuration header to the endpoint controller.
+
+*) pci_epc_set_bar()
+
+ The PCI endpoint function driver should use pci_epc_set_bar() to configure
+ the Base Address Register in order for the host to assign PCI addr space.
+ Register space of the function driver is usually configured
+ using this API.
+
+*) pci_epc_clear_bar()
+
+ The PCI endpoint function driver should use pci_epc_clear_bar() to reset
+ the BAR.
+
+*) pci_epc_raise_irq()
+
+ The PCI endpoint function driver should use pci_epc_raise_irq() to raise
+ Legacy Interrupt or MSI Interrupt.
+
+*) pci_epc_mem_alloc_addr()
+
+ The PCI endpoint function driver should use pci_epc_mem_alloc_addr(), to
+ allocate memory address from EPC addr space which is required to access
+ RC's buffer
+
+*) pci_epc_mem_free_addr()
+
+ The PCI endpoint function driver should use pci_epc_mem_free_addr() to
+ free the memory space allocated using pci_epc_mem_alloc_addr().
+
+2.1.3 Other APIs
+
+There are other APIs provided by the EPC library. These are used for binding
+the EPF device with EPC device. pci-ep-cfs.c can be used as reference for
+using these APIs.
+
+*) pci_epc_get()
+
+ Get a reference to the PCI endpoint controller based on the device name of
+ the controller.
+
+*) pci_epc_put()
+
+ Release the reference to the PCI endpoint controller obtained using
+ pci_epc_get()
+
+*) pci_epc_add_epf()
+
+ Add a PCI endpoint function to a PCI endpoint controller. A PCIe device
+ can have up to 8 functions according to the specification.
+
+*) pci_epc_remove_epf()
+
+ Remove the PCI endpoint function from PCI endpoint controller.
+
+*) pci_epc_start()
+
+ The PCI endpoint function driver should invoke pci_epc_start() once it
+ has configured the endpoint function and wants to start the PCI link.
+
+*) pci_epc_stop()
+
+ The PCI endpoint function driver should invoke pci_epc_stop() to stop
+ the PCI LINK.
+
+2.2 PCI Endpoint Function(EPF) Library
+
+The EPF library provides APIs to be used by the function driver and the EPC
+library to provide endpoint mode functionality.
+
+2.2.1 APIs for the PCI Endpoint Function Driver
+
+This section lists the APIs that the PCI Endpoint core provides to be used
+by the PCI endpoint function driver.
+
+*) pci_epf_register_driver()
+
+ The PCI Endpoint Function driver should implement the following ops:
+ * bind: ops to perform when a EPC device has been bound to EPF device
+ * unbind: ops to perform when a binding has been lost between a EPC
+ device and EPF device
+ * linkup: ops to perform when the EPC device has established a
+ connection with a host system
+
+ The PCI Function driver can then register the PCI EPF driver by using
+ pci_epf_register_driver().
+
+*) pci_epf_unregister_driver()
+
+ The PCI Function driver can unregister the PCI EPF driver by using
+ pci_epf_unregister_driver().
+
+*) pci_epf_alloc_space()
+
+ The PCI Function driver can allocate space for a particular BAR using
+ pci_epf_alloc_space().
+
+*) pci_epf_free_space()
+
+ The PCI Function driver can free the allocated space
+ (using pci_epf_alloc_space) by invoking pci_epf_free_space().
+
+2.2.2 APIs for the PCI Endpoint Controller Library
+This section lists the APIs that the PCI Endpoint core provides to be used
+by the PCI endpoint controller library.
+
+*) pci_epf_linkup()
+
+ The PCI endpoint controller library invokes pci_epf_linkup() when the
+ EPC device has established the connection to the host.
+
+2.2.2 Other APIs
+There are other APIs provided by the EPF library. These are used to notify
+the function driver when the EPF device is bound to the EPC device.
+pci-ep-cfs.c can be used as reference for using these APIs.
+
+*) pci_epf_create()
+
+ Create a new PCI EPF device by passing the name of the PCI EPF device.
+ This name will be used to bind the the EPF device to a EPF driver.
+
+*) pci_epf_destroy()
+
+ Destroy the created PCI EPF device.
+
+*) pci_epf_bind()
+
+ pci_epf_bind() should be invoked when the EPF device has been bound to
+ a EPC device.
+
+*) pci_epf_unbind()
+
+ pci_epf_unbind() should be invoked when the binding between EPC device
+ and EPF device is lost.
diff --git a/Documentation/PCI/endpoint/pci-test-function.txt b/Documentation/PCI/endpoint/pci-test-function.txt
new file mode 100644
index 000000000000..0c519c9bf94a
--- /dev/null
+++ b/Documentation/PCI/endpoint/pci-test-function.txt
@@ -0,0 +1,66 @@
+ PCI TEST
+ Kishon Vijay Abraham I <kishon@ti.com>
+
+Traditionally PCI RC has always been validated by using standard
+PCI cards like ethernet PCI cards or USB PCI cards or SATA PCI cards.
+However with the addition of EP-core in linux kernel, it is possible
+to configure a PCI controller that can operate in EP mode to work as
+a test device.
+
+The PCI endpoint test device is a virtual device (defined in software)
+used to test the endpoint functionality and serve as a sample driver
+for other PCI endpoint devices (to use the EP framework).
+
+The PCI endpoint test device has the following registers:
+
+ 1) PCI_ENDPOINT_TEST_MAGIC
+ 2) PCI_ENDPOINT_TEST_COMMAND
+ 3) PCI_ENDPOINT_TEST_STATUS
+ 4) PCI_ENDPOINT_TEST_SRC_ADDR
+ 5) PCI_ENDPOINT_TEST_DST_ADDR
+ 6) PCI_ENDPOINT_TEST_SIZE
+ 7) PCI_ENDPOINT_TEST_CHECKSUM
+
+*) PCI_ENDPOINT_TEST_MAGIC
+
+This register will be used to test BAR0. A known pattern will be written
+and read back from MAGIC register to verify BAR0.
+
+*) PCI_ENDPOINT_TEST_COMMAND:
+
+This register will be used by the host driver to indicate the function
+that the endpoint device must perform.
+
+Bitfield Description:
+ Bit 0 : raise legacy IRQ
+ Bit 1 : raise MSI IRQ
+ Bit 2 - 7 : MSI interrupt number
+ Bit 8 : read command (read data from RC buffer)
+ Bit 9 : write command (write data to RC buffer)
+ Bit 10 : copy command (copy data from one RC buffer to another
+ RC buffer)
+
+*) PCI_ENDPOINT_TEST_STATUS
+
+This register reflects the status of the PCI endpoint device.
+
+Bitfield Description:
+ Bit 0 : read success
+ Bit 1 : read fail
+ Bit 2 : write success
+ Bit 3 : write fail
+ Bit 4 : copy success
+ Bit 5 : copy fail
+ Bit 6 : IRQ raised
+ Bit 7 : source address is invalid
+ Bit 8 : destination address is invalid
+
+*) PCI_ENDPOINT_TEST_SRC_ADDR
+
+This register contains the source address (RC buffer address) for the
+COPY/READ command.
+
+*) PCI_ENDPOINT_TEST_DST_ADDR
+
+This register contains the destination address (RC buffer address) for
+the COPY/WRITE command.
diff --git a/Documentation/PCI/endpoint/pci-test-howto.txt b/Documentation/PCI/endpoint/pci-test-howto.txt
new file mode 100644
index 000000000000..75f48c3bb191
--- /dev/null
+++ b/Documentation/PCI/endpoint/pci-test-howto.txt
@@ -0,0 +1,179 @@
+ PCI TEST USERGUIDE
+ Kishon Vijay Abraham I <kishon@ti.com>
+
+This document is a guide to help users use pci-epf-test function driver
+and pci_endpoint_test host driver for testing PCI. The list of steps to
+be followed in the host side and EP side is given below.
+
+1. Endpoint Device
+
+1.1 Endpoint Controller Devices
+
+To find the list of endpoint controller devices in the system:
+
+ # ls /sys/class/pci_epc/
+ 51000000.pcie_ep
+
+If PCI_ENDPOINT_CONFIGFS is enabled
+ # ls /sys/kernel/config/pci_ep/controllers
+ 51000000.pcie_ep
+
+1.2 Endpoint Function Drivers
+
+To find the list of endpoint function drivers in the system:
+
+ # ls /sys/bus/pci-epf/drivers
+ pci_epf_test
+
+If PCI_ENDPOINT_CONFIGFS is enabled
+ # ls /sys/kernel/config/pci_ep/functions
+ pci_epf_test
+
+1.3 Creating pci-epf-test Device
+
+PCI endpoint function device can be created using the configfs. To create
+pci-epf-test device, the following commands can be used
+
+ # mount -t configfs none /sys/kernel/config
+ # cd /sys/kernel/config/pci_ep/
+ # mkdir functions/pci_epf_test/func1
+
+The "mkdir func1" above creates the pci-epf-test function device that will
+be probed by pci_epf_test driver.
+
+The PCI endpoint framework populates the directory with the following
+configurable fields.
+
+ # ls functions/pci_epf_test/func1
+ baseclass_code interrupt_pin revid subsys_vendor_id
+ cache_line_size msi_interrupts subclass_code vendorid
+ deviceid progif_code subsys_id
+
+The PCI endpoint function driver populates these entries with default values
+when the device is bound to the driver. The pci-epf-test driver populates
+vendorid with 0xffff and interrupt_pin with 0x0001
+
+ # cat functions/pci_epf_test/func1/vendorid
+ 0xffff
+ # cat functions/pci_epf_test/func1/interrupt_pin
+ 0x0001
+
+1.4 Configuring pci-epf-test Device
+
+The user can configure the pci-epf-test device using configfs entry. In order
+to change the vendorid and the number of MSI interrupts used by the function
+device, the following commands can be used.
+
+ # echo 0x104c > functions/pci_epf_test/func1/vendorid
+ # echo 0xb500 > functions/pci_epf_test/func1/deviceid
+ # echo 16 > functions/pci_epf_test/func1/msi_interrupts
+
+1.5 Binding pci-epf-test Device to EP Controller
+
+In order for the endpoint function device to be useful, it has to be bound to
+a PCI endpoint controller driver. Use the configfs to bind the function
+device to one of the controller driver present in the system.
+
+ # ln -s functions/pci_epf_test/func1 controllers/51000000.pcie_ep/
+
+Once the above step is completed, the PCI endpoint is ready to establish a link
+with the host.
+
+1.6 Start the Link
+
+In order for the endpoint device to establish a link with the host, the _start_
+field should be populated with '1'.
+
+ # echo 1 > controllers/51000000.pcie_ep/start
+
+2. RootComplex Device
+
+2.1 lspci Output
+
+Note that the devices listed here correspond to the value populated in 1.4 above
+
+ 00:00.0 PCI bridge: Texas Instruments Device 8888 (rev 01)
+ 01:00.0 Unassigned class [ff00]: Texas Instruments Device b500
+
+2.2 Using Endpoint Test function Device
+
+pcitest.sh added in tools/pci/ can be used to run all the default PCI endpoint
+tests. Before pcitest.sh can be used pcitest.c should be compiled using the
+following commands.
+
+ cd <kernel-dir>
+ make headers_install ARCH=arm
+ arm-linux-gnueabihf-gcc -Iusr/include tools/pci/pcitest.c -o pcitest
+ cp pcitest <rootfs>/usr/sbin/
+ cp tools/pci/pcitest.sh <rootfs>
+
+2.2.1 pcitest.sh Output
+ # ./pcitest.sh
+ BAR tests
+
+ BAR0: OKAY
+ BAR1: OKAY
+ BAR2: OKAY
+ BAR3: OKAY
+ BAR4: NOT OKAY
+ BAR5: NOT OKAY
+
+ Interrupt tests
+
+ LEGACY IRQ: NOT OKAY
+ MSI1: OKAY
+ MSI2: OKAY
+ MSI3: OKAY
+ MSI4: OKAY
+ MSI5: OKAY
+ MSI6: OKAY
+ MSI7: OKAY
+ MSI8: OKAY
+ MSI9: OKAY
+ MSI10: OKAY
+ MSI11: OKAY
+ MSI12: OKAY
+ MSI13: OKAY
+ MSI14: OKAY
+ MSI15: OKAY
+ MSI16: OKAY
+ MSI17: NOT OKAY
+ MSI18: NOT OKAY
+ MSI19: NOT OKAY
+ MSI20: NOT OKAY
+ MSI21: NOT OKAY
+ MSI22: NOT OKAY
+ MSI23: NOT OKAY
+ MSI24: NOT OKAY
+ MSI25: NOT OKAY
+ MSI26: NOT OKAY
+ MSI27: NOT OKAY
+ MSI28: NOT OKAY
+ MSI29: NOT OKAY
+ MSI30: NOT OKAY
+ MSI31: NOT OKAY
+ MSI32: NOT OKAY
+
+ Read Tests
+
+ READ ( 1 bytes): OKAY
+ READ ( 1024 bytes): OKAY
+ READ ( 1025 bytes): OKAY
+ READ (1024000 bytes): OKAY
+ READ (1024001 bytes): OKAY
+
+ Write Tests
+
+ WRITE ( 1 bytes): OKAY
+ WRITE ( 1024 bytes): OKAY
+ WRITE ( 1025 bytes): OKAY
+ WRITE (1024000 bytes): OKAY
+ WRITE (1024001 bytes): OKAY
+
+ Copy Tests
+
+ COPY ( 1 bytes): OKAY
+ COPY ( 1024 bytes): OKAY
+ COPY ( 1025 bytes): OKAY
+ COPY (1024000 bytes): OKAY
+ COPY (1024001 bytes): OKAY
diff --git a/Documentation/PCI/pci-error-recovery.txt b/Documentation/PCI/pci-error-recovery.txt
index ac26869c7db4..0b6bb3ef449e 100644
--- a/Documentation/PCI/pci-error-recovery.txt
+++ b/Documentation/PCI/pci-error-recovery.txt
@@ -11,7 +11,7 @@
Many PCI bus controllers are able to detect a variety of hardware
PCI errors on the bus, such as parity errors on the data and address
-busses, as well as SERR and PERR errors. Some of the more advanced
+buses, as well as SERR and PERR errors. Some of the more advanced
chipsets are able to deal with these errors; these include PCI-E chipsets,
and the PCI-host bridges found on IBM Power4, Power5 and Power6-based
pSeries boxes. A typical action taken is to disconnect the affected device,
@@ -78,7 +78,6 @@ struct pci_error_handlers
{
int (*error_detected)(struct pci_dev *dev, enum pci_channel_state);
int (*mmio_enabled)(struct pci_dev *dev);
- int (*link_reset)(struct pci_dev *dev);
int (*slot_reset)(struct pci_dev *dev);
void (*resume)(struct pci_dev *dev);
};
@@ -104,8 +103,7 @@ if it implements any, it must implement error_detected(). If a callback
is not implemented, the corresponding feature is considered unsupported.
For example, if mmio_enabled() and resume() aren't there, then it
is assumed that the driver is not doing any direct recovery and requires
-a slot reset. If link_reset() is not implemented, the card is assumed to
-not care about link resets. Typically a driver will want to know about
+a slot reset. Typically a driver will want to know about
a slot_reset().
The actual steps taken by a platform to recover from a PCI error
@@ -175,7 +173,7 @@ is STEP 6 (Permanent Failure).
>>> a value of 0xff on read, and writes will be dropped. If more than
>>> EEH_MAX_FAILS I/O's are attempted to a frozen adapter, EEH
>>> assumes that the device driver has gone into an infinite loop
->>> and prints an error to syslog. A reboot is then required to
+>>> and prints an error to syslog. A reboot is then required to
>>> get the device working again.
STEP 2: MMIO Enabled
@@ -232,31 +230,15 @@ proceeds to STEP 4 (Slot Reset)
STEP 3: Link Reset
------------------
-The platform resets the link, and then calls the link_reset() callback
-on all affected device drivers. This is a PCI-Express specific state
-and is done whenever a non-fatal error has been detected that can be
-"solved" by resetting the link. This call informs the driver of the
-reset and the driver should check to see if the device appears to be
-in working condition.
-
-The driver is not supposed to restart normal driver I/O operations
-at this point. It should limit itself to "probing" the device to
-check its recoverability status. If all is right, then the platform
-will call resume() once all drivers have ack'd link_reset().
-
- Result codes:
- (identical to STEP 3 (MMIO Enabled)
-
-The platform then proceeds to either STEP 4 (Slot Reset) or STEP 5
-(Resume Operations).
-
->>> The current powerpc implementation does not implement this callback.
+The platform resets the link. This is a PCI-Express specific step
+and is done whenever a fatal error has been detected that can be
+"solved" by resetting the link.
STEP 4: Slot Reset
------------------
In response to a return value of PCI_ERS_RESULT_NEED_RESET, the
-the platform will perform a slot reset on the requesting PCI device(s).
+the platform will perform a slot reset on the requesting PCI device(s).
The actual steps taken by a platform to perform a slot reset
will be platform-dependent. Upon completion of slot reset, the
platform will call the device slot_reset() callback.
@@ -276,7 +258,7 @@ configuration registers to initialize to their default conditions.
For most PCI devices, a soft reset will be sufficient for recovery.
Optional fundamental reset is provided to support a limited number
-of PCI Express PCI devices for which a soft reset is not sufficient
+of PCI Express devices for which a soft reset is not sufficient
for recovery.
If the platform supports PCI hotplug, then the reset might be
@@ -321,7 +303,7 @@ driver performs device init only from PCI function 0:
Same as above.
Drivers for PCI Express cards that require a fundamental reset must
-set the needs_freset bit in the pci_dev structure in their probe function.
+set the needs_freset bit in the pci_dev structure in their probe function.
For example, the QLogic qla2xxx driver sets the needs_freset bit for certain
PCI card types:
diff --git a/Documentation/PCI/pci-iov-howto.txt b/Documentation/PCI/pci-iov-howto.txt
index 2d91ae251982..d2a84151e99c 100644
--- a/Documentation/PCI/pci-iov-howto.txt
+++ b/Documentation/PCI/pci-iov-howto.txt
@@ -68,6 +68,18 @@ To disable SR-IOV capability:
echo 0 > \
/sys/bus/pci/devices/<DOMAIN:BUS:DEVICE.FUNCTION>/sriov_numvfs
+To enable auto probing VFs by a compatible driver on the host, run
+command below before enabling SR-IOV capabilities. This is the
+default behavior.
+ echo 1 > \
+ /sys/bus/pci/devices/<DOMAIN:BUS:DEVICE.FUNCTION>/sriov_drivers_autoprobe
+
+To disable auto probing VFs by a compatible driver on the host, run
+command below before enabling SR-IOV capabilities. Updating this
+entry will not affect VFs which are already probed.
+ echo 0 > \
+ /sys/bus/pci/devices/<DOMAIN:BUS:DEVICE.FUNCTION>/sriov_drivers_autoprobe
+
3.2 Usage example
Following piece of code illustrates the usage of the SR-IOV API.
diff --git a/Documentation/PCI/pci.txt b/Documentation/PCI/pci.txt
index 123881f62219..611a75e4366e 100644
--- a/Documentation/PCI/pci.txt
+++ b/Documentation/PCI/pci.txt
@@ -124,7 +124,6 @@ initialization with a pointer to a structure describing the driver
The ID table is an array of struct pci_device_id entries ending with an
all-zero entry. Definitions with static const are generally preferred.
-Use of the deprecated macro DEFINE_PCI_DEVICE_TABLE should be avoided.
Each entry consists of:
@@ -383,18 +382,18 @@ The fundamental difference between MSI and MSI-X is how multiple
"vectors" get allocated. MSI requires contiguous blocks of vectors
while MSI-X can allocate several individual ones.
-MSI capability can be enabled by calling pci_enable_msi() or
-pci_enable_msix() before calling request_irq(). This causes
-the PCI support to program CPU vector data into the PCI device
-capability registers.
-
-If your PCI device supports both, try to enable MSI-X first.
-Only one can be enabled at a time. Many architectures, chip-sets,
-or BIOSes do NOT support MSI or MSI-X and the call to pci_enable_msi/msix
-will fail. This is important to note since many drivers have
-two (or more) interrupt handlers: one for MSI/MSI-X and another for IRQs.
-They choose which handler to register with request_irq() based on the
-return value from pci_enable_msi/msix().
+MSI capability can be enabled by calling pci_alloc_irq_vectors() with the
+PCI_IRQ_MSI and/or PCI_IRQ_MSIX flags before calling request_irq(). This
+causes the PCI support to program CPU vector data into the PCI device
+capability registers. Many architectures, chip-sets, or BIOSes do NOT
+support MSI or MSI-X and a call to pci_alloc_irq_vectors with just
+the PCI_IRQ_MSI and PCI_IRQ_MSIX flags will fail, so try to always
+specify PCI_IRQ_LEGACY as well.
+
+Drivers that have different interrupt handlers for MSI/MSI-X and
+legacy INTx should chose the right one based on the msi_enabled
+and msix_enabled flags in the pci_dev structure after calling
+pci_alloc_irq_vectors.
There are (at least) two really good reasons for using MSI:
1) MSI is an exclusive interrupt vector by definition.
diff --git a/Documentation/PCI/pcieaer-howto.txt b/Documentation/PCI/pcieaer-howto.txt
index b4987c0bcb20..acd0dddd6bb8 100644
--- a/Documentation/PCI/pcieaer-howto.txt
+++ b/Documentation/PCI/pcieaer-howto.txt
@@ -49,25 +49,17 @@ depends on CONFIG_PCIEPORTBUS, so pls. set CONFIG_PCIEPORTBUS=y and
CONFIG_PCIEAER = y.
2.2 Load PCI Express AER Root Driver
-There is a case where a system has AER support in BIOS. Enabling the AER
-Root driver and having AER support in BIOS may result unpredictable
-behavior. To avoid this conflict, a successful load of the AER Root driver
-requires ACPI _OSC support in the BIOS to allow the AER Root driver to
-request for native control of AER. See the PCI FW 3.0 Specification for
-details regarding OSC usage. Currently, lots of firmwares don't provide
-_OSC support while they use PCI Express. To support such firmwares,
-forceload, a parameter of type bool, could enable AER to continue to
-be initiated although firmwares have no _OSC support. To enable the
-walkaround, pls. add aerdriver.forceload=y to kernel boot parameter line
-when booting kernel. Note that forceload=n by default.
-
-nosourceid, another parameter of type bool, can be used when broken
-hardware (mostly chipsets) has root ports that cannot obtain the reporting
-source ID. nosourceid=n by default.
+
+Some systems have AER support in firmware. Enabling Linux AER support at
+the same time the firmware handles AER may result in unpredictable
+behavior. Therefore, Linux does not handle AER events unless the firmware
+grants AER control to the OS via the ACPI _OSC method. See the PCI FW 3.0
+Specification for details regarding _OSC usage.
2.3 AER error output
-When a PCI-E AER error is captured, an error message will be outputted to
-console. If it's a correctable error, it is outputted as a warning.
+
+When a PCIe AER error is captured, an error message will be output to
+console. If it's a correctable error, it is output as a warning.
Otherwise, it is printed as an error. So users could choose different
log level to filter out correctable error messages.
@@ -264,7 +256,7 @@ After reboot with new kernel or insert the module, a device file named
Then, you need a user space tool named aer-inject, which can be gotten
from:
- http://www.kernel.org/pub/linux/utils/pci/aer-inject/
+ https://git.kernel.org/cgit/linux/kernel/git/gong.chen/aer-inject.git/
More information about aer-inject can be found in the document comes
with its source code.