aboutsummaryrefslogtreecommitdiff
path: root/SRC/zsytrs2.f
diff options
context:
space:
mode:
Diffstat (limited to 'SRC/zsytrs2.f')
-rw-r--r--SRC/zsytrs2.f272
1 files changed, 272 insertions, 0 deletions
diff --git a/SRC/zsytrs2.f b/SRC/zsytrs2.f
new file mode 100644
index 00000000..88d54408
--- /dev/null
+++ b/SRC/zsytrs2.f
@@ -0,0 +1,272 @@
+ SUBROUTINE ZSYTRS2( UPLO, N, NRHS, A, LDA, IPIV, B, LDB,
+ $ WORK, INFO )
+*
+* -- LAPACK PROTOTYPE routine (version 3.2) --
+*
+* -- Written by Julie Langou of the Univ. of TN --
+* May 2010
+*
+* -- LAPACK is a software package provided by Univ. of Tennessee, --
+* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
+*
+* .. Scalar Arguments ..
+ CHARACTER UPLO
+ INTEGER INFO, LDA, LDB, N, NRHS
+* ..
+* .. Array Arguments ..
+ INTEGER IPIV( * )
+ DOUBLE COMPLEX A( LDA, * ), B( LDB, * ), WORK( * )
+* ..
+*
+* Purpose
+* =======
+*
+* ZSYTRS2 solves a system of linear equations A*X = B with a real
+* symmetric matrix A using the factorization A = U*D*U**T or
+* A = L*D*L**T computed by ZSYTRF and converted by ZSYCONV.
+*
+* Arguments
+* =========
+*
+* UPLO (input) CHARACTER*1
+* Specifies whether the details of the factorization are stored
+* as an upper or lower triangular matrix.
+* = 'U': Upper triangular, form is A = U*D*U**T;
+* = 'L': Lower triangular, form is A = L*D*L**T.
+*
+* N (input) INTEGER
+* The order of the matrix A. N >= 0.
+*
+* NRHS (input) INTEGER
+* The number of right hand sides, i.e., the number of columns
+* of the matrix B. NRHS >= 0.
+*
+* A (input) DOUBLE COMPLEX array, dimension (LDA,N)
+* The block diagonal matrix D and the multipliers used to
+* obtain the factor U or L as computed by ZSYTRF.
+*
+* LDA (input) INTEGER
+* The leading dimension of the array A. LDA >= max(1,N).
+*
+* IPIV (input) INTEGER array, dimension (N)
+* Details of the interchanges and the block structure of D
+* as determined by ZSYTRF.
+*
+* B (input/output) DOUBLE COMPLEX array, dimension (LDB,NRHS)
+* On entry, the right hand side matrix B.
+* On exit, the solution matrix X.
+*
+* LDB (input) INTEGER
+* The leading dimension of the array B. LDB >= max(1,N).
+*
+* WORK (workspace) REAL array, dimension (N)
+*
+* INFO (output) INTEGER
+* = 0: successful exit
+* < 0: if INFO = -i, the i-th argument had an illegal value
+*
+* =====================================================================
+*
+* .. Parameters ..
+ DOUBLE COMPLEX ONE
+ PARAMETER ( ONE = (1.0D+0,0.0D+0) )
+* ..
+* .. Local Scalars ..
+ LOGICAL UPPER
+ INTEGER I, J, K, KP
+ DOUBLE COMPLEX AK, AKM1, AKM1K, BK, BKM1, DENOM
+* ..
+* .. External Functions ..
+ LOGICAL LSAME
+ EXTERNAL LSAME
+* ..
+* .. External Subroutines ..
+ EXTERNAL ZSCAL, ZSWAP, ZTRSM, XERBLA
+* ..
+* .. Intrinsic Functions ..
+ INTRINSIC MAX
+* ..
+* .. Executable Statements ..
+*
+ INFO = 0
+ UPPER = LSAME( UPLO, 'U' )
+ IF( .NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
+ INFO = -1
+ ELSE IF( N.LT.0 ) THEN
+ INFO = -2
+ ELSE IF( NRHS.LT.0 ) THEN
+ INFO = -3
+ ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
+ INFO = -5
+ ELSE IF( LDB.LT.MAX( 1, N ) ) THEN
+ INFO = -8
+ END IF
+ IF( INFO.NE.0 ) THEN
+ CALL XERBLA( 'ZSYTRS2', -INFO )
+ RETURN
+ END IF
+*
+* Quick return if possible
+*
+ IF( N.EQ.0 .OR. NRHS.EQ.0 )
+ $ RETURN
+*
+ IF( UPPER ) THEN
+*
+* Solve A*X = B, where A = U*D*U'.
+*
+* P' * B
+ K=N
+ DO WHILE ( K .GE. 1 )
+ IF( IPIV( K ).GT.0 ) THEN
+* 1 x 1 diagonal block
+* Interchange rows K and IPIV(K).
+ KP = IPIV( K )
+ IF( KP.NE.K )
+ $ CALL ZSWAP( NRHS, B( K, 1 ), LDB, B( KP, 1 ), LDB )
+ K=K-1
+ ELSE
+* 2 x 2 diagonal block
+* Interchange rows K-1 and -IPIV(K).
+ KP = -IPIV( K )
+ IF( KP.EQ.-IPIV( K-1 ) )
+ $ CALL ZSWAP( NRHS, B( K-1, 1 ), LDB, B( KP, 1 ), LDB )
+ K=K-2
+ END IF
+ END DO
+*
+* Compute (U \P' * B) -> B [ (U \P' * B) ]
+*
+ CALL ZTRSM('L','U','N','U',N,NRHS,ONE,A,N,B,N)
+*
+* Compute D \ B -> B [ D \ (U \P' * B) ]
+*
+ I=N
+ DO WHILE ( I .GE. 1 )
+ IF( IPIV(I) .GT. 0 ) THEN
+ CALL ZSCAL( NRHS, ONE / A( I, I ), B( I, 1 ), N )
+ ELSEIF ( I .GT. 1) THEN
+ IF ( IPIV(I-1) .EQ. IPIV(I) ) THEN
+ AKM1K = WORK(I)
+ AKM1 = A( I-1, I-1 ) / AKM1K
+ AK = A( I, I ) / AKM1K
+ DENOM = AKM1*AK - ONE
+ DO 15 J = 1, NRHS
+ BKM1 = B( I-1, J ) / AKM1K
+ BK = B( I, J ) / AKM1K
+ B( I-1, J ) = ( AK*BKM1-BK ) / DENOM
+ B( I, J ) = ( AKM1*BK-BKM1 ) / DENOM
+ 15 CONTINUE
+ I = I - 1
+ ENDIF
+ ENDIF
+ I = I - 1
+ END DO
+*
+* Compute (U' \ B) -> B [ U' \ (D \ (U \P' * B) ) ]
+*
+ CALL ZTRSM('L','U','T','U',N,NRHS,ONE,A,N,B,N)
+*
+* P * B [ P * (U' \ (D \ (U \P' * B) )) ]
+*
+ K=1
+ DO WHILE ( K .LE. N )
+ IF( IPIV( K ).GT.0 ) THEN
+* 1 x 1 diagonal block
+* Interchange rows K and IPIV(K).
+ KP = IPIV( K )
+ IF( KP.NE.K )
+ $ CALL ZSWAP( NRHS, B( K, 1 ), LDB, B( KP, 1 ), LDB )
+ K=K+1
+ ELSE
+* 2 x 2 diagonal block
+* Interchange rows K-1 and -IPIV(K).
+ KP = -IPIV( K )
+ IF( K .LT. N .AND. KP.EQ.-IPIV( K+1 ) )
+ $ CALL ZSWAP( NRHS, B( K, 1 ), LDB, B( KP, 1 ), LDB )
+ K=K+2
+ ENDIF
+ END DO
+*
+ ELSE
+*
+* Solve A*X = B, where A = L*D*L'.
+*
+* P' * B
+ K=1
+ DO WHILE ( K .LE. N )
+ IF( IPIV( K ).GT.0 ) THEN
+* 1 x 1 diagonal block
+* Interchange rows K and IPIV(K).
+ KP = IPIV( K )
+ IF( KP.NE.K )
+ $ CALL ZSWAP( NRHS, B( K, 1 ), LDB, B( KP, 1 ), LDB )
+ K=K+1
+ ELSE
+* 2 x 2 diagonal block
+* Interchange rows K and -IPIV(K+1).
+ KP = -IPIV( K+1 )
+ IF( KP.EQ.-IPIV( K ) )
+ $ CALL ZSWAP( NRHS, B( K+1, 1 ), LDB, B( KP, 1 ), LDB )
+ K=K+2
+ ENDIF
+ END DO
+*
+* Compute (L \P' * B) -> B [ (L \P' * B) ]
+*
+ CALL ZTRSM('L','L','N','U',N,NRHS,ONE,A,N,B,N)
+*
+* Compute D \ B -> B [ D \ (L \P' * B) ]
+*
+ I=1
+ DO WHILE ( I .LE. N )
+ IF( IPIV(I) .GT. 0 ) THEN
+ CALL ZSCAL( NRHS, ONE / A( I, I ), B( I, 1 ), N )
+ ELSE
+ AKM1K = WORK(I)
+ AKM1 = A( I, I ) / AKM1K
+ AK = A( I+1, I+1 ) / AKM1K
+ DENOM = AKM1*AK - ONE
+ DO 25 J = 1, NRHS
+ BKM1 = B( I, J ) / AKM1K
+ BK = B( I+1, J ) / AKM1K
+ B( I, J ) = ( AK*BKM1-BK ) / DENOM
+ B( I+1, J ) = ( AKM1*BK-BKM1 ) / DENOM
+ 25 CONTINUE
+ I = I + 1
+ ENDIF
+ I = I + 1
+ END DO
+*
+* Compute (L' \ B) -> B [ L' \ (D \ (L \P' * B) ) ]
+*
+ CALL ZTRSM('L','L','T','U',N,NRHS,ONE,A,N,B,N)
+*
+* P * B [ P * (L' \ (D \ (L \P' * B) )) ]
+*
+ K=N
+ DO WHILE ( K .GE. 1 )
+ IF( IPIV( K ).GT.0 ) THEN
+* 1 x 1 diagonal block
+* Interchange rows K and IPIV(K).
+ KP = IPIV( K )
+ IF( KP.NE.K )
+ $ CALL ZSWAP( NRHS, B( K, 1 ), LDB, B( KP, 1 ), LDB )
+ K=K-1
+ ELSE
+* 2 x 2 diagonal block
+* Interchange rows K-1 and -IPIV(K).
+ KP = -IPIV( K )
+ IF( K.GT.1 .AND. KP.EQ.-IPIV( K-1 ) )
+ $ CALL ZSWAP( NRHS, B( K, 1 ), LDB, B( KP, 1 ), LDB )
+ K=K-2
+ ENDIF
+ END DO
+*
+ END IF
+*
+ RETURN
+*
+* End of ZSYTRS2
+*
+ END