

Andy Green andy.green@linaro.org V13 2012-08-27

- What it is
- Quick electronics 101 recap
- Measuring around regulators
- Wiring your board for AEP usage
- Some actual measurements
- Major sources of measurement error
- Linux Commandline tool

- What it is
- Quick electronics 101 recap
- Measuring around regulators
- Wiring your board for AEP usage
- Some actual measurements
- Major sources of measurement error
- Linux Commandline tool

Understanding what it is

• It's a 3-channel USB voltmeter, two voltages reported for each channel

Understanding what it is

- The first voltage (up to 30V) is measured between one of the sense leads and 0V
- The other is an amplified (differential)
 measurement of the voltage between the two
 sense leads, limited to 165mV
 - These amplified channels are used to measure the voltage across shunts to calculate current
 - 165mV limit affects shunt resistance selection
 - Probe unable to measure currents below a few mA

USB side

- It has a Cortex M3 LPC1343 that appears to the host PC as a ttyACM CDC serial port class device
- Linux knows what to do with it
- Linaro has a commandline tool "arm-probe" which can drive it
- Check for other things touching ttyACM0!
 - Modem-manager from NetworkManager wants to fiddle with any ttyACM device it sees
 - Software initializes tty device to correct mode

Hardware

Practical problems...

- Can only measure one channel at a time!
 - But we can capture one channel from all connected probes simultaneously
 - Max 3 captures needed for any number of channels
- Probes do not have unique USB serial #
 - Cannot reliably be identified in multi-probe setup
 - Can probably be fixed by poking firmware and reflashing by hand
 - Reflashing only possible on Windows ^^

- What it is
- Quick electronics 101 recap
- Measuring around regulators
- Wiring your board for AEP usage
- Some actual measurements
- Major sources of measurement error
- Linux Commandline tool

Voltage

 Voltage is the "potential difference" between two points, usually the power rail and a common "OV" or "ground" point, measured in Volts (V)

Load

 Load is a resistance (measured in Ohms or "R") you put between a voltage to make current flow

Current

 Current is a measure (in Ampere or A) of how much charge is moving through the circuit.

Power

- Power is the voltage multiplied by the current and is measured in Watts (W)
 - Even at low voltages a lot of power can be used if a lot of current is flowing
 - At high voltages, very little current needs to flow to use a lot of power
- Power is unique because it's the only way you can compare currents at different voltages

Some identities

- I = V / R_(load)
 - Into the same load, higher V makes more current flow
 - At the same voltage, higher load resistance makes less current flow
- P = I x V
 - Lower V or I, less power
- $P = V/R \times V = V^2/R$
 - Half voltage --> quarter power!

Power is boss

- To talk about power, talking about voltage or current alone is useless
- P = IV so we need to talk about current
 AND voltage if we talk about either
 - Eg, "it takes 50mA"... 50mA at 1.2V == 60mW,
 50mA at 5V == 250mW... which is it?
- Converting voltage and current measurements to power lets you compare measurements made at different voltages

However...

- If the voltage part of your measurement is constant, you can treat current part as a stand-in for being a scaled version of power
 - Shortcut is true if you are interested in relative changes in power local to same measured rail

- What it is
- Quick electronics 101 recap
- Measuring around regulators
- Wiring your board for AEP usage
- Some actual measurements
- Major sources of measurement error
- Linux Commandline tool

Regulator structure

 Regulators adapt a voltage source to provide a different voltage, even if the load is changing dynamically

Traditional current measurement

 Normally we would stick an ammeter in series with the load

Traditional current measurement

 Regulator cannot "see" a fast-changing load clearly and fails to regulate

 A shunt is a very small resistance (typ 33mR) placed in series with the load right on the PCB

 It introduces a very small reduction in voltage in proportion to current flowing

 The energy probe adds an amplified voltmeter to measure the tiny voltage drop across the shunt

 Because the shunt is a small resistor or metal staple, the regulator can usually "see through it"

- Some regulators are only barely stable. You can measure the input side in those cases
 - Your measurement includes regulator efficiency losses

ARM Energy Probe

- So the probe measures and reports two voltages on each channel
 - The voltage at one side of the shunt compared to 0V
 - An amplified version of the tiny voltage across the shunt

ARM Energy Probe

- If we know the shunt resistance, I = V_(shunt) / R_(shunt) tells us current flowing
 - Probe cannot deduce current without knowing R_(shunt)
- Since the probe also measures the shunt voltage compared to 0V, we can calculate power from P=IV

- What it is
- Quick electronics 101 recap
- Measuring around regulators
- Wiring your board for AEP usage
- Some actual measurements
- Major sources of measurement error
- Linux Commandline tool

Wiring the probe

 You'll need a 7-pin 0.1" header to plug the probe on so you can detach it

Wiring the probe

- Wire the green 0V lead to 0V on the PCB ideally near the regulators of interest
- Your board will work fine without the probe connected since current will flow through the shunt as usual

- Most regulators have no convenient way to place shunt in series with output
- However there is almost always a convenient series inductor at the input designed to limit EMI going back up the power supply cable...

We can replace this inductor with the shunt

- Measuring from regulator input side is fine but
 - You measure the input voltage, not the output
 - You cannot see regulator output DVFS voltage directly
 - Regulator efficiency overhead also measured
 - All real designs must include real regulators, so it's sane

Placing the shunt

 This is a metal precision shunt replacing L22 on 4460 Panda (VDDCORE)

Wiring the shunt

 Twist two thin insulated wires together to wire the two sides of the shunt to the probe connector

 Glue the header to one edge of the PCB

Probe cares about sense leads

- The white side of the sense leads needs to go on the pre-shunt side of the shunt, black to post-shunt
- It won't damage the probe to get it wrong but current readings will always be near zero

Shunt resistance selection

- Low resistance shunt is preferable to minimize regulation disruption
- Probe ADC resolution can be a problem then
 - With 33mR shunt, one ADC
 count == 4mA resolution
 - Considerable "noise" or aliasing

Arm Energy Probe Basics

- What it is
- Quick electronics 101 recap
- Measuring around regulators
- Wiring your board for AEP usage
- Some actual measurements
- Major sources of measurement error
- Linux Commandline tool

Real measurement

- 4460 Panda VDDCORE
- Input side of regulator
- 33mR and 470mR shunt
- idle at U-Boot prompt
- 600MHz dynamic load
- Corrected for slope error
- Using linux commandline

Unaveraged, 33mR shunt

Interpretation

- 33mR is too low resistance shunt for the ARM probe
- limits the ADC count for the measurement to around 5% of ADC range
 - SNR reduced drastically
- Change to a higher resistance shunt so we have a bigger voltage to measure

Same tests with 470mR shunt

• "0.5R" resistor

Unaveraged, 470mR shunt

Interpretation

- Much better SNR
- Resolution improved to 280uA / ADC step
 - For static currents, high averaging will give even more precise results

Unaveraged, 470mR Linux

16-pt mean, 470mR Linux

Interpretation

- 100us sample hides spikes
 - Short increases in current may be missed completely
 - Some rails dynamic load changes at 1GHz
 - 1 AEP sample covers 100,000 CPU clocks...
 - Any averaging makes it worse
- Rest of the graphs show power, not separate voltage and current

POWER, unaveraged, 470mR Linux

6 channel "cumulative" view

Summary

- ARM probe optimized to measure high currents
- Unable to use small value shunts well with normal currents
- Try 470mR shunt first
- Use 0.1% or 1% tolerance resistor if available

Caution

- Higher resistance shunt == more voltage drop... measured current flows through the voltage drop and P=IV for the shunt
- It has to dissipate the power as heat
- 470mR resistor used here rated 0.25W
- Only good for 0.7A at common voltages
- Higher power resistors available

Various power rating resistors

• 5W, 2W, 1W, 0.5W and 0.25W

Power dropped in shunt

Parallel up shunts to cope

- 2 x 470mR, 0.25W shunts in parallel becomes 235mR, 0.5W capable
- The voltage drop is halved and the dissipation limit doubled (resolution /2...)
- Can cope with ~1.5A at the common voltages

Power dropped in shunt

Shunt selection vs current range

- Probe can only measure up to 165mV across the shunt
- It means you have to select the shunt resistance according to the maximum current expected
- Following chart shows effect of common shunt values
 - Lower Rshunt --> high noise, low resolution

Shunts dropping max 165mV

Attaching shunt to DC jack

Cut the + conductor

Apply shunts in parallel cf power

Panda ES wired for 9 rails

Arm Energy Probe Basics

- What it is
- Quick electronics 101 recap
- Measuring around regulators
- Wiring your board for AEP usage
- Some actual measurements
- Major sources of measurement error
- Linux Commandline tool

Performance characteristics

Badly nonlinear at low cross-shunt voltages

Performance characteristics

- Raw results < 50mA (470mR shunt) poor
 - Very nonlinear, other errors mentioned next

Analysis

- Raw probe current numbers below ~50mA (470mR shunt) have significant error
 - Interpolation models and autozero mentioned next can reduce this error
- Below 2mV across shunt (~4mA with 470mR shunt) measurements unrepeatable
 - Due to shape of nonlinearity at low end, only
 4uV meas. difference between 0mA and 1mA
 - Well below noise and temperature drift floor

Autozero setup

- Short all shunt inputs with wire to 0V
- Use autozero then monitor result over time

Temperature drift vs 0A current

- +1mV offset from 10°C drop in room temp
 - == "0A" error of +2.1mA with 470mR shunt!

Temperature vs voltage

 Same problem on voltage channel, air conditioning offsets by -15%

Analysis

- Shunt measurements have > 1mV (== >2mA with 470mR) offset uncertainty due to temp
- Can combat it a bit by keeping temperature as stable as possible and measuring offset before real measurements (--autozero)
- Currents below a few mA are going to give unrepeatable results and have high error, due to probe nonlinearity, air currents, sunlight on probe etc

Common-mode voltage error

- Shunt voltage measurement has extra error from common-mode (vs 0V) voltage at 2-3V
 - Equivalent to 3.2mA error with 470mR shunt

Correction model

- Software has table of "actual vs measured" cross-shunt voltages at different commonmode voltages
 - This calibrates against all the common-mode anomalies and nonlinearities
 - Common-mode related error is actually critical
- Checks table to find nearest known measurements either side of current measurement and interpolates

Ch2 Correction offsets (0-165mV)

Shunt voltage entire correction matrix for Ch2

Correction offset map (0-15mV)

Actual transfer functions (0-7.5mV)

Actual transfer functions (0-7.5mV)

Actual transfer functions (0-7.5mV)

Correction model

- Software can also measure channels when shorted to OV, and store these autozero offsets and noise estimates for voltage and current measurements per channel stored in config file
 - Perform autozero with sense leads shorted to 0V before doing measurement series
 - Try to keep temperature stable during measurements

Correction Effectiveness (ch1)

- No data to repair at < 2mV across shunt
 - Uncorrected slope too flat near 0V to measure

Correction Effectiveness (ch1)

- At >2mV across shunt, correction effective
 - Flat nonlinearity exists only near 0V

Low current measurements

- Probe (ch1) unable to measure < 2mV across the shunt (<4mA @ 470mR shunt)
- 4uV measured difference in shunt voltage between 0mA and 1mA load with 470mR shunt (should be 470uV per mA)
 - Problem caused by flat, nonlinear response near 0V shunt voltage
 - 10°C temp change causes >1000uV drift by comparison, 4uV is lost in 0V offset drift

Low current measurements

- Increasing shunt value helps a bit
 - With 1R shunt, > 2mA OK, limited to 165mA; 2R shunt down to 1mA OK, limited to 82mA
 - High value shunts may cause difficulties at input side of switching regulators
 - Try adding 10uF+ ceramic cap after shunt if so
- Hard to get good numbers for suspend on normally high-current (low Rshunt) rails
 - Conflicting requirements on Rshunt selection

Correction Effectiveness

- Linearity and accuracy improve at higher shunt voltages up to 165mV maximum
 - Graph hides the mess down near 0 ☺

Differences between channels

Uncorrected (except zero offset)
measurement on 12 channels of 4 probes
for same 3.829mV shunt voltage (red line)

Differences between channels

- 1.8mV spread of results for same 3.8mV measurement, just by using different channels... >47% error...
- Common-mode voltage detection was fine with spread of only 105mV (2%) for 5.0V measurement over 12 channels, just differential shunt voltage measurement affected

Differences between channels

Spread at higher shunt voltage (41.05mV red line) narrows, worst error -5%

Channel correlation correction

- Detailed correction maps taken from channels 1 – 3 stored in software
- Channel config contains % uncorrected error at 3.8mV shunt voltage
 - User needs to measure it on each channel
- Software selects "nearest" correction map from ch1 (-14.5%), ch2 (-45%) or ch3 (-27.5%) for each channel.

Channel correlation correction effectiveness

- Selected ch1-3 detailed correction maps
 - Error less than -13%/+9% at 3.8mV

Channel correlation correction effectiveness

- Selected ch1-3 detailed correction maps
 - Error less than +/- 1.2% at 41mV

Cross-channel calibration procedure

- For each channel, Autozero then
 - Use 470mR shunt in series with ~500R load (not mR!), and apply 5V: ~3.8mV should appear across the shunt
 - Measure the shunt voltage with a multimeter if possible to make error calculation more accurate
 - Measure channel using -r (raw) and note uncorrected shunt voltage measured
 - Add % error from real shunt voltage to config
 - If measurement is lower, use negative number

Shunt tolerance error

- All errors mentioned independent of shunt
- Also actual shunt resistance is not known precisely
 - Typically +/- 1% or 5% at room temp
 - Also varies with temperature
 - At high currents, may self-heat
 - Not typically a problem with our situation
 - Error here directly affects current and power calculations

Summary

- Autozero before measurements
- Keep temperature stable
- Don't believe current measurements below a few mA, they are likely bogus
- Correction deals with most internal error sources, inter-channel correlation needs measurement and entry in config file
- Treat current measurements as +/- 10%

Arm Energy Probe Basics

- What it is
- Quick electronics 101 recap
- Measuring around regulators
- Wiring your board for AEP usage
- Some actual measurements
- Major sources of measurement error
- Linux Commandline tool

Linux arm-probe commandline tool

- Scripting and gnuplot-friendly
- Output on stdout (info on stderr)
 - Gnuplot style ascii floating point
 - Sample# volts amps watts (default) or
 - Sample# watts (--justpower/-j)
- If previous output piped into stdin, adds column
 - Friendly for combining multiple runs
 - Sample# watts1 watts2

Config file

- By default, ./config, # for comments
- First non-comment line is name for setup the config represents, eg, PandaES-B1-ANDY
- Then device path like /dev/ttyACM0
 - Followed by 3 x channel setups indented by space
 - <space> <channel name> <Rshunt> <Vslope> <Voffset for current> <fixed pretrigger> <"pretty name">

Config file

- Example config file
 - PandaBoardES-B1-ANDY
 - /dev/ttyACM0

```
    VDD VCORE1 0.470 1 -0.000253 0 VCORE1/MPU
```

```
    VDD_VCORE2 0.470 1 -0.000262 0 VCORE2/IVA\\_AUDIO
```

- VDD VCORE3 0.470 1 -0.000304 0 VCORE3/CORE
- Space indent at start of channel lines is critical!
- Can define multiple probes in one config

Channel Autozero

- --autozero / -z takes 5s average on selected channel and writes the voltage and current seen into config for that channel
 - arm-probe -c VDD_VCORE1 -z
- During this, short both channel sense lines to 0V line so you are measuring 0V, 0A offset
 - Unfortunately the offset varies by channel and temperature...

Auto zero tracking

- --autozero / -z also estimates voltage noise
- During normal captures, after applying the zero offset correction, if samples below 0 are seen, it may adapt the offset
 - If the negative sample is outside the noise range
 - If we have been sampling for a little while
 - Zero level offset changed by 10% of the deltas
 - Cannot do same trick for offset decreases

Channel names

- Select the channel you will capture using the channel name from the first config column
 - --channel / -c <channel name>
 - If you have multiple probes, will find the correct probe according to /dev/ttyACM section in config
 - Take care to connect probes to USB in same order
 - "Pretty name" is used for channel in output
 - Gnuplot needs '_' to be '_' in pretty name

Channel names

- You can give -c multiple times
- You can simultaneously capture from one channel per probe
 - No matter how many probes you use, and how many channels, you can capture all channels in no more than 3 runs

Trigger threshold and filtering

- Specify "trigger" threshold in mV or mW
 - In volts (--mvtrigger / -q <mV>), and / or
 - In power (--mwtrigger / -w <mW>)
 - Default, 400mV, 0mW
- Specify how long trigger must remain true to be accepted (--ustrigfilter / -f <us>)
 - Default, 400us (four samples)
 - 200mV / mW hysteresis applied

Pretrigger

- Until trigger conditions seen, probe in "pretrigger" state
 - Nothing on stdout
 - Displays live volts / amps / watts on stderr
- Can capture to pretrigger buffer so you can see what led up to trigger event
 - (--mspretrigger / -p <ms to capture>)
 - Pretrigger buffer flushed on stdout first

Trigger holdoff

- Amount of time to wait after trigger event seen before actually triggering
 - --mstrighold / -t <ms>
 - Default 0ms
 - Allows you to target events that occur a fixed period after, eg, power-on, without capturing everything before

Capture length and autoexit

- Can define how long to capture data
 - --mslength / -l <ms> (default: no limit)
 - Needed when combining captures on stdin
 - --exitoncap / -x exits the program when this capture limit is reached
 - --offexit / -o waits for trigger conditions to be false before exiting the program
 - Perfect to sync multiple scripted captures so next capture can trigger at power-on

Averaging

- Can apply mean averaging
 - --mean / -m <samples> (default: none)
 - Use with a large mean buffer to get single figure results instead of graph data
 - Ten samples per ms, so -m 50000 -l 5000 gives perfectly mean-averaged 5s capture
 - Set your device to loop performing use-case
 - Choose a capture interval several times one loop period for best accuracy

Averaging

- Append a simple average to results
 - --average / -a <secs (float)> (default: none)
 - This is separate from the mean averaging
 - Even if you are not averaging the actual results, you can use this to get two extra results added at the end
 - These start from the time given (eg, 5.2) in seconds, which should be at or after the end of samples
 - With gnuplot, provides averaged "bars" on right

Decimation

- Reduces output to once per n samples
 - --decimate / -d <samples> (default: 1)
 - Allows long period monitoring of rails without being overwhelmed by data
 - Can be combined with mean averaging, eg -m
 50000 -d 50000 issues one new fully averaged sample every five seconds
 - Sample# in output still counts real input samples, so you can follow real time

Multicapture helper scripts

- Two common multichannel capture cases supported by scripts
 - aep-capture.sh capturing on all channels during or after boot for fixed period
 - Manages observing power cycling of target for each channel and synchronzing captures
 - aep-zero.sh autozeros every channel
 - Assumes no current across shunt and no voltage compared to 0V, eg, all short to 0V

Gnuplot scripts

- Gnuplot scripts will need customizing for your setup but have the basics
 - aeplot-average -
 - (continued next time...)

