aboutsummaryrefslogtreecommitdiff
path: root/ELF/Writer.cpp
blob: 0105991f8fe453d89194c8f4ca1a2b90d19b2b37 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
//===- Writer.cpp ---------------------------------------------------------===//
//
//                             The LLVM Linker
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//

#include "Writer.h"
#include "Config.h"
#include "LinkerScript.h"
#include "OutputSections.h"
#include "SymbolTable.h"
#include "Target.h"

#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/ADT/StringMap.h"
#include "llvm/ADT/StringSwitch.h"
#include "llvm/Support/Endian.h"
#include "llvm/Support/FileOutputBuffer.h"
#include "llvm/Support/StringSaver.h"
#include "llvm/Support/raw_ostream.h"

using namespace llvm;
using namespace llvm::ELF;
using namespace llvm::object;
using namespace llvm::support::endian;

using namespace lld;
using namespace lld::elf;

namespace {
// The writer writes a SymbolTable result to a file.
template <class ELFT> class Writer {
public:
  typedef typename ELFT::uint uintX_t;
  typedef typename ELFT::Shdr Elf_Shdr;
  typedef typename ELFT::Ehdr Elf_Ehdr;
  typedef typename ELFT::Phdr Elf_Phdr;
  typedef typename ELFT::Sym Elf_Sym;
  typedef typename ELFT::SymRange Elf_Sym_Range;
  typedef typename ELFT::Rela Elf_Rela;
  Writer(SymbolTable<ELFT> &S) : Symtab(S) {}
  void run();

private:
  // This describes a program header entry.
  // Each contains type, access flags and range of output sections that will be
  // placed in it.
  struct Phdr {
    Phdr(unsigned Type, unsigned Flags) {
      H.p_type = Type;
      H.p_flags = Flags;
    }
    Elf_Phdr H = {};
    OutputSectionBase<ELFT> *First = nullptr;
    OutputSectionBase<ELFT> *Last = nullptr;
  };

  void copyLocalSymbols();
  void addReservedSymbols();
  void createSections();
  void addPredefinedSections();
  bool needsGot();

  template <class RelTy>
  void scanRelocs(InputSectionBase<ELFT> &C, ArrayRef<RelTy> Rels);

  void scanRelocs(InputSection<ELFT> &C);
  void scanRelocs(InputSectionBase<ELFT> &S, const Elf_Shdr &RelSec);
  RelExpr adjustExpr(const elf::ObjectFile<ELFT> &File, SymbolBody &S,
                     bool IsWrite, RelExpr Expr, uint32_t Type);
  template <class RelTy>
  uintX_t computeAddend(const elf::ObjectFile<ELFT> &File,
                        const uint8_t *SectionData, const RelTy *End,
                        const RelTy &RI, RelExpr Expr, SymbolBody &Body);
  void createPhdrs();
  void assignAddresses();
  void assignFileOffsets();
  void setPhdrs();
  void fixHeaders();
  void fixSectionAlignments();
  void fixAbsoluteSymbols();
  void openFile();
  void writeHeader();
  void writeSections();
  void writeBuildId();
  bool isDiscarded(InputSectionBase<ELFT> *IS) const;
  StringRef getOutputSectionName(InputSectionBase<ELFT> *S) const;
  bool needsInterpSection() const {
    return !Symtab.getSharedFiles().empty() && !Config->DynamicLinker.empty();
  }
  bool isOutputDynamic() const {
    return !Symtab.getSharedFiles().empty() || Config->Pic;
  }
  template <class RelTy>
  void scanRelocsForThunks(const elf::ObjectFile<ELFT> &File,
                           ArrayRef<RelTy> Rels);

  void ensureBss();
  void addCommonSymbols(std::vector<DefinedCommon *> &Syms);
  void addCopyRelSymbol(SharedSymbol<ELFT> *Sym);

  std::unique_ptr<llvm::FileOutputBuffer> Buffer;

  BumpPtrAllocator Alloc;
  std::vector<OutputSectionBase<ELFT> *> OutputSections;
  std::vector<std::unique_ptr<OutputSectionBase<ELFT>>> OwningSections;

  void addRelIpltSymbols();
  void addStartEndSymbols();
  void addStartStopSymbols(OutputSectionBase<ELFT> *Sec);

  SymbolTable<ELFT> &Symtab;
  std::vector<Phdr> Phdrs;

  uintX_t FileSize;
  uintX_t SectionHeaderOff;

  // Flag to force GOT to be in output if we have relocations
  // that relies on its address.
  bool HasGotOffRel = false;
};
} // anonymous namespace

template <class ELFT> void elf::writeResult(SymbolTable<ELFT> *Symtab) {
  typedef typename ELFT::uint uintX_t;
  typedef typename ELFT::Ehdr Elf_Ehdr;

  // Create singleton output sections.
  DynamicSection<ELFT> Dynamic(*Symtab);
  EhFrameHeader<ELFT> EhFrameHdr;
  GotSection<ELFT> Got;
  InterpSection<ELFT> Interp;
  PltSection<ELFT> Plt;
  RelocationSection<ELFT> RelaDyn(Config->Rela ? ".rela.dyn" : ".rel.dyn",
                                  Config->ZCombreloc);
  StringTableSection<ELFT> DynStrTab(".dynstr", true);
  StringTableSection<ELFT> ShStrTab(".shstrtab", false);
  SymbolTableSection<ELFT> DynSymTab(*Symtab, DynStrTab);
  VersionTableSection<ELFT> VerSym;
  VersionNeedSection<ELFT> VerNeed;

  OutputSectionBase<ELFT> ElfHeader("", 0, SHF_ALLOC);
  ElfHeader.setSize(sizeof(Elf_Ehdr));
  OutputSectionBase<ELFT> ProgramHeaders("", 0, SHF_ALLOC);
  ProgramHeaders.updateAlign(sizeof(uintX_t));

  // Instantiate optional output sections if they are needed.
  std::unique_ptr<BuildIdSection<ELFT>> BuildId;
  std::unique_ptr<GnuHashTableSection<ELFT>> GnuHashTab;
  std::unique_ptr<GotPltSection<ELFT>> GotPlt;
  std::unique_ptr<HashTableSection<ELFT>> HashTab;
  std::unique_ptr<RelocationSection<ELFT>> RelaPlt;
  std::unique_ptr<StringTableSection<ELFT>> StrTab;
  std::unique_ptr<SymbolTableSection<ELFT>> SymTabSec;
  std::unique_ptr<OutputSection<ELFT>> MipsRldMap;

  if (Config->BuildId == BuildIdKind::Fnv1)
    BuildId.reset(new BuildIdFnv1<ELFT>);
  else if (Config->BuildId == BuildIdKind::Md5)
    BuildId.reset(new BuildIdMd5<ELFT>);
  else if (Config->BuildId == BuildIdKind::Sha1)
    BuildId.reset(new BuildIdSha1<ELFT>);
  else if (Config->BuildId == BuildIdKind::Hexstring)
    BuildId.reset(new BuildIdHexstring<ELFT>);

  if (Config->GnuHash)
    GnuHashTab.reset(new GnuHashTableSection<ELFT>);
  if (Config->SysvHash)
    HashTab.reset(new HashTableSection<ELFT>);
  StringRef S = Config->Rela ? ".rela.plt" : ".rel.plt";
  GotPlt.reset(new GotPltSection<ELFT>);
  RelaPlt.reset(new RelocationSection<ELFT>(S, false /*Sort*/));
  if (!Config->StripAll) {
    StrTab.reset(new StringTableSection<ELFT>(".strtab", false));
    SymTabSec.reset(new SymbolTableSection<ELFT>(*Symtab, *StrTab));
  }
  if (Config->EMachine == EM_MIPS && !Config->Shared) {
    // This is a MIPS specific section to hold a space within the data segment
    // of executable file which is pointed to by the DT_MIPS_RLD_MAP entry.
    // See "Dynamic section" in Chapter 5 in the following document:
    // ftp://www.linux-mips.org/pub/linux/mips/doc/ABI/mipsabi.pdf
    MipsRldMap.reset(new OutputSection<ELFT>(".rld_map", SHT_PROGBITS,
                                             SHF_ALLOC | SHF_WRITE));
    MipsRldMap->setSize(sizeof(uintX_t));
    MipsRldMap->updateAlign(sizeof(uintX_t));
  }

  Out<ELFT>::BuildId = BuildId.get();
  Out<ELFT>::DynStrTab = &DynStrTab;
  Out<ELFT>::DynSymTab = &DynSymTab;
  Out<ELFT>::Dynamic = &Dynamic;
  Out<ELFT>::EhFrameHdr = &EhFrameHdr;
  Out<ELFT>::GnuHashTab = GnuHashTab.get();
  Out<ELFT>::Got = &Got;
  Out<ELFT>::GotPlt = GotPlt.get();
  Out<ELFT>::HashTab = HashTab.get();
  Out<ELFT>::Interp = &Interp;
  Out<ELFT>::Plt = &Plt;
  Out<ELFT>::RelaDyn = &RelaDyn;
  Out<ELFT>::RelaPlt = RelaPlt.get();
  Out<ELFT>::ShStrTab = &ShStrTab;
  Out<ELFT>::StrTab = StrTab.get();
  Out<ELFT>::SymTab = SymTabSec.get();
  Out<ELFT>::VerSym = &VerSym;
  Out<ELFT>::VerNeed = &VerNeed;
  Out<ELFT>::Bss = nullptr;
  Out<ELFT>::MipsRldMap = MipsRldMap.get();
  Out<ELFT>::Opd = nullptr;
  Out<ELFT>::OpdBuf = nullptr;
  Out<ELFT>::TlsPhdr = nullptr;
  Out<ELFT>::ElfHeader = &ElfHeader;
  Out<ELFT>::ProgramHeaders = &ProgramHeaders;

  Writer<ELFT>(*Symtab).run();
}

// The main function of the writer.
template <class ELFT> void Writer<ELFT>::run() {
  if (!Config->DiscardAll)
    copyLocalSymbols();
  addReservedSymbols();
  createSections();
  if (HasError)
    return;

  if (Config->Relocatable) {
    assignFileOffsets();
  } else {
    createPhdrs();
    fixHeaders();
    if (ScriptConfig->DoLayout) {
      Script<ELFT>::X->assignAddresses(OutputSections);
    } else {
      fixSectionAlignments();
      assignAddresses();
    }
    assignFileOffsets();
    setPhdrs();
    fixAbsoluteSymbols();
  }

  openFile();
  if (HasError)
    return;
  writeHeader();
  writeSections();
  writeBuildId();
  if (HasError)
    return;
  check(Buffer->commit());
}

namespace {
template <bool Is64Bits> struct SectionKey {
  typedef typename std::conditional<Is64Bits, uint64_t, uint32_t>::type uintX_t;
  StringRef Name;
  uint32_t Type;
  uintX_t Flags;
  uintX_t Alignment;
};
}
namespace llvm {
template <bool Is64Bits> struct DenseMapInfo<SectionKey<Is64Bits>> {
  static SectionKey<Is64Bits> getEmptyKey() {
    return SectionKey<Is64Bits>{DenseMapInfo<StringRef>::getEmptyKey(), 0, 0,
                                0};
  }
  static SectionKey<Is64Bits> getTombstoneKey() {
    return SectionKey<Is64Bits>{DenseMapInfo<StringRef>::getTombstoneKey(), 0,
                                0, 0};
  }
  static unsigned getHashValue(const SectionKey<Is64Bits> &Val) {
    return hash_combine(Val.Name, Val.Type, Val.Flags, Val.Alignment);
  }
  static bool isEqual(const SectionKey<Is64Bits> &LHS,
                      const SectionKey<Is64Bits> &RHS) {
    return DenseMapInfo<StringRef>::isEqual(LHS.Name, RHS.Name) &&
           LHS.Type == RHS.Type && LHS.Flags == RHS.Flags &&
           LHS.Alignment == RHS.Alignment;
  }
};
}

// Returns the number of relocations processed.
template <class ELFT>
static unsigned handleTlsRelocation(uint32_t Type, SymbolBody &Body,
                                    InputSectionBase<ELFT> &C,
                                    typename ELFT::uint Offset,
                                    typename ELFT::uint Addend, RelExpr Expr) {
  if (!(C.getSectionHdr()->sh_flags & SHF_ALLOC))
    return 0;

  if (!Body.isTls())
    return 0;

  typedef typename ELFT::uint uintX_t;
  if (Expr == R_TLSLD_PC || Expr == R_TLSLD) {
    // Local-Dynamic relocs can be relaxed to Local-Exec.
    if (!Config->Shared) {
      C.Relocations.push_back(
          {R_RELAX_TLS_LD_TO_LE, Type, Offset, Addend, &Body});
      return 2;
    }
    if (Out<ELFT>::Got->addTlsIndex())
      Out<ELFT>::RelaDyn->addReloc({Target->TlsModuleIndexRel, Out<ELFT>::Got,
                                    Out<ELFT>::Got->getTlsIndexOff(), false,
                                    nullptr, 0});
    C.Relocations.push_back({Expr, Type, Offset, Addend, &Body});
    return 1;
  }

  // Local-Dynamic relocs can be relaxed to Local-Exec.
  if (Target->isTlsLocalDynamicRel(Type) && !Config->Shared) {
    C.Relocations.push_back(
        {R_RELAX_TLS_LD_TO_LE, Type, Offset, Addend, &Body});
    return 1;
  }

  if (Target->isTlsGlobalDynamicRel(Type)) {
    if (Config->Shared) {
      if (Out<ELFT>::Got->addDynTlsEntry(Body)) {
        uintX_t Off = Out<ELFT>::Got->getGlobalDynOffset(Body);
        Out<ELFT>::RelaDyn->addReloc(
            {Target->TlsModuleIndexRel, Out<ELFT>::Got, Off, false, &Body, 0});
        Out<ELFT>::RelaDyn->addReloc({Target->TlsOffsetRel, Out<ELFT>::Got,
                                      Off + (uintX_t)sizeof(uintX_t), false,
                                      &Body, 0});
      }
      C.Relocations.push_back({Expr, Type, Offset, Addend, &Body});
      return 1;
    }

    // Global-Dynamic relocs can be relaxed to Initial-Exec or Local-Exec
    // depending on the symbol being locally defined or not.
    if (Body.isPreemptible()) {
      C.Relocations.push_back(
          {R_RELAX_TLS_GD_TO_IE, Type, Offset, Addend, &Body});
      if (!Body.isInGot()) {
        Out<ELFT>::Got->addEntry(Body);
        Out<ELFT>::RelaDyn->addReloc({Target->TlsGotRel, Out<ELFT>::Got,
                                      Body.getGotOffset<ELFT>(), false, &Body,
                                      0});
      }
      return 2;
    }
    C.Relocations.push_back(
        {R_RELAX_TLS_GD_TO_LE, Type, Offset, Addend, &Body});
    return Target->TlsGdToLeSkip;
  }

  // Initial-Exec relocs can be relaxed to Local-Exec if the symbol is locally
  // defined.
  if (Target->isTlsInitialExecRel(Type) && !Config->Shared &&
      !Body.isPreemptible()) {
    C.Relocations.push_back(
        {R_RELAX_TLS_IE_TO_LE, Type, Offset, Addend, &Body});
    return 1;
  }
  return 0;
}

// Some targets might require creation of thunks for relocations. Now we
// support only MIPS which requires LA25 thunk to call PIC code from non-PIC
// one. Scan relocations to find each one requires thunk.
template <class ELFT>
template <class RelTy>
void Writer<ELFT>::scanRelocsForThunks(const elf::ObjectFile<ELFT> &File,
                                       ArrayRef<RelTy> Rels) {
  for (const RelTy &RI : Rels) {
    uint32_t Type = RI.getType(Config->Mips64EL);
    SymbolBody &Body = File.getRelocTargetSym(RI);
    if (Body.hasThunk() || !Target->needsThunk(Type, File, Body))
      continue;
    auto *D = cast<DefinedRegular<ELFT>>(&Body);
    auto *S = cast<InputSection<ELFT>>(D->Section);
    S->addThunk(Body);
  }
}

template <endianness E> static int16_t readSignedLo16(const uint8_t *Loc) {
  return read32<E>(Loc) & 0xffff;
}

template <class RelTy>
static uint32_t getMipsPairType(const RelTy *Rel, const SymbolBody &Sym) {
  switch (Rel->getType(Config->Mips64EL)) {
  case R_MIPS_HI16:
    return R_MIPS_LO16;
  case R_MIPS_GOT16:
    return Sym.isLocal() ? R_MIPS_LO16 : R_MIPS_NONE;
  case R_MIPS_PCHI16:
    return R_MIPS_PCLO16;
  case R_MICROMIPS_HI16:
    return R_MICROMIPS_LO16;
  default:
    return R_MIPS_NONE;
  }
}

template <class ELFT, class RelTy>
static int32_t findMipsPairedAddend(const uint8_t *Buf, const uint8_t *BufLoc,
                                    SymbolBody &Sym, const RelTy *Rel,
                                    const RelTy *End) {
  uint32_t SymIndex = Rel->getSymbol(Config->Mips64EL);
  uint32_t Type = getMipsPairType(Rel, Sym);

  // Some MIPS relocations use addend calculated from addend of the relocation
  // itself and addend of paired relocation. ABI requires to compute such
  // combined addend in case of REL relocation record format only.
  // See p. 4-17 at ftp://www.linux-mips.org/pub/linux/mips/doc/ABI/mipsabi.pdf
  if (RelTy::IsRela || Type == R_MIPS_NONE)
    return 0;

  for (const RelTy *RI = Rel; RI != End; ++RI) {
    if (RI->getType(Config->Mips64EL) != Type)
      continue;
    if (RI->getSymbol(Config->Mips64EL) != SymIndex)
      continue;
    const endianness E = ELFT::TargetEndianness;
    return ((read32<E>(BufLoc) & 0xffff) << 16) +
           readSignedLo16<E>(Buf + RI->r_offset);
  }
  unsigned OldType = Rel->getType(Config->Mips64EL);
  StringRef OldName = getELFRelocationTypeName(Config->EMachine, OldType);
  StringRef NewName = getELFRelocationTypeName(Config->EMachine, Type);
  warning("can't find matching " + NewName + " relocation for " + OldName);
  return 0;
}

// True if non-preemptable symbol always has the same value regardless of where
// the DSO is loaded.
template <class ELFT> static bool isAbsolute(const SymbolBody &Body) {
  if (Body.isUndefined())
    return !Body.isLocal() && Body.symbol()->isWeak();
  if (const auto *DR = dyn_cast<DefinedRegular<ELFT>>(&Body))
    return DR->Section == nullptr; // Absolute symbol.
  return false;
}

static bool needsPlt(RelExpr Expr) {
  return Expr == R_PLT_PC || Expr == R_PPC_PLT_OPD || Expr == R_PLT;
}

// True if this expression is of the form Sym - X, where X is a position in the
// file (PC, or GOT for example).
static bool isRelExpr(RelExpr Expr) {
  return Expr == R_PC || Expr == R_GOTREL || Expr == R_PAGE_PC;
}

template <class ELFT>
static bool isStaticLinkTimeConstant(RelExpr E, uint32_t Type,
                                     const SymbolBody &Body) {
  // These expressions always compute a constant
  if (E == R_SIZE || E == R_GOT_FROM_END || E == R_GOT_OFF ||
      E == R_MIPS_GOT_LOCAL || E == R_MIPS_GOT_LOCAL_PAGE ||
      E == R_GOT_PAGE_PC || E == R_GOT_PC || E == R_PLT_PC || E == R_TLSGD_PC ||
      E == R_TLSGD || E == R_PPC_PLT_OPD)
    return true;

  // These never do, except if the entire file is position dependent or if
  // only the low bits are used.
  if (E == R_GOT || E == R_PLT)
    return Target->usesOnlyLowPageBits(Type) || !Config->Pic;

  if (Body.isPreemptible())
    return false;

  if (!Config->Pic)
    return true;

  bool AbsVal = isAbsolute<ELFT>(Body) || Body.isTls();
  bool RelE = isRelExpr(E);
  if (AbsVal && !RelE)
    return true;
  if (!AbsVal && RelE)
    return true;

  // Relative relocation to an absolute value. This is normally unrepresentable,
  // but if the relocation refers to a weak undefined symbol, we allow it to
  // resolve to the image base. This is a little strange, but it allows us to
  // link function calls to such symbols. Normally such a call will be guarded
  // with a comparison, which will load a zero from the GOT.
  if (AbsVal && RelE) {
    if (Body.isUndefined() && !Body.isLocal() && Body.symbol()->isWeak())
      return true;
    StringRef S = getELFRelocationTypeName(Config->EMachine, Type);
    error("relocation " + S + " cannot refer to absolute symbol " +
          Body.getName());
    return true;
  }

  return Target->usesOnlyLowPageBits(Type);
}

static RelExpr toPlt(RelExpr Expr) {
  if (Expr == R_PPC_OPD)
    return R_PPC_PLT_OPD;
  if (Expr == R_PC)
    return R_PLT_PC;
  if (Expr == R_ABS)
    return R_PLT;
  return Expr;
}

static RelExpr fromPlt(RelExpr Expr) {
  // We decided not to use a plt. Optimize a reference to the plt to a
  // reference to the symbol itself.
  if (Expr == R_PLT_PC)
    return R_PC;
  if (Expr == R_PPC_PLT_OPD)
    return R_PPC_OPD;
  if (Expr == R_PLT)
    return R_ABS;
  return Expr;
}

template <class ELFT>
RelExpr Writer<ELFT>::adjustExpr(const elf::ObjectFile<ELFT> &File,
                                 SymbolBody &Body, bool IsWrite, RelExpr Expr,
                                 uint32_t Type) {
  if (Target->needsThunk(Type, File, Body))
    return R_THUNK;
  bool Preemptible = Body.isPreemptible();
  if (Body.isGnuIFunc())
    Expr = toPlt(Expr);
  else if (needsPlt(Expr) && !Preemptible)
    Expr = fromPlt(Expr);

  if (IsWrite || isStaticLinkTimeConstant<ELFT>(Expr, Type, Body))
    return Expr;

  // This relocation would require the dynamic linker to write a value to read
  // only memory. We can hack around it if we are producing an executable and
  // the refered symbol can be preemepted to refer to the executable.
  if (Config->Shared || (Config->Pic && !isRelExpr(Expr))) {
    StringRef S = getELFRelocationTypeName(Config->EMachine, Type);
    error("relocation " + S + " cannot be used when making a shared "
                              "object; recompile with -fPIC.");
    return Expr;
  }
  if (Body.getVisibility() != STV_DEFAULT) {
    error("Cannot preempt symbol");
    return Expr;
  }
  if (Body.isObject()) {
    // Produce a copy relocation.
    auto *B = cast<SharedSymbol<ELFT>>(&Body);
    if (!B->needsCopy())
      addCopyRelSymbol(B);
    return Expr;
  }
  if (Body.isFunc()) {
    // This handles a non PIC program call to function in a shared library. In
    // an ideal world, we could just report an error saying the relocation can
    // overflow at runtime. In the real world with glibc, crt1.o has a
    // R_X86_64_PC32 pointing to libc.so.
    //
    // The general idea on how to handle such cases is to create a PLT entry and
    // use that as the function value.
    //
    // For the static linking part, we just return a plt expr and everything
    // else will use the the PLT entry as the address.
    //
    // The remaining problem is making sure pointer equality still works. We
    // need the help of the dynamic linker for that. We let it know that we have
    // a direct reference to a so symbol by creating an undefined symbol with a
    // non zero st_value. Seeing that, the dynamic linker resolves the symbol to
    // the value of the symbol we created. This is true even for got entries, so
    // pointer equality is maintained. To avoid an infinite loop, the only entry
    // that points to the real function is a dedicated got entry used by the
    // plt. That is identified by special relocation types (R_X86_64_JUMP_SLOT,
    // R_386_JMP_SLOT, etc).
    Body.NeedsCopyOrPltAddr = true;
    return toPlt(Expr);
  }
  error("Symbol is missing type");

  return Expr;
}

template <class ELFT>
template <class RelTy>
typename ELFT::uint
Writer<ELFT>::computeAddend(const elf::ObjectFile<ELFT> &File,
                            const uint8_t *SectionData, const RelTy *End,
                            const RelTy &RI, RelExpr Expr, SymbolBody &Body) {
  uint32_t Type = RI.getType(Config->Mips64EL);
  uintX_t Addend = getAddend<ELFT>(RI);
  const uint8_t *BufLoc = SectionData + RI.r_offset;
  if (!RelTy::IsRela)
    Addend += Target->getImplicitAddend(BufLoc, Type);
  if (Config->EMachine == EM_MIPS) {
    Addend += findMipsPairedAddend<ELFT>(SectionData, BufLoc, Body, &RI, End);
    if (Type == R_MIPS_LO16 && Expr == R_PC)
      // R_MIPS_LO16 expression has R_PC type iif the target is _gp_disp
      // symbol. In that case we should use the following formula for
      // calculation "AHL + GP - P + 4". Let's add 4 right here.
      // For details see p. 4-19 at
      // ftp://www.linux-mips.org/pub/linux/mips/doc/ABI/mipsabi.pdf
      Addend += 4;
    if (Expr == R_GOT_OFF)
      Addend -= MipsGPOffset;
    if (Expr == R_GOTREL) {
      Addend -= MipsGPOffset;
      if (Body.isLocal())
        Addend += File.getMipsGp0();
    }
  }
  if (Config->Pic && Config->EMachine == EM_PPC64 && Type == R_PPC64_TOC)
    Addend += getPPC64TocBase();
  return Addend;
}

// The reason we have to do this early scan is as follows
// * To mmap the output file, we need to know the size
// * For that, we need to know how many dynamic relocs we will have.
// It might be possible to avoid this by outputting the file with write:
// * Write the allocated output sections, computing addresses.
// * Apply relocations, recording which ones require a dynamic reloc.
// * Write the dynamic relocations.
// * Write the rest of the file.
// This would have some drawbacks. For example, we would only know if .rela.dyn
// is needed after applying relocations. If it is, it will go after rw and rx
// sections. Given that it is ro, we will need an extra PT_LOAD. This
// complicates things for the dynamic linker and means we would have to reserve
// space for the extra PT_LOAD even if we end up not using it.
template <class ELFT>
template <class RelTy>
void Writer<ELFT>::scanRelocs(InputSectionBase<ELFT> &C, ArrayRef<RelTy> Rels) {
  uintX_t Flags = C.getSectionHdr()->sh_flags;
  bool IsWrite = Flags & SHF_WRITE;

  auto AddDyn = [=](const DynamicReloc<ELFT> &Reloc) {
    Out<ELFT>::RelaDyn->addReloc(Reloc);
  };

  const elf::ObjectFile<ELFT> &File = *C.getFile();
  ArrayRef<uint8_t> SectionData = C.getSectionData();
  const uint8_t *Buf = SectionData.begin();
  for (auto I = Rels.begin(), E = Rels.end(); I != E; ++I) {
    const RelTy &RI = *I;
    SymbolBody &Body = File.getRelocTargetSym(RI);
    uint32_t Type = RI.getType(Config->Mips64EL);

    RelExpr Expr = Target->getRelExpr(Type, Body);
    // Ignore "hint" relocation because it is for optional code optimization.
    if (Expr == R_HINT)
      continue;

    uintX_t Offset = C.getOffset(RI.r_offset);
    if (Offset == (uintX_t)-1)
      continue;

    bool Preemptible = Body.isPreemptible();
    Expr = adjustExpr(File, Body, IsWrite, Expr, Type);
    if (HasError)
      continue;

    // This relocation does not require got entry, but it is relative to got and
    // needs it to be created. Here we request for that.
    if (Expr == R_GOTONLY_PC || Expr == R_GOTREL || Expr == R_PPC_TOC)
      HasGotOffRel = true;

    uintX_t Addend = computeAddend(File, Buf, E, RI, Expr, Body);

    if (unsigned Processed =
            handleTlsRelocation<ELFT>(Type, Body, C, Offset, Addend, Expr)) {
      I += (Processed - 1);
      continue;
    }

    if (needsPlt(Expr) || Expr == R_THUNK || refersToGotEntry(Expr) ||
        !Body.isPreemptible()) {
      // If the relocation points to something in the file, we can process it.
      bool Constant = isStaticLinkTimeConstant<ELFT>(Expr, Type, Body);

      // If the output being produced is position independent, the final value
      // is still not known. In that case we still need some help from the
      // dynamic linker. We can however do better than just copying the incoming
      // relocation. We can process some of it and and just ask the dynamic
      // linker to add the load address.
      if (!Constant)
        AddDyn({Target->RelativeRel, C.OutSec, Offset, true, &Body, Addend});

      // If the produced value is a constant, we just remember to write it
      // when outputting this section. We also have to do it if the format
      // uses Elf_Rel, since in that case the written value is the addend.
      if (Constant || !RelTy::IsRela)
        C.Relocations.push_back({Expr, Type, Offset, Addend, &Body});
    } else {
      // We don't know anything about the finaly symbol. Just ask the dynamic
      // linker to handle the relocation for us.
      AddDyn({Target->getDynRel(Type), C.OutSec, Offset, false, &Body, Addend});
      // MIPS ABI turns using of GOT and dynamic relocations inside out.
      // While regular ABI uses dynamic relocations to fill up GOT entries
      // MIPS ABI requires dynamic linker to fills up GOT entries using
      // specially sorted dynamic symbol table. This affects even dynamic
      // relocations against symbols which do not require GOT entries
      // creation explicitly, i.e. do not have any GOT-relocations. So if
      // a preemptible symbol has a dynamic relocation we anyway have
      // to create a GOT entry for it.
      // If a non-preemptible symbol has a dynamic relocation against it,
      // dynamic linker takes it st_value, adds offset and writes down
      // result of the dynamic relocation. In case of preemptible symbol
      // dynamic linker performs symbol resolution, writes the symbol value
      // to the GOT entry and reads the GOT entry when it needs to perform
      // a dynamic relocation.
      // ftp://www.linux-mips.org/pub/linux/mips/doc/ABI/mipsabi.pdf p.4-19
      if (Config->EMachine == EM_MIPS && !Body.isInGot())
        Out<ELFT>::Got->addEntry(Body);
      continue;
    }

    if (Expr == R_THUNK)
      continue;

    // At this point we are done with the relocated position. Some relocations
    // also require us to create a got or plt entry.

    // If a relocation needs PLT, we create a PLT and a GOT slot for the symbol.
    if (needsPlt(Expr)) {
      if (Body.isInPlt())
        continue;
      Out<ELFT>::Plt->addEntry(Body);

      uint32_t Rel;
      if (Body.isGnuIFunc() && !Preemptible)
        Rel = Target->IRelativeRel;
      else
        Rel = Target->PltRel;

      Out<ELFT>::GotPlt->addEntry(Body);
      Out<ELFT>::RelaPlt->addReloc({Rel, Out<ELFT>::GotPlt,
                                    Body.getGotPltOffset<ELFT>(), !Preemptible,
                                    &Body, 0});
      continue;
    }

    if (refersToGotEntry(Expr)) {
      if (Body.isInGot())
        continue;
      Out<ELFT>::Got->addEntry(Body);

      if (Config->EMachine == EM_MIPS)
        // MIPS ABI has special rules to process GOT entries
        // and doesn't require relocation entries for them.
        // See "Global Offset Table" in Chapter 5 in the following document
        // for detailed description:
        // ftp://www.linux-mips.org/pub/linux/mips/doc/ABI/mipsabi.pdf
        continue;

      if (Preemptible || (Config->Pic && !isAbsolute<ELFT>(Body))) {
        uint32_t DynType;
        if (Body.isTls())
          DynType = Target->TlsGotRel;
        else if (Preemptible)
          DynType = Target->GotRel;
        else
          DynType = Target->RelativeRel;
        AddDyn({DynType, Out<ELFT>::Got, Body.getGotOffset<ELFT>(),
                !Preemptible, &Body, 0});
      }
      continue;
    }
  }

  // Scan relocations for necessary thunks.
  if (Config->EMachine == EM_MIPS)
    scanRelocsForThunks(File, Rels);
}

template <class ELFT> void Writer<ELFT>::scanRelocs(InputSection<ELFT> &C) {
  // Scan all relocations. Each relocation goes through a series
  // of tests to determine if it needs special treatment, such as
  // creating GOT, PLT, copy relocations, etc.
  // Note that relocations for non-alloc sections are directly
  // processed by InputSection::relocateNative.
  if (C.getSectionHdr()->sh_flags & SHF_ALLOC)
    for (const Elf_Shdr *RelSec : C.RelocSections)
      scanRelocs(C, *RelSec);
}

template <class ELFT>
void Writer<ELFT>::scanRelocs(InputSectionBase<ELFT> &S,
                              const Elf_Shdr &RelSec) {
  ELFFile<ELFT> &EObj = S.getFile()->getObj();
  if (RelSec.sh_type == SHT_RELA)
    scanRelocs(S, EObj.relas(&RelSec));
  else
    scanRelocs(S, EObj.rels(&RelSec));
}

template <class ELFT>
static void reportUndefined(SymbolTable<ELFT> &Symtab, SymbolBody *Sym) {
  if (!Config->NoUndefined) {
    if (Config->Relocatable)
      return;
    if (Config->Shared && !Config->ZDefs)
      if (Sym->symbol()->Visibility == STV_DEFAULT)
        return;
  }

  std::string Msg = "undefined symbol: " + Sym->getName().str();
  if (InputFile *File = Sym->getSourceFile<ELFT>())
    Msg += " in " + getFilename(File);
  if (Config->NoinhibitExec)
    warning(Msg);
  else
    error(Msg);
}

template <class ELFT>
static bool shouldKeepInSymtab(InputSectionBase<ELFT> *Sec, StringRef SymName,
                               const SymbolBody &B) {
  if (B.isFile())
    return false;

  // We keep sections in symtab for relocatable output.
  if (B.isSection())
    return Config->Relocatable;

  // If sym references a section in a discarded group, don't keep it.
  if (Sec == &InputSection<ELFT>::Discarded)
    return false;

  if (Config->DiscardNone)
    return true;

  // In ELF assembly .L symbols are normally discarded by the assembler.
  // If the assembler fails to do so, the linker discards them if
  // * --discard-locals is used.
  // * The symbol is in a SHF_MERGE section, which is normally the reason for
  //   the assembler keeping the .L symbol.
  if (!SymName.startswith(".L") && !SymName.empty())
    return true;

  if (Config->DiscardLocals)
    return false;

  return !(Sec->getSectionHdr()->sh_flags & SHF_MERGE);
}

template <class ELFT> static bool includeInSymtab(const SymbolBody &B) {
  if (!B.isLocal() && !B.symbol()->IsUsedInRegularObj)
    return false;

  if (auto *D = dyn_cast<DefinedRegular<ELFT>>(&B)) {
    // Always include absolute symbols.
    if (!D->Section)
      return true;
    // Exclude symbols pointing to garbage-collected sections.
    if (!D->Section->Live)
      return false;
    if (auto *S = dyn_cast<MergeInputSection<ELFT>>(D->Section))
      if (!S->getRangeAndSize(D->Value).first->Live)
        return false;
  }
  return true;
}

// Local symbols are not in the linker's symbol table. This function scans
// each object file's symbol table to copy local symbols to the output.
template <class ELFT> void Writer<ELFT>::copyLocalSymbols() {
  if (!Out<ELFT>::SymTab)
    return;
  for (const std::unique_ptr<elf::ObjectFile<ELFT>> &F :
       Symtab.getObjectFiles()) {
    const char *StrTab = F->getStringTable().data();
    for (SymbolBody *B : F->getLocalSymbols()) {
      auto *DR = dyn_cast<DefinedRegular<ELFT>>(B);
      // No reason to keep local undefined symbol in symtab.
      if (!DR)
        continue;
      if (!includeInSymtab<ELFT>(*B))
        continue;
      StringRef SymName(StrTab + B->getNameOffset());
      InputSectionBase<ELFT> *Sec = DR->Section;
      if (!shouldKeepInSymtab<ELFT>(Sec, SymName, *B))
        continue;
      ++Out<ELFT>::SymTab->NumLocals;
      if (Config->Relocatable)
        B->DynsymIndex = Out<ELFT>::SymTab->NumLocals;
      F->KeptLocalSyms.push_back(
          std::make_pair(DR, Out<ELFT>::SymTab->StrTabSec.addString(SymName)));
    }
  }
}

// PPC64 has a number of special SHT_PROGBITS+SHF_ALLOC+SHF_WRITE sections that
// we would like to make sure appear is a specific order to maximize their
// coverage by a single signed 16-bit offset from the TOC base pointer.
// Conversely, the special .tocbss section should be first among all SHT_NOBITS
// sections. This will put it next to the loaded special PPC64 sections (and,
// thus, within reach of the TOC base pointer).
static int getPPC64SectionRank(StringRef SectionName) {
  return StringSwitch<int>(SectionName)
      .Case(".tocbss", 0)
      .Case(".branch_lt", 2)
      .Case(".toc", 3)
      .Case(".toc1", 4)
      .Case(".opd", 5)
      .Default(1);
}

template <class ELFT> static bool isRelroSection(OutputSectionBase<ELFT> *Sec) {
  if (!Config->ZRelro)
    return false;
  typename ELFT::uint Flags = Sec->getFlags();
  if (!(Flags & SHF_ALLOC) || !(Flags & SHF_WRITE))
    return false;
  if (Flags & SHF_TLS)
    return true;
  uint32_t Type = Sec->getType();
  if (Type == SHT_INIT_ARRAY || Type == SHT_FINI_ARRAY ||
      Type == SHT_PREINIT_ARRAY)
    return true;
  if (Sec == Out<ELFT>::GotPlt)
    return Config->ZNow;
  if (Sec == Out<ELFT>::Dynamic || Sec == Out<ELFT>::Got)
    return true;
  StringRef S = Sec->getName();
  return S == ".data.rel.ro" || S == ".ctors" || S == ".dtors" || S == ".jcr" ||
         S == ".eh_frame";
}

// Output section ordering is determined by this function.
template <class ELFT>
static bool compareSections(OutputSectionBase<ELFT> *A,
                            OutputSectionBase<ELFT> *B) {
  typedef typename ELFT::uint uintX_t;

  int Comp = Script<ELFT>::X->compareSections(A->getName(), B->getName());
  if (Comp != 0)
    return Comp < 0;

  uintX_t AFlags = A->getFlags();
  uintX_t BFlags = B->getFlags();

  // Allocatable sections go first to reduce the total PT_LOAD size and
  // so debug info doesn't change addresses in actual code.
  bool AIsAlloc = AFlags & SHF_ALLOC;
  bool BIsAlloc = BFlags & SHF_ALLOC;
  if (AIsAlloc != BIsAlloc)
    return AIsAlloc;

  // We don't have any special requirements for the relative order of
  // two non allocatable sections.
  if (!AIsAlloc)
    return false;

  // We want the read only sections first so that they go in the PT_LOAD
  // covering the program headers at the start of the file.
  bool AIsWritable = AFlags & SHF_WRITE;
  bool BIsWritable = BFlags & SHF_WRITE;
  if (AIsWritable != BIsWritable)
    return BIsWritable;

  // For a corresponding reason, put non exec sections first (the program
  // header PT_LOAD is not executable).
  bool AIsExec = AFlags & SHF_EXECINSTR;
  bool BIsExec = BFlags & SHF_EXECINSTR;
  if (AIsExec != BIsExec)
    return BIsExec;

  // If we got here we know that both A and B are in the same PT_LOAD.

  // The TLS initialization block needs to be a single contiguous block in a R/W
  // PT_LOAD, so stick TLS sections directly before R/W sections. The TLS NOBITS
  // sections are placed here as they don't take up virtual address space in the
  // PT_LOAD.
  bool AIsTls = AFlags & SHF_TLS;
  bool BIsTls = BFlags & SHF_TLS;
  if (AIsTls != BIsTls)
    return AIsTls;

  // The next requirement we have is to put nobits sections last. The
  // reason is that the only thing the dynamic linker will see about
  // them is a p_memsz that is larger than p_filesz. Seeing that it
  // zeros the end of the PT_LOAD, so that has to correspond to the
  // nobits sections.
  bool AIsNoBits = A->getType() == SHT_NOBITS;
  bool BIsNoBits = B->getType() == SHT_NOBITS;
  if (AIsNoBits != BIsNoBits)
    return BIsNoBits;

  // We place RelRo section before plain r/w ones.
  bool AIsRelRo = isRelroSection(A);
  bool BIsRelRo = isRelroSection(B);
  if (AIsRelRo != BIsRelRo)
    return AIsRelRo;

  // Some architectures have additional ordering restrictions for sections
  // within the same PT_LOAD.
  if (Config->EMachine == EM_PPC64)
    return getPPC64SectionRank(A->getName()) <
           getPPC64SectionRank(B->getName());

  return false;
}

// The .bss section does not exist if no input file has a .bss section.
// This function creates one if that's the case.
template <class ELFT> void Writer<ELFT>::ensureBss() {
  if (Out<ELFT>::Bss)
    return;
  Out<ELFT>::Bss =
      new OutputSection<ELFT>(".bss", SHT_NOBITS, SHF_ALLOC | SHF_WRITE);
  OwningSections.emplace_back(Out<ELFT>::Bss);
  OutputSections.push_back(Out<ELFT>::Bss);
}

// Until this function is called, common symbols do not belong to any section.
// This function adds them to end of BSS section.
template <class ELFT>
void Writer<ELFT>::addCommonSymbols(std::vector<DefinedCommon *> &Syms) {
  if (Syms.empty())
    return;

  // Sort the common symbols by alignment as an heuristic to pack them better.
  std::stable_sort(Syms.begin(), Syms.end(),
                   [](const DefinedCommon *A, const DefinedCommon *B) {
                     return A->Alignment > B->Alignment;
                   });

  ensureBss();
  uintX_t Off = Out<ELFT>::Bss->getSize();
  for (DefinedCommon *C : Syms) {
    Off = alignTo(Off, C->Alignment);
    Out<ELFT>::Bss->updateAlign(C->Alignment);
    C->OffsetInBss = Off;
    Off += C->Size;
  }

  Out<ELFT>::Bss->setSize(Off);
}

template <class ELFT> static uint32_t getAlignment(SharedSymbol<ELFT> *SS) {
  typedef typename ELFFile<ELFT>::uintX_t uintX_t;

  uintX_t SecAlign = SS->File->getSection(SS->Sym)->sh_addralign;
  uintX_t SymValue = SS->Sym.st_value;
  int TrailingZeros =
      std::min(countTrailingZeros(SecAlign), countTrailingZeros(SymValue));
  return 1 << TrailingZeros;
}

// Reserve space in .bss for copy relocation.
template <class ELFT>
void Writer<ELFT>::addCopyRelSymbol(SharedSymbol<ELFT> *SS) {
  ensureBss();
  uintX_t Align = getAlignment(SS);
  uintX_t Off = alignTo(Out<ELFT>::Bss->getSize(), Align);
  Out<ELFT>::Bss->setSize(Off + SS->template getSize<ELFT>());
  Out<ELFT>::Bss->updateAlign(Align);
  uintX_t Shndx = SS->Sym.st_shndx;
  uintX_t Value = SS->Sym.st_value;
  // Look through the DSO's dynamic symbol table for aliases and create a
  // dynamic symbol for each one. This causes the copy relocation to correctly
  // interpose any aliases.
  for (const Elf_Sym &S : SS->File->getElfSymbols(true)) {
    if (S.st_shndx != Shndx || S.st_value != Value)
      continue;
    auto *Alias = dyn_cast_or_null<SharedSymbol<ELFT>>(
        Symtab.find(check(S.getName(SS->File->getStringTable()))));
    if (!Alias)
      continue;
    Alias->OffsetInBss = Off;
    Alias->NeedsCopyOrPltAddr = true;
    Alias->symbol()->IsUsedInRegularObj = true;
  }
  Out<ELFT>::RelaDyn->addReloc(
      {Target->CopyRel, Out<ELFT>::Bss, SS->OffsetInBss, false, SS, 0});
}

template <class ELFT>
StringRef Writer<ELFT>::getOutputSectionName(InputSectionBase<ELFT> *S) const {
  StringRef Dest = Script<ELFT>::X->getOutputSection(S);
  if (!Dest.empty())
    return Dest;

  StringRef Name = S->getSectionName();
  for (StringRef V : {".text.", ".rodata.", ".data.rel.ro.", ".data.", ".bss.",
                      ".init_array.", ".fini_array.", ".ctors.", ".dtors.",
                      ".tbss.", ".gcc_except_table.", ".tdata."})
    if (Name.startswith(V))
      return V.drop_back();
  return Name;
}

template <class ELFT>
void reportDiscarded(InputSectionBase<ELFT> *IS,
                     const std::unique_ptr<elf::ObjectFile<ELFT>> &File) {
  if (!Config->PrintGcSections || !IS || IS->Live)
    return;
  llvm::errs() << "removing unused section from '" << IS->getSectionName()
               << "' in file '" << File->getName() << "'\n";
}

template <class ELFT>
bool Writer<ELFT>::isDiscarded(InputSectionBase<ELFT> *S) const {
  return !S || S == &InputSection<ELFT>::Discarded || !S->Live ||
         Script<ELFT>::X->isDiscarded(S);
}

template <class ELFT>
static Symbol *addOptionalSynthetic(SymbolTable<ELFT> &Table, StringRef Name,
                                    OutputSectionBase<ELFT> *Sec,
                                    typename ELFT::uint Val) {
  SymbolBody *S = Table.find(Name);
  if (!S)
    return nullptr;
  if (!S->isUndefined() && !S->isShared())
    return S->symbol();
  return Table.addSynthetic(Name, Sec, Val);
}

// The beginning and the ending of .rel[a].plt section are marked
// with __rel[a]_iplt_{start,end} symbols if it is a statically linked
// executable. The runtime needs these symbols in order to resolve
// all IRELATIVE relocs on startup. For dynamic executables, we don't
// need these symbols, since IRELATIVE relocs are resolved through GOT
// and PLT. For details, see http://www.airs.com/blog/archives/403.
template <class ELFT> void Writer<ELFT>::addRelIpltSymbols() {
  if (isOutputDynamic() || !Out<ELFT>::RelaPlt)
    return;
  StringRef S = Config->Rela ? "__rela_iplt_start" : "__rel_iplt_start";
  addOptionalSynthetic(Symtab, S, Out<ELFT>::RelaPlt, 0);

  S = Config->Rela ? "__rela_iplt_end" : "__rel_iplt_end";
  addOptionalSynthetic(Symtab, S, Out<ELFT>::RelaPlt,
                       DefinedSynthetic<ELFT>::SectionEnd);
}

// This class knows how to create an output section for a given
// input section. Output section type is determined by various
// factors, including input section's sh_flags, sh_type and
// linker scripts.
namespace {
template <class ELFT> class OutputSectionFactory {
  typedef typename ELFT::Shdr Elf_Shdr;
  typedef typename ELFT::uint uintX_t;

public:
  std::pair<OutputSectionBase<ELFT> *, bool> create(InputSectionBase<ELFT> *C,
                                                    StringRef OutsecName);

  OutputSectionBase<ELFT> *lookup(StringRef Name, uint32_t Type,
                                  uintX_t Flags) {
    return Map.lookup({Name, Type, Flags, 0});
  }

private:
  SectionKey<ELFT::Is64Bits> createKey(InputSectionBase<ELFT> *C,
                                       StringRef OutsecName);

  SmallDenseMap<SectionKey<ELFT::Is64Bits>, OutputSectionBase<ELFT> *> Map;
};
}

template <class ELFT>
std::pair<OutputSectionBase<ELFT> *, bool>
OutputSectionFactory<ELFT>::create(InputSectionBase<ELFT> *C,
                                   StringRef OutsecName) {
  SectionKey<ELFT::Is64Bits> Key = createKey(C, OutsecName);
  OutputSectionBase<ELFT> *&Sec = Map[Key];
  if (Sec)
    return {Sec, false};

  switch (C->SectionKind) {
  case InputSectionBase<ELFT>::Regular:
    Sec = new OutputSection<ELFT>(Key.Name, Key.Type, Key.Flags);
    break;
  case InputSectionBase<ELFT>::EHFrame:
    Sec = new EHOutputSection<ELFT>(Key.Name, Key.Type, Key.Flags);
    break;
  case InputSectionBase<ELFT>::Merge:
    Sec = new MergeOutputSection<ELFT>(Key.Name, Key.Type, Key.Flags,
                                       Key.Alignment);
    break;
  case InputSectionBase<ELFT>::MipsReginfo:
    Sec = new MipsReginfoOutputSection<ELFT>();
    break;
  case InputSectionBase<ELFT>::MipsOptions:
    Sec = new MipsOptionsOutputSection<ELFT>();
    break;
  }
  return {Sec, true};
}

template <class ELFT>
SectionKey<ELFT::Is64Bits>
OutputSectionFactory<ELFT>::createKey(InputSectionBase<ELFT> *C,
                                      StringRef OutsecName) {
  const Elf_Shdr *H = C->getSectionHdr();
  uintX_t Flags = H->sh_flags & ~SHF_GROUP;

  // For SHF_MERGE we create different output sections for each alignment.
  // This makes each output section simple and keeps a single level mapping from
  // input to output.
  uintX_t Alignment = 0;
  if (isa<MergeInputSection<ELFT>>(C))
    Alignment = std::max(H->sh_addralign, H->sh_entsize);

  // GNU as can give .eh_frame section type SHT_PROGBITS or SHT_X86_64_UNWIND
  // depending on the construct. We want to canonicalize it so that
  // there is only one .eh_frame in the end.
  uint32_t Type = H->sh_type;
  if (Type == SHT_PROGBITS && Config->EMachine == EM_X86_64 &&
      isa<EHInputSection<ELFT>>(C))
    Type = SHT_X86_64_UNWIND;

  return SectionKey<ELFT::Is64Bits>{OutsecName, Type, Flags, Alignment};
}

// The linker is expected to define some symbols depending on
// the linking result. This function defines such symbols.
template <class ELFT> void Writer<ELFT>::addReservedSymbols() {
  if (Config->EMachine == EM_MIPS) {
    // Define _gp for MIPS. st_value of _gp symbol will be updated by Writer
    // so that it points to an absolute address which is relative to GOT.
    // See "Global Data Symbols" in Chapter 6 in the following document:
    // ftp://www.linux-mips.org/pub/linux/mips/doc/ABI/mipsabi.pdf
    Symtab.addSynthetic("_gp", Out<ELFT>::Got, MipsGPOffset);

    // On MIPS O32 ABI, _gp_disp is a magic symbol designates offset between
    // start of function and 'gp' pointer into GOT.
    Symbol *Sym =
        addOptionalSynthetic(Symtab, "_gp_disp", Out<ELFT>::Got, MipsGPOffset);
    if (Sym)
      ElfSym<ELFT>::MipsGpDisp = Sym->body();

    // The __gnu_local_gp is a magic symbol equal to the current value of 'gp'
    // pointer. This symbol is used in the code generated by .cpload pseudo-op
    // in case of using -mno-shared option.
    // https://sourceware.org/ml/binutils/2004-12/msg00094.html
    addOptionalSynthetic(Symtab, "__gnu_local_gp", Out<ELFT>::Got,
                         MipsGPOffset);
  }

  // In the assembly for 32 bit x86 the _GLOBAL_OFFSET_TABLE_ symbol
  // is magical and is used to produce a R_386_GOTPC relocation.
  // The R_386_GOTPC relocation value doesn't actually depend on the
  // symbol value, so it could use an index of STN_UNDEF which, according
  // to the spec, means the symbol value is 0.
  // Unfortunately both gas and MC keep the _GLOBAL_OFFSET_TABLE_ symbol in
  // the object file.
  // The situation is even stranger on x86_64 where the assembly doesn't
  // need the magical symbol, but gas still puts _GLOBAL_OFFSET_TABLE_ as
  // an undefined symbol in the .o files.
  // Given that the symbol is effectively unused, we just create a dummy
  // hidden one to avoid the undefined symbol error.
  if (!Config->Relocatable)
    Symtab.addIgnored("_GLOBAL_OFFSET_TABLE_");

  // __tls_get_addr is defined by the dynamic linker for dynamic ELFs. For
  // static linking the linker is required to optimize away any references to
  // __tls_get_addr, so it's not defined anywhere. Create a hidden definition
  // to avoid the undefined symbol error.
  if (!isOutputDynamic())
    Symtab.addIgnored("__tls_get_addr");

  auto Define = [this](StringRef S, DefinedRegular<ELFT> *&Sym1,
                       DefinedRegular<ELFT> *&Sym2) {
    Sym1 = Symtab.addIgnored(S, STV_DEFAULT);

    // The name without the underscore is not a reserved name,
    // so it is defined only when there is a reference against it.
    assert(S.startswith("_"));
    S = S.substr(1);
    if (SymbolBody *B = Symtab.find(S))
      if (B->isUndefined())
        Sym2 = Symtab.addAbsolute(S, STV_DEFAULT);
  };

  Define("_end", ElfSym<ELFT>::End, ElfSym<ELFT>::End2);
  Define("_etext", ElfSym<ELFT>::Etext, ElfSym<ELFT>::Etext2);
  Define("_edata", ElfSym<ELFT>::Edata, ElfSym<ELFT>::Edata2);
}

// Sort input sections by section name suffixes for
// __attribute__((init_priority(N))).
template <class ELFT> static void sortInitFini(OutputSectionBase<ELFT> *S) {
  if (S)
    reinterpret_cast<OutputSection<ELFT> *>(S)->sortInitFini();
}

// Sort input sections by the special rule for .ctors and .dtors.
template <class ELFT> static void sortCtorsDtors(OutputSectionBase<ELFT> *S) {
  if (S)
    reinterpret_cast<OutputSection<ELFT> *>(S)->sortCtorsDtors();
}

// Create output section objects and add them to OutputSections.
template <class ELFT> void Writer<ELFT>::createSections() {
  // Add .interp first because some loaders want to see that section
  // on the first page of the executable file when loaded into memory.
  if (needsInterpSection())
    OutputSections.push_back(Out<ELFT>::Interp);

  // A core file does not usually contain unmodified segments except
  // the first page of the executable. Add the build ID section now
  // so that the section is included in the first page.
  if (Out<ELFT>::BuildId)
    OutputSections.push_back(Out<ELFT>::BuildId);

  // Create output sections for input object file sections.
  std::vector<OutputSectionBase<ELFT> *> RegularSections;
  OutputSectionFactory<ELFT> Factory;
  for (const std::unique_ptr<elf::ObjectFile<ELFT>> &F :
       Symtab.getObjectFiles()) {
    for (InputSectionBase<ELFT> *C : F->getSections()) {
      if (isDiscarded(C)) {
        reportDiscarded(C, F);
        continue;
      }
      OutputSectionBase<ELFT> *Sec;
      bool IsNew;
      std::tie(Sec, IsNew) = Factory.create(C, getOutputSectionName(C));
      if (IsNew) {
        OwningSections.emplace_back(Sec);
        OutputSections.push_back(Sec);
        RegularSections.push_back(Sec);
      }
      Sec->addSection(C);
    }
  }

  Out<ELFT>::Bss = static_cast<OutputSection<ELFT> *>(
      Factory.lookup(".bss", SHT_NOBITS, SHF_ALLOC | SHF_WRITE));

  // If we have a .opd section (used under PPC64 for function descriptors),
  // store a pointer to it here so that we can use it later when processing
  // relocations.
  Out<ELFT>::Opd = Factory.lookup(".opd", SHT_PROGBITS, SHF_WRITE | SHF_ALLOC);

  Out<ELFT>::Dynamic->PreInitArraySec = Factory.lookup(
      ".preinit_array", SHT_PREINIT_ARRAY, SHF_WRITE | SHF_ALLOC);
  Out<ELFT>::Dynamic->InitArraySec =
      Factory.lookup(".init_array", SHT_INIT_ARRAY, SHF_WRITE | SHF_ALLOC);
  Out<ELFT>::Dynamic->FiniArraySec =
      Factory.lookup(".fini_array", SHT_FINI_ARRAY, SHF_WRITE | SHF_ALLOC);

  // Sort section contents for __attribute__((init_priority(N)).
  sortInitFini(Out<ELFT>::Dynamic->InitArraySec);
  sortInitFini(Out<ELFT>::Dynamic->FiniArraySec);
  sortCtorsDtors(Factory.lookup(".ctors", SHT_PROGBITS, SHF_WRITE | SHF_ALLOC));
  sortCtorsDtors(Factory.lookup(".dtors", SHT_PROGBITS, SHF_WRITE | SHF_ALLOC));

  // The linker needs to define SECNAME_start, SECNAME_end and SECNAME_stop
  // symbols for sections, so that the runtime can get the start and end
  // addresses of each section by section name. Add such symbols.
  if (!Config->Relocatable) {
    addStartEndSymbols();
    for (OutputSectionBase<ELFT> *Sec : RegularSections)
      addStartStopSymbols(Sec);
  }

  // Add _DYNAMIC symbol. Unlike GNU gold, our _DYNAMIC symbol has no type.
  // It should be okay as no one seems to care about the type.
  // Even the author of gold doesn't remember why gold behaves that way.
  // https://sourceware.org/ml/binutils/2002-03/msg00360.html
  if (isOutputDynamic())
    Symtab.addSynthetic("_DYNAMIC", Out<ELFT>::Dynamic, 0);

  // Define __rel[a]_iplt_{start,end} symbols if needed.
  addRelIpltSymbols();

  if (Out<ELFT>::EhFrameHdr->Sec)
    Out<ELFT>::EhFrameHdr->Sec->finalize();

  // Scan relocations. This must be done after every symbol is declared so that
  // we can correctly decide if a dynamic relocation is needed.
  // Check size() each time to guard against .bss being created.
  for (unsigned I = 0; I < OutputSections.size(); ++I) {
    OutputSectionBase<ELFT> *Sec = OutputSections[I];
    Sec->forEachInputSection([&](InputSectionBase<ELFT> *S) {
      if (auto *IS = dyn_cast<InputSection<ELFT>>(S)) {
        // Set OutSecOff so that scanRelocs can use it.
        uintX_t Off = alignTo(Sec->getSize(), S->Align);
        IS->OutSecOff = Off;

        scanRelocs(*IS);

        // Now that scan relocs possibly changed the size, update the offset.
        Sec->setSize(Off + S->getSize());
      } else if (auto *EH = dyn_cast<EHInputSection<ELFT>>(S)) {
        if (EH->RelocSection)
          scanRelocs(*EH, *EH->RelocSection);
      }
    });
  }

  // Now that we have defined all possible symbols including linker-
  // synthesized ones. Visit all symbols to give the finishing touches.
  std::vector<DefinedCommon *> CommonSymbols;
  for (Symbol *S : Symtab.getSymbols()) {
    SymbolBody *Body = S->body();

    // Set "used" bit for --as-needed.
    if (S->IsUsedInRegularObj && !S->isWeak())
      if (auto *SS = dyn_cast<SharedSymbol<ELFT>>(Body))
        SS->File->IsUsed = true;

    // We only report undefined symbols in regular objects. This means that we
    // will accept an undefined reference in bitcode if it can be optimized out.
    if (S->IsUsedInRegularObj && Body->isUndefined() && !S->isWeak())
      reportUndefined<ELFT>(Symtab, Body);

    if (auto *C = dyn_cast<DefinedCommon>(Body))
      CommonSymbols.push_back(C);

    if (!includeInSymtab<ELFT>(*Body))
      continue;
    if (Out<ELFT>::SymTab)
      Out<ELFT>::SymTab->addSymbol(Body);

    if (isOutputDynamic() && S->includeInDynsym()) {
      Out<ELFT>::DynSymTab->addSymbol(Body);
      if (auto *SS = dyn_cast<SharedSymbol<ELFT>>(Body))
        Out<ELFT>::VerNeed->addSymbol(SS);
    }
  }

  // Do not proceed if there was an undefined symbol.
  if (HasError)
    return;

  addCommonSymbols(CommonSymbols);

  // So far we have added sections from input object files.
  // This function adds linker-created Out<ELFT>::* sections.
  addPredefinedSections();

  std::stable_sort(OutputSections.begin(), OutputSections.end(),
                   compareSections<ELFT>);

  unsigned I = 1;
  for (OutputSectionBase<ELFT> *Sec : OutputSections) {
    Sec->SectionIndex = I++;
    Sec->setSHName(Out<ELFT>::ShStrTab->addString(Sec->getName()));
  }

  // Finalizers fix each section's size.
  // .dynsym is finalized early since that may fill up .gnu.hash.
  if (isOutputDynamic())
    Out<ELFT>::DynSymTab->finalize();

  // Fill other section headers. The dynamic table is finalized
  // at the end because some tags like RELSZ depend on result
  // of finalizing other sections. The dynamic string table is
  // finalized once the .dynamic finalizer has added a few last
  // strings. See DynamicSection::finalize()
  for (OutputSectionBase<ELFT> *Sec : OutputSections)
    if (Sec != Out<ELFT>::DynStrTab && Sec != Out<ELFT>::Dynamic)
      Sec->finalize();

  if (isOutputDynamic())
    Out<ELFT>::Dynamic->finalize();
}

template <class ELFT> bool Writer<ELFT>::needsGot() {
  if (!Out<ELFT>::Got->empty())
    return true;

  // We add the .got section to the result for dynamic MIPS target because
  // its address and properties are mentioned in the .dynamic section.
  if (Config->EMachine == EM_MIPS)
    return true;

  // If we have a relocation that is relative to GOT (such as GOTOFFREL),
  // we need to emit a GOT even if it's empty.
  return HasGotOffRel;
}

// This function add Out<ELFT>::* sections to OutputSections.
template <class ELFT> void Writer<ELFT>::addPredefinedSections() {
  auto Add = [&](OutputSectionBase<ELFT> *C) {
    if (C)
      OutputSections.push_back(C);
  };

  // This order is not the same as the final output order
  // because we sort the sections using their attributes below.
  Add(Out<ELFT>::SymTab);
  Add(Out<ELFT>::ShStrTab);
  Add(Out<ELFT>::StrTab);
  if (isOutputDynamic()) {
    Add(Out<ELFT>::DynSymTab);
    if (Out<ELFT>::VerNeed->getNeedNum() != 0) {
      Add(Out<ELFT>::VerSym);
      Add(Out<ELFT>::VerNeed);
    }
    Add(Out<ELFT>::GnuHashTab);
    Add(Out<ELFT>::HashTab);
    Add(Out<ELFT>::Dynamic);
    Add(Out<ELFT>::DynStrTab);
    if (Out<ELFT>::RelaDyn->hasRelocs())
      Add(Out<ELFT>::RelaDyn);
    Add(Out<ELFT>::MipsRldMap);
  }

  // We always need to add rel[a].plt to output if it has entries.
  // Even during static linking it can contain R_[*]_IRELATIVE relocations.
  if (Out<ELFT>::RelaPlt && Out<ELFT>::RelaPlt->hasRelocs()) {
    Add(Out<ELFT>::RelaPlt);
    Out<ELFT>::RelaPlt->Static = !isOutputDynamic();
  }

  if (needsGot())
    Add(Out<ELFT>::Got);
  if (Out<ELFT>::GotPlt && !Out<ELFT>::GotPlt->empty())
    Add(Out<ELFT>::GotPlt);
  if (!Out<ELFT>::Plt->empty())
    Add(Out<ELFT>::Plt);
  if (Out<ELFT>::EhFrameHdr->Live)
    Add(Out<ELFT>::EhFrameHdr);
}

// The linker is expected to define SECNAME_start and SECNAME_end
// symbols for a few sections. This function defines them.
template <class ELFT> void Writer<ELFT>::addStartEndSymbols() {
  auto Define = [&](StringRef Start, StringRef End,
                    OutputSectionBase<ELFT> *OS) {
    if (OS) {
      this->Symtab.addSynthetic(Start, OS, 0);
      this->Symtab.addSynthetic(End, OS, DefinedSynthetic<ELFT>::SectionEnd);
    } else {
      addOptionalSynthetic(this->Symtab, Start,
                           (OutputSectionBase<ELFT> *)nullptr, 0);
      addOptionalSynthetic(this->Symtab, End,
                           (OutputSectionBase<ELFT> *)nullptr, 0);
    }
  };

  Define("__preinit_array_start", "__preinit_array_end",
         Out<ELFT>::Dynamic->PreInitArraySec);
  Define("__init_array_start", "__init_array_end",
         Out<ELFT>::Dynamic->InitArraySec);
  Define("__fini_array_start", "__fini_array_end",
         Out<ELFT>::Dynamic->FiniArraySec);
}

// If a section name is valid as a C identifier (which is rare because of
// the leading '.'), linkers are expected to define __start_<secname> and
// __stop_<secname> symbols. They are at beginning and end of the section,
// respectively. This is not requested by the ELF standard, but GNU ld and
// gold provide the feature, and used by many programs.
template <class ELFT>
void Writer<ELFT>::addStartStopSymbols(OutputSectionBase<ELFT> *Sec) {
  StringRef S = Sec->getName();
  if (!isValidCIdentifier(S))
    return;
  StringSaver Saver(Alloc);
  StringRef Start = Saver.save("__start_" + S);
  StringRef Stop = Saver.save("__stop_" + S);
  if (SymbolBody *B = Symtab.find(Start))
    if (B->isUndefined())
      Symtab.addSynthetic(Start, Sec, 0);
  if (SymbolBody *B = Symtab.find(Stop))
    if (B->isUndefined())
      Symtab.addSynthetic(Stop, Sec, DefinedSynthetic<ELFT>::SectionEnd);
}

template <class ELFT> static bool needsPtLoad(OutputSectionBase<ELFT> *Sec) {
  if (!(Sec->getFlags() & SHF_ALLOC))
    return false;

  // Don't allocate VA space for TLS NOBITS sections. The PT_TLS PHDR is
  // responsible for allocating space for them, not the PT_LOAD that
  // contains the TLS initialization image.
  if (Sec->getFlags() & SHF_TLS && Sec->getType() == SHT_NOBITS)
    return false;
  return true;
}

static uint32_t toPhdrFlags(uint64_t Flags) {
  uint32_t Ret = PF_R;
  if (Flags & SHF_WRITE)
    Ret |= PF_W;
  if (Flags & SHF_EXECINSTR)
    Ret |= PF_X;
  return Ret;
}

// Decide which program headers to create and which sections to include in each
// one.
template <class ELFT> void Writer<ELFT>::createPhdrs() {
  auto AddHdr = [this](unsigned Type, unsigned Flags) {
    return &*Phdrs.emplace(Phdrs.end(), Type, Flags);
  };

  auto AddSec = [](Phdr &Hdr, OutputSectionBase<ELFT> *Sec) {
    Hdr.Last = Sec;
    if (!Hdr.First)
      Hdr.First = Sec;
    Hdr.H.p_align = std::max<uintX_t>(Hdr.H.p_align, Sec->getAlign());
  };

  // The first phdr entry is PT_PHDR which describes the program header itself.
  Phdr &Hdr = *AddHdr(PT_PHDR, PF_R);
  AddSec(Hdr, Out<ELFT>::ProgramHeaders);

  // PT_INTERP must be the second entry if exists.
  if (needsInterpSection()) {
    Phdr &Hdr = *AddHdr(PT_INTERP, toPhdrFlags(Out<ELFT>::Interp->getFlags()));
    AddSec(Hdr, Out<ELFT>::Interp);
  }

  // Add the first PT_LOAD segment for regular output sections.
  uintX_t Flags = PF_R;
  Phdr *Load = AddHdr(PT_LOAD, Flags);
  AddSec(*Load, Out<ELFT>::ElfHeader);
  AddSec(*Load, Out<ELFT>::ProgramHeaders);

  Phdr TlsHdr(PT_TLS, PF_R);
  Phdr RelRo(PT_GNU_RELRO, PF_R);
  Phdr Note(PT_NOTE, PF_R);
  for (OutputSectionBase<ELFT> *Sec : OutputSections) {
    if (!(Sec->getFlags() & SHF_ALLOC))
      break;

    // If we meet TLS section then we create TLS header
    // and put all TLS sections inside for futher use when
    // assign addresses.
    if (Sec->getFlags() & SHF_TLS)
      AddSec(TlsHdr, Sec);

    if (!needsPtLoad<ELFT>(Sec))
      continue;

    // If flags changed then we want new load segment.
    uintX_t NewFlags = toPhdrFlags(Sec->getFlags());
    if (Flags != NewFlags) {
      Load = AddHdr(PT_LOAD, NewFlags);
      Flags = NewFlags;
    }

    AddSec(*Load, Sec);

    if (isRelroSection(Sec))
      AddSec(RelRo, Sec);
    if (Sec->getType() == SHT_NOTE)
      AddSec(Note, Sec);
  }

  // Add the TLS segment unless it's empty.
  if (TlsHdr.First)
    Phdrs.push_back(std::move(TlsHdr));

  // Add an entry for .dynamic.
  if (isOutputDynamic()) {
    Phdr &H = *AddHdr(PT_DYNAMIC, toPhdrFlags(Out<ELFT>::Dynamic->getFlags()));
    AddSec(H, Out<ELFT>::Dynamic);
  }

  // PT_GNU_RELRO includes all sections that should be marked as
  // read-only by dynamic linker after proccessing relocations.
  if (RelRo.First)
    Phdrs.push_back(std::move(RelRo));

  // PT_GNU_EH_FRAME is a special section pointing on .eh_frame_hdr.
  if (Out<ELFT>::EhFrameHdr->Live) {
    Phdr &Hdr = *AddHdr(PT_GNU_EH_FRAME,
                        toPhdrFlags(Out<ELFT>::EhFrameHdr->getFlags()));
    AddSec(Hdr, Out<ELFT>::EhFrameHdr);
  }

  // PT_GNU_STACK is a special section to tell the loader to make the
  // pages for the stack non-executable.
  if (!Config->ZExecStack)
    AddHdr(PT_GNU_STACK, PF_R | PF_W);

  if (Note.First)
    Phdrs.push_back(std::move(Note));

  Out<ELFT>::ProgramHeaders->setSize(sizeof(Elf_Phdr) * Phdrs.size());
}

// The first section of each PT_LOAD and the first section after PT_GNU_RELRO
// have to be page aligned so that the dynamic linker can set the permissions.
template <class ELFT> void Writer<ELFT>::fixSectionAlignments() {
  for (const Phdr &P : Phdrs)
    if (P.H.p_type == PT_LOAD)
      P.First->PageAlign = true;

  for (const Phdr &P : Phdrs) {
    if (P.H.p_type != PT_GNU_RELRO)
      continue;
    // Find the first section after PT_GNU_RELRO. If it is in a PT_LOAD we
    // have to align it to a page.
    auto End = OutputSections.end();
    auto I = std::find(OutputSections.begin(), End, P.Last);
    if (I == End || (I + 1) == End)
      continue;
    OutputSectionBase<ELFT> *Sec = *(I + 1);
    if (needsPtLoad(Sec))
      Sec->PageAlign = true;
  }
}

// We should set file offsets and VAs for elf header and program headers
// sections. These are special, we do not include them into output sections
// list, but have them to simplify the code.
template <class ELFT> void Writer<ELFT>::fixHeaders() {
  uintX_t BaseVA = ScriptConfig->DoLayout ? 0 : Target->getVAStart();
  Out<ELFT>::ElfHeader->setVA(BaseVA);
  Out<ELFT>::ElfHeader->setFileOffset(0);
  uintX_t Off = Out<ELFT>::ElfHeader->getSize();
  Out<ELFT>::ProgramHeaders->setVA(Off + BaseVA);
  Out<ELFT>::ProgramHeaders->setFileOffset(Off);
}

// Assign VAs (addresses at run-time) to output sections.
template <class ELFT> void Writer<ELFT>::assignAddresses() {
  uintX_t VA = Target->getVAStart() + Out<ELFT>::ElfHeader->getSize() +
               Out<ELFT>::ProgramHeaders->getSize();

  uintX_t ThreadBssOffset = 0;
  for (OutputSectionBase<ELFT> *Sec : OutputSections) {
    uintX_t Align = Sec->getAlign();
    if (Sec->PageAlign)
      Align = std::max<uintX_t>(Align, Target->PageSize);

    // We only assign VAs to allocated sections.
    if (needsPtLoad<ELFT>(Sec)) {
      VA = alignTo(VA, Align);
      Sec->setVA(VA);
      VA += Sec->getSize();
    } else if (Sec->getFlags() & SHF_TLS && Sec->getType() == SHT_NOBITS) {
      uintX_t TVA = VA + ThreadBssOffset;
      TVA = alignTo(TVA, Align);
      Sec->setVA(TVA);
      ThreadBssOffset = TVA - VA + Sec->getSize();
    }
  }
}

// Adjusts the file alignment for a given output section and returns
// its new file offset. The file offset must be the same with its
// virtual address (modulo the page size) so that the loader can load
// executables without any address adjustment.
template <class ELFT, class uintX_t>
static uintX_t getFileAlignment(uintX_t Off, OutputSectionBase<ELFT> *Sec) {
  uintX_t Align = Sec->getAlign();
  if (Sec->PageAlign)
    Align = std::max<uintX_t>(Align, Target->PageSize);
  Off = alignTo(Off, Align);

  // Relocatable output does not have program headers
  // and does not need any other offset adjusting.
  if (Config->Relocatable || !(Sec->getFlags() & SHF_ALLOC))
    return Off;
  return alignTo(Off, Target->PageSize, Sec->getVA());
}

// Assign file offsets to output sections.
template <class ELFT> void Writer<ELFT>::assignFileOffsets() {
  uintX_t Off =
      Out<ELFT>::ElfHeader->getSize() + Out<ELFT>::ProgramHeaders->getSize();

  for (OutputSectionBase<ELFT> *Sec : OutputSections) {
    if (Sec->getType() == SHT_NOBITS) {
      Sec->setFileOffset(Off);
      continue;
    }

    Off = getFileAlignment<ELFT>(Off, Sec);
    Sec->setFileOffset(Off);
    Off += Sec->getSize();
  }
  SectionHeaderOff = alignTo(Off, sizeof(uintX_t));
  FileSize = SectionHeaderOff + (OutputSections.size() + 1) * sizeof(Elf_Shdr);
}

// Finalize the program headers. We call this function after we assign
// file offsets and VAs to all sections.
template <class ELFT> void Writer<ELFT>::setPhdrs() {
  for (Phdr &P : Phdrs) {
    Elf_Phdr &H = P.H;
    OutputSectionBase<ELFT> *First = P.First;
    OutputSectionBase<ELFT> *Last = P.Last;
    if (First) {
      H.p_filesz = Last->getFileOff() - First->getFileOff();
      if (Last->getType() != SHT_NOBITS)
        H.p_filesz += Last->getSize();
      H.p_memsz = Last->getVA() + Last->getSize() - First->getVA();
      H.p_offset = First->getFileOff();
      H.p_vaddr = First->getVA();
    }
    if (H.p_type == PT_LOAD)
      H.p_align = Target->PageSize;
    else if (H.p_type == PT_GNU_RELRO)
      H.p_align = 1;
    H.p_paddr = H.p_vaddr;

    // The TLS pointer goes after PT_TLS. At least glibc will align it,
    // so round up the size to make sure the offsets are correct.
    if (H.p_type == PT_TLS) {
      Out<ELFT>::TlsPhdr = &H;
      H.p_memsz = alignTo(H.p_memsz, H.p_align);
    }
  }
}

static uint32_t getMipsEFlags(bool Is64Bits) {
  // FIXME: In fact ELF flags depends on ELF flags of input object files
  // and selected emulation. For now just use hard coded values.
  if (Is64Bits)
    return EF_MIPS_CPIC | EF_MIPS_PIC | EF_MIPS_ARCH_64R2;

  uint32_t V = EF_MIPS_CPIC | EF_MIPS_ABI_O32 | EF_MIPS_ARCH_32R2;
  if (Config->Shared)
    V |= EF_MIPS_PIC;
  return V;
}

template <class ELFT> static typename ELFT::uint getEntryAddr() {
  if (Symbol *S = Config->EntrySym)
    return S->body()->getVA<ELFT>();
  if (Config->EntryAddr != uint64_t(-1))
    return Config->EntryAddr;
  return 0;
}

template <class ELFT> static uint8_t getELFEncoding() {
  if (ELFT::TargetEndianness == llvm::support::little)
    return ELFDATA2LSB;
  return ELFDATA2MSB;
}

static uint16_t getELFType() {
  if (Config->Pic)
    return ET_DYN;
  if (Config->Relocatable)
    return ET_REL;
  return ET_EXEC;
}

// This function is called after we have assigned address and size
// to each section. This function fixes some predefined absolute
// symbol values that depend on section address and size.
template <class ELFT> void Writer<ELFT>::fixAbsoluteSymbols() {
  auto Set = [](DefinedRegular<ELFT> *&S1, DefinedRegular<ELFT> *&S2,
                uintX_t V) {
    if (S1)
      S1->Value = V;
    if (S2)
      S2->Value = V;
  };

  // _etext is the first location after the last read-only loadable segment.
  // _edata is the first location after the last read-write loadable segment.
  // _end is the first location after the uninitialized data region.
  for (Phdr &P : Phdrs) {
    Elf_Phdr &H = P.H;
    if (H.p_type != PT_LOAD)
      continue;
    Set(ElfSym<ELFT>::End, ElfSym<ELFT>::End2, H.p_vaddr + H.p_memsz);

    uintX_t Val = H.p_vaddr + H.p_filesz;
    if (H.p_flags & PF_W)
      Set(ElfSym<ELFT>::Edata, ElfSym<ELFT>::Edata2, Val);
    else
      Set(ElfSym<ELFT>::Etext, ElfSym<ELFT>::Etext2, Val);
  }
}

template <class ELFT> void Writer<ELFT>::writeHeader() {
  uint8_t *Buf = Buffer->getBufferStart();
  memcpy(Buf, "\177ELF", 4);

  auto &FirstObj = cast<ELFFileBase<ELFT>>(*Config->FirstElf);

  // Write the ELF header.
  auto *EHdr = reinterpret_cast<Elf_Ehdr *>(Buf);
  EHdr->e_ident[EI_CLASS] = ELFT::Is64Bits ? ELFCLASS64 : ELFCLASS32;
  EHdr->e_ident[EI_DATA] = getELFEncoding<ELFT>();
  EHdr->e_ident[EI_VERSION] = EV_CURRENT;
  EHdr->e_ident[EI_OSABI] = FirstObj.getOSABI();
  EHdr->e_type = getELFType();
  EHdr->e_machine = FirstObj.getEMachine();
  EHdr->e_version = EV_CURRENT;
  EHdr->e_entry = getEntryAddr<ELFT>();
  EHdr->e_shoff = SectionHeaderOff;
  EHdr->e_ehsize = sizeof(Elf_Ehdr);
  EHdr->e_phnum = Phdrs.size();
  EHdr->e_shentsize = sizeof(Elf_Shdr);
  EHdr->e_shnum = OutputSections.size() + 1;
  EHdr->e_shstrndx = Out<ELFT>::ShStrTab->SectionIndex;

  if (Config->EMachine == EM_MIPS)
    EHdr->e_flags = getMipsEFlags(ELFT::Is64Bits);

  if (!Config->Relocatable) {
    EHdr->e_phoff = sizeof(Elf_Ehdr);
    EHdr->e_phentsize = sizeof(Elf_Phdr);
  }

  // Write the program header table.
  auto *HBuf = reinterpret_cast<Elf_Phdr *>(Buf + EHdr->e_phoff);
  for (Phdr &P : Phdrs)
    *HBuf++ = P.H;

  // Write the section header table. Note that the first table entry is null.
  auto *SHdrs = reinterpret_cast<Elf_Shdr *>(Buf + EHdr->e_shoff);
  for (OutputSectionBase<ELFT> *Sec : OutputSections)
    Sec->writeHeaderTo(++SHdrs);
}

template <class ELFT> void Writer<ELFT>::openFile() {
  ErrorOr<std::unique_ptr<FileOutputBuffer>> BufferOrErr =
      FileOutputBuffer::create(Config->OutputFile, FileSize,
                               FileOutputBuffer::F_executable);
  if (BufferOrErr)
    Buffer = std::move(*BufferOrErr);
  else
    error(BufferOrErr, "failed to open " + Config->OutputFile);
}

// Write section contents to a mmap'ed file.
template <class ELFT> void Writer<ELFT>::writeSections() {
  uint8_t *Buf = Buffer->getBufferStart();

  // PPC64 needs to process relocations in the .opd section before processing
  // relocations in code-containing sections.
  if (OutputSectionBase<ELFT> *Sec = Out<ELFT>::Opd) {
    Out<ELFT>::OpdBuf = Buf + Sec->getFileOff();
    Sec->writeTo(Buf + Sec->getFileOff());
  }

  for (OutputSectionBase<ELFT> *Sec : OutputSections)
    if (Sec != Out<ELFT>::Opd)
      Sec->writeTo(Buf + Sec->getFileOff());
}

template <class ELFT> void Writer<ELFT>::writeBuildId() {
  BuildIdSection<ELFT> *S = Out<ELFT>::BuildId;
  if (!S)
    return;

  // Compute a hash of all sections except .debug_* sections.
  // We skip debug sections because they tend to be very large
  // and their contents are very likely to be the same as long as
  // other sections are the same.
  uint8_t *Start = Buffer->getBufferStart();
  uint8_t *Last = Start;
  std::vector<ArrayRef<uint8_t>> Regions;
  for (OutputSectionBase<ELFT> *Sec : OutputSections) {
    uint8_t *End = Start + Sec->getFileOff();
    if (!Sec->getName().startswith(".debug_"))
      Regions.push_back({Last, End});
    Last = End;
  }
  Regions.push_back({Last, Start + FileSize});
  S->writeBuildId(Regions);
}

template void elf::writeResult<ELF32LE>(SymbolTable<ELF32LE> *Symtab);
template void elf::writeResult<ELF32BE>(SymbolTable<ELF32BE> *Symtab);
template void elf::writeResult<ELF64LE>(SymbolTable<ELF64LE> *Symtab);
template void elf::writeResult<ELF64BE>(SymbolTable<ELF64BE> *Symtab);