aboutsummaryrefslogtreecommitdiff
path: root/unittests/ADT/STLExtrasTest.cpp
blob: 2e6eb6f413f6cb05cd2944bca69665af27ee5699 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
//===- STLExtrasTest.cpp - Unit tests for STL extras ----------------------===//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//

#include "llvm/ADT/STLExtras.h"
#include "gtest/gtest.h"

#include <list>
#include <vector>

using namespace llvm;

namespace {

int f(rank<0>) { return 0; }
int f(rank<1>) { return 1; }
int f(rank<2>) { return 2; }
int f(rank<4>) { return 4; }

TEST(STLExtrasTest, Rank) {
  // We shouldn't get ambiguities and should select the overload of the same
  // rank as the argument.
  EXPECT_EQ(0, f(rank<0>()));
  EXPECT_EQ(1, f(rank<1>()));
  EXPECT_EQ(2, f(rank<2>()));

  // This overload is missing so we end up back at 2.
  EXPECT_EQ(2, f(rank<3>()));

  // But going past 3 should work fine.
  EXPECT_EQ(4, f(rank<4>()));

  // And we can even go higher and just fall back to the last overload.
  EXPECT_EQ(4, f(rank<5>()));
  EXPECT_EQ(4, f(rank<6>()));
}

TEST(STLExtrasTest, EnumerateLValue) {
  // Test that a simple LValue can be enumerated and gives correct results with
  // multiple types, including the empty container.
  std::vector<char> foo = {'a', 'b', 'c'};
  typedef std::pair<std::size_t, char> CharPairType;
  std::vector<CharPairType> CharResults;

  for (auto X : llvm::enumerate(foo)) {
    CharResults.emplace_back(X.index(), X.value());
  }
  ASSERT_EQ(3u, CharResults.size());
  EXPECT_EQ(CharPairType(0u, 'a'), CharResults[0]);
  EXPECT_EQ(CharPairType(1u, 'b'), CharResults[1]);
  EXPECT_EQ(CharPairType(2u, 'c'), CharResults[2]);

  // Test a const range of a different type.
  typedef std::pair<std::size_t, int> IntPairType;
  std::vector<IntPairType> IntResults;
  const std::vector<int> bar = {1, 2, 3};
  for (auto X : llvm::enumerate(bar)) {
    IntResults.emplace_back(X.index(), X.value());
  }
  ASSERT_EQ(3u, IntResults.size());
  EXPECT_EQ(IntPairType(0u, 1), IntResults[0]);
  EXPECT_EQ(IntPairType(1u, 2), IntResults[1]);
  EXPECT_EQ(IntPairType(2u, 3), IntResults[2]);

  // Test an empty range.
  IntResults.clear();
  const std::vector<int> baz{};
  for (auto X : llvm::enumerate(baz)) {
    IntResults.emplace_back(X.index(), X.value());
  }
  EXPECT_TRUE(IntResults.empty());
}

TEST(STLExtrasTest, EnumerateModifyLValue) {
  // Test that you can modify the underlying entries of an lvalue range through
  // the enumeration iterator.
  std::vector<char> foo = {'a', 'b', 'c'};

  for (auto X : llvm::enumerate(foo)) {
    ++X.value();
  }
  EXPECT_EQ('b', foo[0]);
  EXPECT_EQ('c', foo[1]);
  EXPECT_EQ('d', foo[2]);
}

TEST(STLExtrasTest, EnumerateRValueRef) {
  // Test that an rvalue can be enumerated.
  typedef std::pair<std::size_t, int> PairType;
  std::vector<PairType> Results;

  auto Enumerator = llvm::enumerate(std::vector<int>{1, 2, 3});

  for (auto X : llvm::enumerate(std::vector<int>{1, 2, 3})) {
    Results.emplace_back(X.index(), X.value());
  }

  ASSERT_EQ(3u, Results.size());
  EXPECT_EQ(PairType(0u, 1), Results[0]);
  EXPECT_EQ(PairType(1u, 2), Results[1]);
  EXPECT_EQ(PairType(2u, 3), Results[2]);
}

TEST(STLExtrasTest, EnumerateModifyRValue) {
  // Test that when enumerating an rvalue, modification still works (even if
  // this isn't terribly useful, it at least shows that we haven't snuck an
  // extra const in there somewhere.
  typedef std::pair<std::size_t, char> PairType;
  std::vector<PairType> Results;

  for (auto X : llvm::enumerate(std::vector<char>{'1', '2', '3'})) {
    ++X.value();
    Results.emplace_back(X.index(), X.value());
  }

  ASSERT_EQ(3u, Results.size());
  EXPECT_EQ(PairType(0u, '2'), Results[0]);
  EXPECT_EQ(PairType(1u, '3'), Results[1]);
  EXPECT_EQ(PairType(2u, '4'), Results[2]);
}

template <bool B> struct CanMove {};
template <> struct CanMove<false> {
  CanMove(CanMove &&) = delete;

  CanMove() = default;
  CanMove(const CanMove &) = default;
};

template <bool B> struct CanCopy {};
template <> struct CanCopy<false> {
  CanCopy(const CanCopy &) = delete;

  CanCopy() = default;
  CanCopy(CanCopy &&) = default;
};

template <bool Moveable, bool Copyable>
struct Range : CanMove<Moveable>, CanCopy<Copyable> {
  explicit Range(int &C, int &M, int &D) : C(C), M(M), D(D) {}
  Range(const Range &R) : CanCopy<Copyable>(R), C(R.C), M(R.M), D(R.D) { ++C; }
  Range(Range &&R) : CanMove<Moveable>(std::move(R)), C(R.C), M(R.M), D(R.D) {
    ++M;
  }
  ~Range() { ++D; }

  int &C;
  int &M;
  int &D;

  int *begin() { return nullptr; }
  int *end() { return nullptr; }
};

TEST(STLExtrasTest, EnumerateLifetimeSemantics) {
  // Test that when enumerating lvalues and rvalues, there are no surprise
  // copies or moves.

  // With an rvalue, it should not be destroyed until the end of the scope.
  int Copies = 0;
  int Moves = 0;
  int Destructors = 0;
  {
    auto E1 = enumerate(Range<true, false>(Copies, Moves, Destructors));
    // Doesn't compile.  rvalue ranges must be moveable.
    // auto E2 = enumerate(Range<false, true>(Copies, Moves, Destructors));
    EXPECT_EQ(0, Copies);
    EXPECT_EQ(1, Moves);
    EXPECT_EQ(1, Destructors);
  }
  EXPECT_EQ(0, Copies);
  EXPECT_EQ(1, Moves);
  EXPECT_EQ(2, Destructors);

  Copies = Moves = Destructors = 0;
  // With an lvalue, it should not be destroyed even after the end of the scope.
  // lvalue ranges need be neither copyable nor moveable.
  Range<false, false> R(Copies, Moves, Destructors);
  {
    auto Enumerator = enumerate(R);
    (void)Enumerator;
    EXPECT_EQ(0, Copies);
    EXPECT_EQ(0, Moves);
    EXPECT_EQ(0, Destructors);
  }
  EXPECT_EQ(0, Copies);
  EXPECT_EQ(0, Moves);
  EXPECT_EQ(0, Destructors);
}

TEST(STLExtrasTest, ApplyTuple) {
  auto T = std::make_tuple(1, 3, 7);
  auto U = llvm::apply_tuple(
      [](int A, int B, int C) { return std::make_tuple(A - B, B - C, C - A); },
      T);

  EXPECT_EQ(-2, std::get<0>(U));
  EXPECT_EQ(-4, std::get<1>(U));
  EXPECT_EQ(6, std::get<2>(U));

  auto V = llvm::apply_tuple(
      [](int A, int B, int C) {
        return std::make_tuple(std::make_pair(A, char('A' + A)),
                               std::make_pair(B, char('A' + B)),
                               std::make_pair(C, char('A' + C)));
      },
      T);

  EXPECT_EQ(std::make_pair(1, 'B'), std::get<0>(V));
  EXPECT_EQ(std::make_pair(3, 'D'), std::get<1>(V));
  EXPECT_EQ(std::make_pair(7, 'H'), std::get<2>(V));
}

class apply_variadic {
  static int apply_one(int X) { return X + 1; }
  static char apply_one(char C) { return C + 1; }
  static StringRef apply_one(StringRef S) { return S.drop_back(); }

public:
  template <typename... Ts>
  auto operator()(Ts &&... Items)
      -> decltype(std::make_tuple(apply_one(Items)...)) {
    return std::make_tuple(apply_one(Items)...);
  }
};

TEST(STLExtrasTest, ApplyTupleVariadic) {
  auto Items = std::make_tuple(1, llvm::StringRef("Test"), 'X');
  auto Values = apply_tuple(apply_variadic(), Items);

  EXPECT_EQ(2, std::get<0>(Values));
  EXPECT_EQ("Tes", std::get<1>(Values));
  EXPECT_EQ('Y', std::get<2>(Values));
}

TEST(STLExtrasTest, CountAdaptor) {
  std::vector<int> v;

  v.push_back(1);
  v.push_back(2);
  v.push_back(1);
  v.push_back(4);
  v.push_back(3);
  v.push_back(2);
  v.push_back(1);

  EXPECT_EQ(3, count(v, 1));
  EXPECT_EQ(2, count(v, 2));
  EXPECT_EQ(1, count(v, 3));
  EXPECT_EQ(1, count(v, 4));
}

TEST(STLExtrasTest, ToVector) {
  std::vector<char> v = {'a', 'b', 'c'};
  auto Enumerated = to_vector<4>(enumerate(v));
  ASSERT_EQ(3u, Enumerated.size());
  for (size_t I = 0; I < v.size(); ++I) {
    EXPECT_EQ(I, Enumerated[I].index());
    EXPECT_EQ(v[I], Enumerated[I].value());
  }
}

TEST(STLExtrasTest, ConcatRange) {
  std::vector<int> Expected = {1, 2, 3, 4, 5, 6, 7, 8};
  std::vector<int> Test;

  std::vector<int> V1234 = {1, 2, 3, 4};
  std::list<int> L56 = {5, 6};
  SmallVector<int, 2> SV78 = {7, 8};

  // Use concat across different sized ranges of different types with different
  // iterators.
  for (int &i : concat<int>(V1234, L56, SV78))
    Test.push_back(i);
  EXPECT_EQ(Expected, Test);

  // Use concat between a temporary, an L-value, and an R-value to make sure
  // complex lifetimes work well.
  Test.clear();
  for (int &i : concat<int>(std::vector<int>(V1234), L56, std::move(SV78)))
    Test.push_back(i);
  EXPECT_EQ(Expected, Test);
}

TEST(STLExtrasTest, PartitionAdaptor) {
  std::vector<int> V = {1, 2, 3, 4, 5, 6, 7, 8};

  auto I = partition(V, [](int i) { return i % 2 == 0; });
  ASSERT_EQ(V.begin() + 4, I);

  // Sort the two halves as partition may have messed with the order.
  std::sort(V.begin(), I);
  std::sort(I, V.end());

  EXPECT_EQ(2, V[0]);
  EXPECT_EQ(4, V[1]);
  EXPECT_EQ(6, V[2]);
  EXPECT_EQ(8, V[3]);
  EXPECT_EQ(1, V[4]);
  EXPECT_EQ(3, V[5]);
  EXPECT_EQ(5, V[6]);
  EXPECT_EQ(7, V[7]);
}

TEST(STLExtrasTest, EraseIf) {
  std::vector<int> V = {1, 2, 3, 4, 5, 6, 7, 8};

  erase_if(V, [](int i) { return i % 2 == 0; });
  EXPECT_EQ(4u, V.size());
  EXPECT_EQ(1, V[0]);
  EXPECT_EQ(3, V[1]);
  EXPECT_EQ(5, V[2]);
  EXPECT_EQ(7, V[3]);
}

}