aboutsummaryrefslogtreecommitdiff
path: root/common/psci/psci_afflvl_on.c
diff options
context:
space:
mode:
Diffstat (limited to 'common/psci/psci_afflvl_on.c')
-rw-r--r--common/psci/psci_afflvl_on.c416
1 files changed, 416 insertions, 0 deletions
diff --git a/common/psci/psci_afflvl_on.c b/common/psci/psci_afflvl_on.c
new file mode 100644
index 0000000..b0de063
--- /dev/null
+++ b/common/psci/psci_afflvl_on.c
@@ -0,0 +1,416 @@
+/*
+ * Copyright (c) 2013, ARM Limited. All rights reserved.
+ *
+ * Redistribution and use in source and binary forms, with or without
+ * modification, are permitted provided that the following conditions are met:
+ *
+ * Redistributions of source code must retain the above copyright notice, this
+ * list of conditions and the following disclaimer.
+ *
+ * Redistributions in binary form must reproduce the above copyright notice,
+ * this list of conditions and the following disclaimer in the documentation
+ * and/or other materials provided with the distribution.
+ *
+ * Neither the name of ARM nor the names of its contributors may be used
+ * to endorse or promote products derived from this software without specific
+ * prior written permission.
+ *
+ * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
+ * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
+ * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
+ * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
+ * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
+ * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
+ * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
+ * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
+ * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
+ * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
+ * POSSIBILITY OF SUCH DAMAGE.
+ */
+
+#include <stdio.h>
+#include <string.h>
+#include <assert.h>
+#include <arch_helpers.h>
+#include <console.h>
+#include <platform.h>
+#include <psci.h>
+#include <psci_private.h>
+
+typedef int (*afflvl_on_handler)(unsigned long,
+ aff_map_node *,
+ unsigned long,
+ unsigned long);
+
+/*******************************************************************************
+ * This function checks whether a cpu which has been requested to be turned on
+ * is OFF to begin with.
+ ******************************************************************************/
+static int cpu_on_validate_state(unsigned int state)
+{
+ unsigned int psci_state;
+
+ /* Get the raw psci state */
+ psci_state = psci_get_state(state);
+
+ if (psci_state == PSCI_STATE_ON || psci_state == PSCI_STATE_SUSPEND)
+ return PSCI_E_ALREADY_ON;
+
+ if (psci_state == PSCI_STATE_ON_PENDING)
+ return PSCI_E_ON_PENDING;
+
+ assert(psci_state == PSCI_STATE_OFF);
+ return PSCI_E_SUCCESS;
+}
+
+/*******************************************************************************
+ * Handler routine to turn a cpu on. It takes care of any generic, architectural
+ * or platform specific setup required.
+ * TODO: Split this code across separate handlers for each type of setup?
+ ******************************************************************************/
+static int psci_afflvl0_on(unsigned long target_cpu,
+ aff_map_node *cpu_node,
+ unsigned long ns_entrypoint,
+ unsigned long context_id)
+{
+ unsigned int index, plat_state;
+ unsigned long psci_entrypoint;
+ int rc;
+
+ /* Sanity check to safeguard against data corruption */
+ assert(cpu_node->level == MPIDR_AFFLVL0);
+
+ /*
+ * Generic management: Ensure that the cpu is off to be
+ * turned on
+ */
+ rc = cpu_on_validate_state(cpu_node->state);
+ if (rc != PSCI_E_SUCCESS)
+ return rc;
+
+ /*
+ * Arch. management: Derive the re-entry information for
+ * the non-secure world from the non-secure state from
+ * where this call originated.
+ */
+ index = cpu_node->data;
+ rc = psci_set_ns_entry_info(index, ns_entrypoint, context_id);
+ if (rc != PSCI_E_SUCCESS)
+ return rc;
+
+ /* Set the secure world (EL3) re-entry point after BL1 */
+ psci_entrypoint = (unsigned long) psci_aff_on_finish_entry;
+
+ /*
+ * Plat. management: Give the platform the current state
+ * of the target cpu to allow it to perform the necessary
+ * steps to power on.
+ */
+ if (psci_plat_pm_ops->affinst_on) {
+
+ /* Get the current physical state of this cpu */
+ plat_state = psci_get_aff_phys_state(cpu_node);
+ rc = psci_plat_pm_ops->affinst_on(target_cpu,
+ psci_entrypoint,
+ ns_entrypoint,
+ cpu_node->level,
+ plat_state);
+ }
+
+ return rc;
+}
+
+/*******************************************************************************
+ * Handler routine to turn a cluster on. It takes care or any generic, arch.
+ * or platform specific setup required.
+ * TODO: Split this code across separate handlers for each type of setup?
+ ******************************************************************************/
+static int psci_afflvl1_on(unsigned long target_cpu,
+ aff_map_node *cluster_node,
+ unsigned long ns_entrypoint,
+ unsigned long context_id)
+{
+ int rc = PSCI_E_SUCCESS;
+ unsigned int plat_state;
+ unsigned long psci_entrypoint;
+
+ assert(cluster_node->level == MPIDR_AFFLVL1);
+
+ /*
+ * There is no generic and arch. specific cluster
+ * management required
+ */
+
+ /*
+ * Plat. management: Give the platform the current state
+ * of the target cpu to allow it to perform the necessary
+ * steps to power on.
+ */
+ if (psci_plat_pm_ops->affinst_on) {
+ plat_state = psci_get_aff_phys_state(cluster_node);
+ psci_entrypoint = (unsigned long) psci_aff_on_finish_entry;
+ rc = psci_plat_pm_ops->affinst_on(target_cpu,
+ psci_entrypoint,
+ ns_entrypoint,
+ cluster_node->level,
+ plat_state);
+ }
+
+ return rc;
+}
+
+/*******************************************************************************
+ * Handler routine to turn a cluster of clusters on. It takes care or any
+ * generic, arch. or platform specific setup required.
+ * TODO: Split this code across separate handlers for each type of setup?
+ ******************************************************************************/
+static int psci_afflvl2_on(unsigned long target_cpu,
+ aff_map_node *system_node,
+ unsigned long ns_entrypoint,
+ unsigned long context_id)
+{
+ int rc = PSCI_E_SUCCESS;
+ unsigned int plat_state;
+ unsigned long psci_entrypoint;
+
+ /* Cannot go beyond affinity level 2 in this psci imp. */
+ assert(system_node->level == MPIDR_AFFLVL2);
+
+ /*
+ * There is no generic and arch. specific system management
+ * required
+ */
+
+ /*
+ * Plat. management: Give the platform the current state
+ * of the target cpu to allow it to perform the necessary
+ * steps to power on.
+ */
+ if (psci_plat_pm_ops->affinst_on) {
+ plat_state = psci_get_aff_phys_state(system_node);
+ psci_entrypoint = (unsigned long) psci_aff_on_finish_entry;
+ rc = psci_plat_pm_ops->affinst_on(target_cpu,
+ psci_entrypoint,
+ ns_entrypoint,
+ system_node->level,
+ plat_state);
+ }
+
+ return rc;
+}
+
+/* Private data structure to make this handlers accessible through indexing */
+static const afflvl_on_handler psci_afflvl_on_handlers[] = {
+ psci_afflvl0_on,
+ psci_afflvl1_on,
+ psci_afflvl2_on,
+};
+
+/*******************************************************************************
+ * This function implements the core of the processing required to turn a cpu
+ * on. It avoids recursion to traverse from the lowest to the highest affinity
+ * level unlike the off/suspend/pon_finisher functions. It does ensure that the
+ * locks are picked in the same order as the order routines to avoid deadlocks.
+ * The flow is: Take all the locks until the highest affinity level, Call the
+ * handlers for turning an affinity level on & finally change the state of the
+ * affinity level.
+ ******************************************************************************/
+int psci_afflvl_on(unsigned long target_cpu,
+ unsigned long entrypoint,
+ unsigned long context_id,
+ int current_afflvl,
+ int target_afflvl)
+{
+ unsigned int prev_state, next_state;
+ int rc = PSCI_E_SUCCESS, level;
+ aff_map_node *aff_node;
+ unsigned long mpidr = read_mpidr() & MPIDR_AFFINITY_MASK;
+
+ /*
+ * This loop acquires the lock corresponding to each
+ * affinity level so that by the time we hit the lowest
+ * affinity level, the system topology is snapshot and
+ * state management can be done safely.
+ */
+ for (level = current_afflvl; level >= target_afflvl; level--) {
+ aff_node = psci_get_aff_map_node(target_cpu, level);
+ if (aff_node)
+ bakery_lock_get(mpidr, &aff_node->lock);
+ }
+
+ /*
+ * Perform generic, architecture and platform specific
+ * handling
+ */
+ for (level = current_afflvl; level >= target_afflvl; level--) {
+
+ /* Grab the node for each affinity level once again */
+ aff_node = psci_get_aff_map_node(target_cpu, level);
+ if (aff_node) {
+
+ /* Keep the old state and the next one handy */
+ prev_state = psci_get_state(aff_node->state);
+ rc = psci_afflvl_on_handlers[level](target_cpu,
+ aff_node,
+ entrypoint,
+ context_id);
+ if (rc != PSCI_E_SUCCESS) {
+ psci_set_state(aff_node->state, prev_state);
+ goto exit;
+ }
+ }
+ }
+
+ /*
+ * State management: Update the states since this is the
+ * target affinity level requested.
+ */
+ psci_change_state(target_cpu,
+ target_afflvl,
+ get_max_afflvl(),
+ PSCI_STATE_ON_PENDING);
+
+exit:
+ /*
+ * This loop releases the lock corresponding to each affinity level
+ * in the reverse order. It also checks the final state of the cpu.
+ */
+ for (level = target_afflvl; level <= current_afflvl; level++) {
+ aff_node = psci_get_aff_map_node(target_cpu, level);
+ if (aff_node) {
+ if (level == MPIDR_AFFLVL0) {
+ next_state = psci_get_state(aff_node->state);
+ assert(next_state == PSCI_STATE_ON_PENDING);
+ }
+ bakery_lock_release(mpidr, &aff_node->lock);
+ }
+ }
+
+ return rc;
+}
+
+/*******************************************************************************
+ * The following functions finish an earlier affinity power on request. They
+ * are called by the common finisher routine in psci_common.c.
+ ******************************************************************************/
+static unsigned int psci_afflvl0_on_finish(unsigned long mpidr,
+ aff_map_node *cpu_node,
+ unsigned int prev_state)
+{
+ unsigned int index, plat_state, rc = PSCI_E_SUCCESS;
+
+ assert(cpu_node->level == MPIDR_AFFLVL0);
+
+ /*
+ * Plat. management: Perform the platform specific actions
+ * for this cpu e.g. enabling the gic or zeroing the mailbox
+ * register. The actual state of this cpu has already been
+ * changed.
+ */
+ if (psci_plat_pm_ops->affinst_on_finish) {
+
+ /* Get the previous physical state of this cpu */
+ plat_state = psci_get_phys_state(prev_state);
+ rc = psci_plat_pm_ops->affinst_on_finish(mpidr,
+ cpu_node->level,
+ plat_state);
+ assert(rc == PSCI_E_SUCCESS);
+ }
+
+ /*
+ * Arch. management: Turn on mmu & restore architectural state
+ */
+ write_vbar((unsigned long) runtime_exceptions);
+ enable_mmu();
+
+ /*
+ * All the platform specific actions for turning this cpu
+ * on have completed. Perform enough arch.initialization
+ * to run in the non-secure address space.
+ */
+ bl31_arch_setup();
+
+ /*
+ * Generic management: Now we just need to retrieve the
+ * information that we had stashed away during the cpu_on
+ * call to set this cpu on it's way. First get the index
+ * for restoring the re-entry info
+ */
+ index = cpu_node->data;
+ rc = psci_get_ns_entry_info(index);
+
+ /* Clean caches before re-entering normal world */
+ dcsw_op_louis(DCCSW);
+
+ return rc;
+}
+
+static unsigned int psci_afflvl1_on_finish(unsigned long mpidr,
+ aff_map_node *cluster_node,
+ unsigned int prev_state)
+{
+ unsigned int rc = PSCI_E_SUCCESS;
+ unsigned int plat_state;
+
+ assert(cluster_node->level == MPIDR_AFFLVL1);
+
+ /*
+ * Plat. management: Perform the platform specific actions
+ * as per the old state of the cluster e.g. enabling
+ * coherency at the interconnect depends upon the state with
+ * which this cluster was powered up. If anything goes wrong
+ * then assert as there is no way to recover from this
+ * situation.
+ */
+ if (psci_plat_pm_ops->affinst_on_finish) {
+ plat_state = psci_get_phys_state(prev_state);
+ rc = psci_plat_pm_ops->affinst_on_finish(mpidr,
+ cluster_node->level,
+ plat_state);
+ assert(rc == PSCI_E_SUCCESS);
+ }
+
+ return rc;
+}
+
+
+static unsigned int psci_afflvl2_on_finish(unsigned long mpidr,
+ aff_map_node *system_node,
+ unsigned int prev_state)
+{
+ int rc = PSCI_E_SUCCESS;
+ unsigned int plat_state;
+
+ /* Cannot go beyond this affinity level */
+ assert(system_node->level == MPIDR_AFFLVL2);
+
+ /*
+ * Currently, there are no architectural actions to perform
+ * at the system level.
+ */
+
+ /*
+ * Plat. management: Perform the platform specific actions
+ * as per the old state of the cluster e.g. enabling
+ * coherency at the interconnect depends upon the state with
+ * which this cluster was powered up. If anything goes wrong
+ * then assert as there is no way to recover from this
+ * situation.
+ */
+ if (psci_plat_pm_ops->affinst_on_finish) {
+ plat_state = psci_get_phys_state(system_node->state);
+ rc = psci_plat_pm_ops->affinst_on_finish(mpidr,
+ system_node->level,
+ plat_state);
+ assert(rc == PSCI_E_SUCCESS);
+ }
+
+ return rc;
+}
+
+const afflvl_power_on_finisher psci_afflvl_on_finishers[] = {
+ psci_afflvl0_on_finish,
+ psci_afflvl1_on_finish,
+ psci_afflvl2_on_finish,
+};
+