aboutsummaryrefslogtreecommitdiff
diff options
context:
space:
mode:
authorAlex Shi <alex.shi@intel.com>2013-05-06 09:45:11 +0800
committerViresh Kumar <viresh.kumar@linaro.org>2013-05-16 20:34:06 +0530
commitfbf8abb7fe07ad5266fcddbd97e93c774bb8b296 (patch)
tree9b28fd97a2140cb18b2a5a7f7d85e986edcc050c
parent51e31753e1a222763f3eb6c7ba633e0d946a3064 (diff)
sched: consider runnable load average in effective_loadupstream-runnable-load-avg-in-load-balance-v5
effective_load calculates the load change as seen from the root_task_group. It needs to engage the runnable average of changed task. Thanks for Morten Rasmussen and PeterZ's reminder of this. Signed-off-by: Alex Shi <alex.shi@intel.com>
-rw-r--r--kernel/sched/fair.c24
1 files changed, 12 insertions, 12 deletions
diff --git a/kernel/sched/fair.c b/kernel/sched/fair.c
index e0ee75969aa..358c6b591da 100644
--- a/kernel/sched/fair.c
+++ b/kernel/sched/fair.c
@@ -2998,15 +2998,15 @@ static void task_waking_fair(struct task_struct *p)
#ifdef CONFIG_FAIR_GROUP_SCHED
/*
- * effective_load() calculates the load change as seen from the root_task_group
+ * effective_load() calculates load avg change as seen from the root_task_group
*
* Adding load to a group doesn't make a group heavier, but can cause movement
* of group shares between cpus. Assuming the shares were perfectly aligned one
* can calculate the shift in shares.
*
- * Calculate the effective load difference if @wl is added (subtracted) to @tg
- * on this @cpu and results in a total addition (subtraction) of @wg to the
- * total group weight.
+ * Calculate the effective load avg difference if @wl is added (subtracted) to
+ * @tg on this @cpu and results in a total addition (subtraction) of @wg to the
+ * total group load avg.
*
* Given a runqueue weight distribution (rw_i) we can compute a shares
* distribution (s_i) using:
@@ -3020,7 +3020,7 @@ static void task_waking_fair(struct task_struct *p)
* rw_i = { 2, 4, 1, 0 }
* s_i = { 2/7, 4/7, 1/7, 0 }
*
- * As per wake_affine() we're interested in the load of two CPUs (the CPU the
+ * As per wake_affine() we're interested in load avg of two CPUs (the CPU the
* task used to run on and the CPU the waker is running on), we need to
* compute the effect of waking a task on either CPU and, in case of a sync
* wakeup, compute the effect of the current task going to sleep.
@@ -3030,20 +3030,20 @@ static void task_waking_fair(struct task_struct *p)
*
* s'_i = (rw_i + @wl) / (@wg + \Sum rw_j) (2)
*
- * Suppose we're interested in CPUs 0 and 1, and want to compute the load
+ * Suppose we're interested in CPUs 0 and 1, and want to compute the load avg
* differences in waking a task to CPU 0. The additional task changes the
* weight and shares distributions like:
*
* rw'_i = { 3, 4, 1, 0 }
* s'_i = { 3/8, 4/8, 1/8, 0 }
*
- * We can then compute the difference in effective weight by using:
+ * We can then compute the difference in effective load avg by using:
*
* dw_i = S * (s'_i - s_i) (3)
*
* Where 'S' is the group weight as seen by its parent.
*
- * Therefore the effective change in loads on CPU 0 would be 5/56 (3/8 - 2/7)
+ * Therefore the effective change in load avg on CPU 0 would be 5/56 (3/8 - 2/7)
* times the weight of the group. The effect on CPU 1 would be -4/56 (4/8 -
* 4/7) times the weight of the group.
*/
@@ -3067,7 +3067,7 @@ static long effective_load(struct task_group *tg, int cpu, long wl, long wg)
/*
* w = rw_i + @wl
*/
- w = se->my_q->load.weight + wl;
+ w = se->my_q->tg_load_contrib + wl;
/*
* wl = S * s'_i; see (2)
@@ -3088,7 +3088,7 @@ static long effective_load(struct task_group *tg, int cpu, long wl, long wg)
/*
* wl = dw_i = S * (s'_i - s_i); see (3)
*/
- wl -= se->load.weight;
+ wl -= se->avg.load_avg_contrib;
/*
* Recursively apply this logic to all parent groups to compute
@@ -3134,14 +3134,14 @@ static int wake_affine(struct sched_domain *sd, struct task_struct *p, int sync)
*/
if (sync) {
tg = task_group(current);
- weight = current->se.load.weight;
+ weight = current->se.avg.load_avg_contrib;
this_load += effective_load(tg, this_cpu, -weight, -weight);
load += effective_load(tg, prev_cpu, 0, -weight);
}
tg = task_group(p);
- weight = p->se.load.weight;
+ weight = p->se.avg.load_avg_contrib;
/*
* In low-load situations, where prev_cpu is idle and this_cpu is idle